
Vol.:(0123456789)

KI - Künstliche Intelligenz
https://doi.org/10.1007/s13218-024-00861-w

TECHNICAL CONTRIBUTION

Quantum Natural Language Processing

Dominic Widdows1 · Willie Aboumrad1 · Dohun Kim2 · Sayonee Ray1 · Jonathan Mei1

Received: 19 February 2024 / Accepted: 2 July 2024
© Springer-Verlag GmbH Germany and Gesellschaft für Informatik e.V. 2024

Abstract
Language processing is at the heart of current developments in artificial intelligence, and quantum computers are becoming
available at the same time. This has led to great interest in quantum natural language processing, and several early proposals
and experiments. This paper surveys the state of this area, showing how NLP-related techniques have been used in quantum
language processing. We examine the art of word embeddings and sequential models, proposing some avenues for future
investigation and discussing the tradeoffs present in these directions. We also highlight some recent methods to compute
attention in transformer models, and perform grammatical parsing. We also introduce a new quantum design for the basic
task of text encoding (representing a string of characters in memory), which has not been addressed in detail before. Quan-
tum theory has contributed toward quantifying uncertainty and explaining “What is intelligence?” In this context, we argue
that “hallucinations” in modern artificial intelligence systems are a misunderstanding of the way facts are conceptualized:
language can express many plausible hypotheses, of which only a few become actual.

Keywords Quantum language processing · QNLP · Quantum AI · Quantum string encoding

1 Introduction

In early 2024, quantum computing and AI are two of the
most rapidly-moving and talked-about areas of science and
technology. The availability of dialog systems based on large
language models (LLMs) has raised the profile of natural
language processing (NLP) to a historic high, developing
and expanding very quickly. This expansion has led to AI
models being deployed as systems and introduced as com-
ponents in new ways, leading to improvements and efficien-
cies, but also mistakes and concerns. Thus the demand for

improvements in AI is at an all-time high, with a renewed
focus on reliability and trust.

Quantum theory offers new forms of mathematical mod-
eling, computation and communication. Mathematical mod-
els for language operations motivated explicitly by quantum
theory have been used in information retrieval [1, 2], logic
and disambiguation [3], and language composition [4, 5].
Similar models have been developed in many social sciences
and demonstrated successful results over classical alterna-
tives, long before any such models were implemented and
run on quantum computers. More abstractly, entire classes of
quantum machine learning (ML) models have been theoreti-
cally shown to have more expressive power than compara-
ble classical models [6, 7], though this does not guarantee
improvements in results more generally [8]. Running basic
NLP algorithms on quantum has become possible only in the
last few years, with early-stage results reported by [9, 10].

This paper is intended as an introduction to this land-
scape, for those interested in language processing and quan-
tum computing, but not necessarily specialists in either.
Firstly, Sect. 2 gives a brief introduction to quantum gates
and circuits. Section 3 continues with an idealized exam-
ple of how quantum gates could be used to represent a text
string of exponential length in a register of qubits, including
some caveats and pitfalls. This gives a glimpse of some of

 * Dominic Widdows
 widdows@ionq.com

 Willie Aboumrad
 aboumrad@ionq.com

 Dohun Kim
 dohunkim@postech.ac.kr

 Sayonee Ray
 sayonee@ionq.com

 Jonathan Mei
 jonathan.mei@ionq.com

1 IonQ, Inc., 4505 Campus Dr, College Park, MD, USA
2 Pohang University of Science and Technology, Pohang,

South Korea

http://crossmark.crossref.org/dialog/?doi=10.1007/s13218-024-00861-w&domain=pdf
http://orcid.org/0000-0002-4241-0820

 KI - Künstliche Intelligenz

the wonder, and some of the challenges, of quantum com-
puting. The main body of the paper surveys ways in which
other aspects of language processing have already been mod-
eled on quantum computers, including embedding vectors,
sequences, attention, and grammatical structure (Sects. 4–7).
This gives a snapshot of of where quantum NLP has got
to at this stage of the NISQ era. Finally, Sect. 8 discusses
the challenges of choosing and distinguishing between the
hypothetical and the actual. This has taken on fresh urgency
in AI systems for fact-checking, to avoid mistaking so-called
hallucinations for assertions. We note that language models
are designed to produce both hypothetical and actual state-
ments, and that quantum mechanics is a better starting point
than classical mechanics for modeling this.

2 Quantum Computing Basics

In early 2024, quantum computers are real and in regular
use, and quantum runtime is offered as-a-service by many
companies, via the internet / cloud. This section introduces
some of the basic building blocks of quantum computing,
from the perspective of a developer designing quantum pro-
grams, particularly to run on today’s noisy-intermediate
scale quantum (NISQ) hardware. The development process
involves specifying a register of qubits, and saying what
logic gates and measurements should be performed on these
qubits.

The material here overlaps with the introduction of [11].
Some familiarity with quantum mechanics, especially Dirac
notation, is assumed, so that �0⟩ and �1⟩ are the basis states
for a single qubit whose state is represented in the complex
vector space ℂ2 , a 2-qubit state is represented in the tensor
product space ℂ2 ⊗ ℂ

2 ≅ ℂ
4 with basis states �00⟩, �01⟩, �10⟩

and �11⟩ , 3-qubit states are represented in ℂ⊗3 ≅ ℂ
8 with

basis states �000⟩, �001⟩,… , �111⟩ , and so on. For introduc-
tions to how linear algebra is written and used in quantum
mechanics, see [12, Ch 2]. Quantum measurement is prob-
abilistic: if ��⟩ is an eigenvector of a given measurement
operator, then a system in the state ��⟩ is observed to be in
the state ��⟩ with probability given by the square of their
scalar product, ⟨���⟩2 (the Born rule), and if this outcome
is observed, the system is now in the state ��⟩.

In mathematical terms, the key features that distin-
guish quantum from classical computers are superposi-
tion and entanglement. Superposition can be realized in a
single qubit: the state ��0⟩ + ��1⟩ is a superposition of the
states �0⟩ and �1⟩ , where � and � are complex numbers, with
|�2| + |�2| = 1 . Each single-qubit logic gate is a linear opera-
tor that preserves the orthogonality of the basis states and
this normalization condition, and the group of such opera-
tors is U(2), the group of complex 2 × 2 unitary matrices.
Single-qubit gates that feature prominently in this paper are

shown in Fig. 1. So single-qubit gates coherently manipulate
the superposition state of an individual qubit.

Entanglement is a property that connects different qubits.
Since the 1930’s, quantum entanglement has gone from a
hotly-disputed scientific prediction, to a statistical property
demonstrated with large ensembles, to a connection created
between pairs of individual particles, to a working compo-
nent in quantum computers. All modern quantum comput-
ers have some implementation of an entangling gate, and
only one kind is really needed, because all possible 2-qubit
entangled states can be constructed mathematically by com-
bining appropriate single-qubit gates before and after the
entangling gate. Furthermore, a single 2-qubit entangling
gate and a set of single-qubit gates forms a universal gate-
set for quantum computing [12, §4.5]. Entanglement is the
crucial feature that distinguishes quantum computing algo-
rithmically, because predicting the probability distributions
that result from quantum operations with entanglement can
become exponentially hard for classical computers. In sim-
pler terms, quantum computing is special because it offers
special kinds of interference, not because it offers special
kinds of in-between-ness.

A quantum circuit consists of a register of qubits, and a
sequence of logic gates that act on these qubits. Some of the
basic gates used in this paper are shown in Figs. 1 and 2. The
Pauli-X gate is commonly used to flip a qubit between the
�0⟩ and �1⟩ gates, which is why it is also sometimes called
the quantum NOT gate. X-gates applied to different qubits
can be used to prepare an input state representing a binary-
valued vector: the state �010⋯ 001⟩ is prepared by applying
an X-gate to each of the qubits to be switched to the �1⟩ state.

The Hadamard (H) gate is commonly used to put a qubit
into a superposition state: for example, it maps a qubit

Fig. 1 Single-qubit gates used in this paper, and their corresponding
matrices, which operate on the superposition state ��0⟩ + ��1⟩ written
as the column vector

[
� �

]T

Fig. 2 Two-qubit CNOT (controlled-X) and gate

KI - Künstliche Intelligenz

prepared in the state �0⟩ to the superposition 1√
2
(�0⟩ + �1⟩) .

Applying an H-gate to each qubit in an array is used to ini-
tialize a binary vector all of whose coordinates have a 50-50
chance of being observed in the �0⟩ or �1⟩ state.

Other probabilities, anywhere in the range [0, 1], can be
arranged by using fractional rotations (which might involve
sending just the same laser-pulse instructions, but for dif-
ferent time periods). An example is given in the RX(�) gate.
Several variational quantum algorithms work by gradually
optimizing such � parameters.

The CNOT gate is a 2-qubit entangling gate, that acts
upon the state ��00⟩ + ��01⟩ + ��10⟩ + ��11⟩ . In the stand-
ard basis, its behavior can be described as “performing a
NOT operation on the target qubit if the control qubit is in
state �1⟩”.

By assembling several 1- and 2-qubit gates, more qubits
can become entangled, and we can define multi-controlled
gates. For example, the 3-qubit Toffoli gate in Fig. 3 flips the
lowest qubit if the top qubit is in the �1⟩ state and the mid-
dle qubit in the �0⟩ state. It is relatively easy mathematically
to start arranging such gate recipes into higher-level opera-
tions: for example, the 3-qubit gate acts as a logical AND,
from which simple binary arithmetic can be constructed.

However, developers must be careful when using such
constructions, because gate complexity and errors can easily
build up. In practice, it takes 5 CNOT gates and 9 single-
qubit gates to assemble the 3-qubit Toffoli gate, so if gate
errors are above 1%, the error-rate in a circuit with just 3
Toffoli gates would be over 50%. In 2024, gate error rates
tend to be much better than this, but still, typical circuits
today do not reliably run more than a few hundred gates.
NISQ-era quantum circuit development tends to tradeoff
between sophistication (more gates introduces more tunable
parameters) and reliability (fewer gates gives fewer errors).
It also leads to designs where classical components are relied
upon for many parts of an NLP pipeline, such as storing
weights and comparing scores [10].

In quantum machine learning, variational circuits, or
parametrized quantum circuits (PQCs), are a particularly
clear example of such tradeoffs [13, Ch 5]. Variational
circuit designs use i. a quantum circuit with parameters
{�i} , often implemented as variable gate angles, that can
be optimized according to a given loss function; and ii. a

classical optimizer, responsible for evaluating the measure-
ment outputs of the quantum circuit, and proposing updates
to the parameters {�i} . When both classical and quantum
components play such a prominent role, the combination is
sometimes called a hybrid system or hybrid workflow.

The transition from NISQ to fault-tolerant quantum com-
puting will be gradual, and arguably is already underway:
recent months have seen encouraging progress in quantum
error correction and memory fidelity [14]. This raises long-
term expectations that quantum computers will optimize
crucial matrix operations, such as solving systems of equa-
tions [15], and quantum singular value transformation [16].
However, it is important to remember that even fault-tolerant
quantum computing will come with serious caveats, and in
particular, quantum components bring no advantage if their
I/O costs outweigh their computational gains [17].

Through the rest of this paper, we highlight examples
of some of these considerations and design differences as
they appear.

3 A Quantum String Encoding Example

Character and string encoding is one of the most basic tasks
in language processing, and this section gives a worked
example of how this might be performed on a quantum com-
puter using some of the standard quantum circuit and gate
patterns introduced in the previous section. This makes a
good case-study of some of the promise and challenges of
quantum computing, and (as far as we know) is the first such
proposal for representing text strings in a quantum computer,
comparable to the use of ASCII or Unicode specifications in
mainstream classical computing.

To encode a text of meaningful length, this encoding
would require many layers of 2-qubit gates, and this design
would require fault-tolerant quantum computing, rather than
being a NISQ-era proposal. Other methods of encoding the
meanings of texts in quantum NLP work have been devised,
such as vector embeddings for use in machine learning clas-
sifiers, and several such techniques will be surveyed in later
sections. The example quantum circuit designs in this sec-
tion are for the (much older) protocol of representing words
as a sequence of characters chosen from a relatively small
character set. Some of the quantum word-encoding models
based on a sequences and embeddings will be surveyed in
later sections of this paper.

The established way to define a string in computer sci-
ence is to rely on an encoding standard such as ASCII
which identifies letters with numbers (A=65, B=66, etc.),
and then a string such as CAB can be represented as the
number sequence [67, 65, 66]. Here the quantum developer
faces an immediate and typical challenge: arrays and lists
are not standardized components, and a strategy to read from

Fig. 3 Three-qubit multi-controlled gate (Toffoli gate) with �1⟩ and �0⟩
control states

 KI - Künstliche Intelligenz

the next location in memory needs to be introduced as part
of the design. This lack generalizes: there is much more
established literature, software, and hardware for quantum
algorithms than for quantum data structures.

One data structure we can use as a building block in
quantum circuits is binary positional notation for integers.
For example, in a 4-qubit register, the state �1010⟩ could
represent the decimal number 10 (if read left-to-right) or 5
(if read right-to-left). This convention was used right at the
beginning of quantum computing, in Feynman’s proposal
of how to build a quantum adder circuit [18], and is part
of Shor’s integer factoring algorithm [19]. These numbers
can be represented in quantum circuits using X-gate bit-flip
operations on the corresponding qubits, as in Fig. 4.

Our string encoding design works by entangling a
“position” register that records where a character appears,
along with an “alphabet” register that says which char-
acter appears in that position. So instead of a sequence
[3, 1, 2], the string is represented as a tensor product
1P ⊗ 3C + 2P ⊗ 1C + 3P ⊗ 2C , where nP is the state repre-
senting the Pth position, and mC is the state representing the
Cth character. A similar pattern is used by [20] for represent-
ing images, and the encoding is called QPIXL. QPIXL uses
one register to specify the location of a pixel in an image,
entangled with another register saying which channel (e.g.,
red, green, or blue) is being referred to. So, QPIXL also
keeps “what it is” and “where it is” in separate registers
and entangles these. Emphasizing this similarity, we call our
string encoding protocol QPOSTR, pronounced “Q-poster”,
meaning “Quantum Positional String”.

The implementation of this formula as a quantum circuit
component for encoding the string cab is outlined in Fig. 5.
The top 2 qubits form the “position” register, and the values
on the control qubits are represented by the open and closed
circles, ◦ = 0 , ⋅ = 1 . Starting with the top as the least sig-
nificant bit, the control states are ◦◦ = 00 = 0 , ◦⋅ = 01 = 1 ,
⋅◦ = 10 = 2 , etc. The bottom 2 qubits form the “character”
or “alphabet” register. Each letter in the alphabet is mapped
to a number corresponding to its position, so the gate-recipe
for each character is like one of the simple circuits shown
in Fig. 4. To encode the string cab, a character register of 2
qubits suffices. To encode 26 letters, a character register of 5

qubits would be required (since 25 = 32), and for the ASCII
character set, 7 qubits would be needed.

If the circuit above is prepared in the conventional �0000⟩
state, the first gate controlled on the ◦◦ = 00 state is the only
one active, and the circuit output will be 00 (in the posi-
tion register) and 11 (in the character register), saying just
“the zeroth character was a c.” To prepare a superposition
of the characters in all of the positions, the position register
is prepared in a uniform distribution over all the available
character positions, using a standard array of Hadamard (H)
gates. This gives the full circuit for encoding the string cab
in Fig. 6. Character positions beyond the length of the string
are untouched, or left with character “0” in that position.
Using the convention that character “0” represents a space,
this is equivalent to padding a string with trailing zeros to
make its length a power of 2.

With n qubits, the position register can encode up to
2n positions, and with m qubits, the alphabet register can
encode up to 2m characters. Thus, a QPOSTR circuit with
m + n qubits can represent a string of length up to 2n , with up
to 2m characters. By contrast, a classical computer requires
m × 2n classical bits to store the same string.

As a thought experiment, we can use GPT-3 train-
ing metadata to demonstrate this savings. The size of
the training dataset is reported at ∼300B tokens [21], so
a generous estimate of 12 characters-per-token allows for
12 × 300 × 109 < 242 character-positions, for which the
positional encoding fits in 42 qubits. There are currently
149,813 Unicode characters, so even this alphabet fits in 18
qubits, which means that the entire ∼45TB training dataset
of GPT-3 could fit into a mere 18 + 42 = 60 qubits!

We can recover information about which character is in
which position by adding an output register with the same
number of qubits as the character register. The circuit for
this is shown in Fig. 7. The multi-controlled gates that con-
nect the QPOSTR representation to the readout register are
configured to detect the same position in the string. Each
extra qubit in the controls for these gates is set to detect a

Fig. 4 Simple encodings for a three-letter alphabet in a two-qubit
register, using the convention that the top qubit in the register is the
least-significant “units” bit in the binary encoding

Fig. 5 Position and Character Encoding for the string cab

Fig. 6 QPOSTR Encoding for the string cab

KI - Künstliche Intelligenz

particular bit in the character register, and if this bit is set to
a 1, then the corresponding output bit is set to a 1.

If this process could be repeated many times, and if the
output qubits could be reset to �0⟩ independently of the
other qubits in the register, eventually the entire input string
or any parts of it could be read out to classical memory.
Superficially, this extension of the readout circuit gives a
circuit that demonstrates that the whole original string
can be recovered from the QPOSTR quantum encoding.
In other words, it looks as if we can recover an exponen-
tially-long string (2n characters) from an encoding that uses
n + ⌈log2(alphabet size)⌉ qubits!

However, this is deceptive: due to the H gates at the
beginning, we have no way of knowing which position will
be measured by each readout operation, and to guarantee
statistically that each position is sampled, we would need
an exponential number of measurements on different copies
of the state. (In practice, many shots of the quantum circuit
would need to be run.) This is in line with a general theo-
rem in quantum computing, the Holevo bound [12, 12.1.1],
which limits the amount of classical information that can
reliably be recovered from a quantum state.

Thus, QPOSTR gives an exponential space advantage
over the classical alternative. However, it still takes a length
of time at least linear in the length of the string to run the
quantum circuit that loads the string into quantum memory.
Like many quantum encodings, QPOSTR only gives an
exponential space saving, which offers no obvious practical
advantage without a corresponding time saving. Thus, even
if we were to encode the GPT-3 training data, it is unclear at
this moment what savings could come from doing so. That
said, we optimistically speculate that future algorithms or
data structures may be able to better take advantage of this
encoding.

More generally, the challenge of preparing a quantum
memory that can be maintained and successively queried is
sometimes described as research in QROM and QRAM [22,
23]. Minimizing the number of gate operations is a key goal
in such work, and the position encoding used in QPOSTR
can be regarded as one of the “simple (but suboptimal)”
encoding methods described in Fig 3 of [23]. The task they
are interested in is encoding electronic spectra, but they also

consider encoding “words” as an example toy problem. The
extra step that QPOSTR takes is explicitly to map register
values to alphabetic characters, which enables such a uni-
tary positional encoding to represent a text as a sequence of
alphabetic characters.

Rather than demonstrating a new quantum advantage,
the QPOSTR example is intended to showcase some of the
excitement, but also some of the gotchas of quantum com-
puting. It is astonishing that an exponentially long string can
be encoded like this at all, but once the engineering caveats
around that statement are properly understood, we see that
the explicit information we can recover from this representa-
tion is much smaller.

4 Word Embeddings and Text Classification

Representing words as vectors of coordinates is a technique
that goes back at least to the 1960 s and early information
retrieval systems [24]. The key theoretical motivation behind
such distributional semantics methods is that words that
appear in similar contexts tend to have similar meanings
[25, 26]. Based on their distribution in text, embedding tech-
niques map words to vector spaces, where their similarity is
typically measured by the inner product of their correspond-
ing vectors.

Semantic properties of vectors in lower-dimensional
projections were analyzed in the 1990 s [27], and by the
early 2000 s, overlaps between the logic of word vectors in
information retrieval and state vectors in quantum mechanics
had been explicitly recognized [1, 28]. In the past decade,
embeddings for classical NLP have jumped from having a
resurgence in academia to becoming massively mainstream
in industry [29–31]. Naturally, this suggests embeddings
could be just as central for QNLP, especially since the math-
ematics of vectors and tensors has become a common lan-
guage for both AI and quantum computing [32].

There are many ways to add a quantum flavor to embed-
dings. In information retrieval, [2] used density matrices and
quantum probability to include term-term dependencies in
retrieval weighting. Their quantum probability model for
bigrams prefigures the more general probabilistic models
developed by [33].

Word2ket [34] was introduced as a quantum-inspired
solution for compressing embeddings. A tensor network
is a decomposition of a high-dimensional tensor into an
approximate product of lower-dimensional tensors or vec-
tors. For example, if M ≈ U ⊗ V then M can be represented
using approximately dim(U) + dim(V) coordinates, rather
than dim(U) × dim(V) . (More precisely, in matrix coordi-
nates, M� ≈ uvT for column vectors u and v corresponding
to appropriately reshaped U and V, and M′ is a reshaped
version of M; see [35, 36] for details.) Word2ket uses

Fig. 7 QPOSTR readout circuit which recovers the character “a”
from position ◦⋅ = 01 of the string cab

 KI - Künstliche Intelligenz

tensor networks to create low-dimensional approximations
for individual word vectors, and entire vocabularies. This
mathematical initiative continues: for example, [37] report
using tensor networks to compress the parameters of an
LLM (LlaMA-2 7B model) to 30% of its original size while
retaining over 90% of the original accuracy.

These methods are quantum-inspired, in the sense of
drawing deliberately on quantum mathematical models, but
running on classical computers.

4.1 Building Quantum Embeddings

Next we discuss techniques relating to embeddings intended
for use on actual quantum devices, treating separately the
topics of building quantum embeddings and using them. The
circuits proposed in this section are intended for NISQ-era
rather than fault-tolerant devices.

One of the most well-known recent techniques for build-
ing word embeddings is word2vec [29]. Taking inspiration
from this line of work, we propose a quantum computing
implementation of word2vec.

Word2vec is a group of word embedding methods that use
shallow neural networks to capture the semantic properties
of words. Word2vec includes two popular methods: Con-
tinuous Bag-of-Words (CBOW) and Skip-gram. CBOW and
Skip-gram have different ways of learning the word embed-
dings. CBOW takes the context words around the target
word as input and tries to predict the target word. Skip-gram
does the opposite: it takes the target word as input and tries
to predict the context words. The output of both methods is
a probability distribution over all of the words in the vocabu-
lary, which is computed using the softmax function. This can
be computationally expensive and impractical when the size
of vocabulary is large.

Skip-gram with Negative Sampling (SGNS) [38] is a vari-
ant of Skip-gram that reduces computational complexity by
simplifying the objective function. Instead of predicting
the probability over complete vocabulary, SGNS only tries
to distinguish the true context words from a few randomly
sampled negative words, which are assumed to be irrelevant
to the target word. Thus, the classification problem is sim-
plified from multi-class to binary. The negative sampling
procedure also effectively balances the training dataset.

In our implementation, we use quantum states as word
vectors, and use quantum fidelity to apply cosine similar-
ity. That is, encoding two words as �x⟩ and �y⟩ , we measure
their similarity as �⟨x�y⟩�2 via the swap test [39], as shown
in Fig. 8.

One of the challenges of quantum word embedding is
how to efficiently load words as quantum states. We con-
sider two potential schemes for embedding words to quan-
tum state: memory-efficient embedding and circuit-efficient
embedding.

In memory-efficient embedding, the quantum state of
every word in vocabulary of size N is represented by a
single unitary operation U(�) ∈ SU(2n) , where n = ⌈log2 N⌉
and � is a set of learnable parameters. The m-qubit quan-
tum state for the k-th word �wk⟩ ∈ ℂ

⊗m is obtained from
U(�) by applying it to the computational basis state �k⟩ and
discarding ancillary n − m qubits.

This scheme allows us to store a large number of words
in small number of qubits, which is exponentially efficient
in memory usage. However, the resulting quantum circuit
that has sufficient expressiveness to implement U(�) has
exponential depth, making it impractical for circuit-based
quantum computation. Moreover, the state preparation pro-
cess involves post-selection, and is thus non-deterministic
due to the probabilistic nature of measurement.

In contrast, the second scheme, circuit-efficient embed-
ding, represents the k-th word by a quantum state of the
form �wk⟩ ∶= U(𝜃k)�0⟩ ∈ ℂ

⊗m , where U(�k) ∈ SU(2m) is a
unitary operation parameterized by �k , which is specific
to each word. This allows us to prepare the quantum state
using a depth-efficient circuit in a deterministic process,
without using excessive ancillary qubits. While it requires
more classical memory to store the parameters, it is more
flexible since one can add or remove words from the
vocabulary during training.

The circuit-efficient and memory-efficient patterns are
depicted in Figs. 9 and 10. In structure, the circuit-effi-
cient pattern is like the word-embedding in word2ket [34],
and the memory-efficient pattern is like the word2ketXS
whole vocabulary encoding. For word2ket, the motivation
for expressing a whole vocabulary in a more entangled
tensor network is to reduce classical memory, whereas in

Fig. 8 Swap test circuit, where the probability of measuring a �0⟩ in
the top qubit is �⟨x�y⟩� reflecting the overlap between the �x⟩ and �y⟩
states [39]

Fig. 9 Circuit-efficient embedding

KI - Künstliche Intelligenz

this design, it makes more use of the efficient quantum
memory.

To learn the parameters for these embedding schemes, we
adapt the classical word2vec methods, CBOW, Skip-gram
and SGNS, to the quantum setting. For quantum CBOW
and Skip-gram, we introduce a parameterized unitary oper-
ator V(�) ∈ SU(2n) that defines the probability distribu-
tion p𝜙(k�w) ∶= �⟨k�V(𝜙)(�w⟩⊗ �0⟩)�2 , where w is either
a pooled (e.g. averaged) embedding of context words for
CBOW, or the embedding for the target word for Skip-gram.
This removes the need of computing the costly softmax
function, by using the natural output of the quantum circuit
to predict the index among 2n computational basis states.
We note that quantum CBOW, cannot be directly applied
for quantum word embeddings, since the direct averaging
of quantum states is not a natural operation for quantum
computers. Instead, it may be possible to use superpositions
of quantum states.

Quantum CBOW and Skip-gram inherit the difficulties
of the multi-class problem from the classical version. Both
also suffer from the training problem that does not affect the
classical versions: barren plateaus [40]. The barren plateau
describes the phenomenon where the loss function and its
gradient exponentially concentrate as the number of qubits
increases. The unitary V(�) leads to a barren plateau in the
loss landscape, making the training process difficult to scale.

Hence, we propose quantum SGNS, which leverages a
simplified structure to mitigate the scaling issue. Quantum
SGNS uses the embeddings for two words directly, instead
of needing to additionally train V(�) . Given the target
word �w⟩ , quantum SGNS tries to maximize the likelihood
p(v�w) ∶= �⟨v�w⟩�2 if v is a context word and minimize it if
v is negative sample. By combining quantum SGNS with the
circuit-efficient embedding scheme, we enable their practi-
cal use on current quantum devices. Future work includes
exploring the effects of different similarity kernels on quan-
tum word2vec, extending these circuits to implement word-
2ket, and understanding algebra in the embedding space.

4.2 Using Quantum Embeddings

Once words are encoded as vectors, these vectors can be
used in many machine learning systems, including sup-
port vector machines, which can be used for supervised

classification. This sometimes involves calculating a kernel
function, which computes similarities between input vectors,
sometimes involving computations that would be intractable
if all the coordinates were constructed and compared explic-
itly [41, Ch 5]. This is regarded as a promising research
direction for quantum machine learning, because quantum
kernel circuits that compare 2n coordinates or amplitudes
can be implemented using just n qubits [13]. However, as
with the QPOSTR string encoding example in Sect. 3, if the
number of gates still scales with the number of coordinates,
the use of a logarithmic number of qubits is a saving of
space but with no corresponding time advantage.

Several quantum vector encodings or “feature maps” for
word embedding vectors were compared by [42], and used
for sentiment analysis experiments. The ZZ-feature map
was found to be the most successful, achieving a classifica-
tion accuracy of 62% on classification experiments involv-
ing small test sets of roughly 10K words each. This result
showed initial promise, and was the largest quantum text
experiment reported to-date, but also indicates how small
today’s quantum NLP experiments, are compared with even
modest-sized classical NLP systems.

One additional use case for embeddings is in factual
grounding and retrieval, which we discuss in more detail
in Sect. 8.

5 Sequential Models for Text Generation

Quantum generative modeling is still a largely unexplored
area of opportunity, with many unsolved challenges. In some
cases, the data is too large and is partitioned into segments
that are correlated but treated as independent for sake of
computation [43]. In others, the term is used to describe set-
tings in which a quantum circuit is used as a discrete source
of randomness within an otherwise classical neural network
that memorizes a select few data samples [44].

In NLP specifically, [33] describes how to model the joint
distribution p(X0,X1) of a given a set of bigrams (x0, x1) and
compute the marginal distributions p(X0) and p(X1) using
linear algebra operations native to quantum computing (here
we use capital letters to denote random variables and lower-
case to denote particular values that the random variable
can take). [10] follows this theory to implement a Quantum
Circuit Born Machine (QCBM) [45] to learn the joint dis-
tribution p(X0,X1) . While the QCBM can efficiently sample
pairs from p(X0,X1) or marginals p(X0) and p(X1) , generat-
ing text sequentially from this model requires sampling from
the conditional p(X1|X0 = x0) . This requires discarding sam-
ples for which X0 ≠ x0 , which can become prohibitive when
scaling to larger vocabularies, and especially for rare prefix
words x0 . In addition, the bigram model forgoes a hidden
state like those found in Recurrent Neural Networks (RNNs)

Fig. 10 Memory-efficient embedding

 KI - Künstliche Intelligenz

that can learn to represent longer dependencies. Thus, while
this model can easily sample bigrams directly, it is not opti-
mized for the task of sampling longer sequences.

A class of Bayesian network models, called n-gram mod-
els, have been successful in multiple language processing
tasks, including information retrieval, text generation, and
part-of-speech tagging [46]. However, they suffer from
poor performance and generalizability issues in sparse data
regimes and fail to capture nonlocal syntactic relations. Han-
dling out-of-vocabulary words or resolving ambiguity also
pose challenges as n-grams do not have built-in semantic
understanding [47]. A Hidden Markov models (HMM) is a
Markov model whose output from any given state is proba-
bilistic rather than deterministic, which hides the internal
state. A canonical example is when the hidden states are
part-of-speech tags, such N(oun) or V(erb), which generate
explicit words with given probabilities [48, §9.2].

The feed forward and recurrent neural networks are spe-
cific instances of the HMM. However, HMMs also face chal-
lenges in estimating accurate probabilities when the con-
text size increases or when the correlations get too long in
languages. Beyond language processing, HMMs have been
widely used in other scientific fields as well. In [49], the
authors discuss probabilistic models, particularly HMMs
and their derivatives, and their applications in biological
sequence analysis. Language models, particularly those
developed for aligning and comparing sequences, can be
designed to recognize patterns in biological sequences, infer
evolutionary relationships, and identify functional elements.

Recently, quantum techniques are being explored along
this direction due to their potential in capturing long-range
correlations. [50] introduced a quantum enhanced version
of the HMM, named the basis-enhanced Bayesian Circuit,
which leverages quantum contextuality and non-locality
to boost the expressivity of classical HMMs. They devel-
oped a minimal quantum extension of the bigram HMM,
by incorporating measurements in a Bayesian circuit in
multiple bases. They demonstrated improved performance
of the quantum enhanced model in certain sequential data-
sets, including one containing DNA sequences with non-
local structures. This leads to many interesting questions
about the potential and utility of similar quantum methods
in natural language processing tasks. Particularly, if quantum

properties like contextuality and non-locality still give a
provable advantage in terms of model expressivity when
processing and extracting semantic meaning from a long
sequence of words or protein structures.

Building toward longer sequences, [51] train a quantum
classifier for predicting the topic of sentences and describe
a classical scheme for using the classifier to perform condi-
tional generation (that can also be used on classical classi-
fiers). Since it does not actually train a standalone quantum
generative model, this method suffers from a similar problem
of also needing to discard many samples from a base model
in order to generate one sample from an induced model,
though the correlated editing-based annealing scheme could
be guided to be more efficient than independently sampled
shots from a QCBM. [52], shown in Fig. 11, proposes a
framework for a quantum RNN that can be used to build an
actual generative model to autoregressively produce text.
This autoregressive modeling allows for dealing with cor-
relations across segments of larger data, addressing the prob-
lem from [43]. However, the architecture, while expressive,
is far too expensive for current hardware on non-trivial prob-
lem sizes. [53] perform sequence classification on actual
hardware as shown in Fig. 12. Unfortunately, the architecture
they propose is not powerful enough to perform autoregres-
sive modeling.

We explore how to bridge some of the gap between
general but expensive sequence processing of [52] and the
currently-achievable but underpowered architecture of [53].
To achieve this, we use the paradigm of [54] to combine the
power of nonlinear Multi-Layer Perceptrons (MLPs) with
the inherent randomness of quantum computing to directly

Fig. 11 Bausch (2023) circuit. The input is the sequence (x0, x1) . The mixing and hidden blocks are prohibitive for current hardware. The output
is the next token in the sequence as the outcome from a single shot

Fig. 12 London et al. (2023) circuit. The input is the sequence
(x0, x1) . Only the first qubit is measured. The output is the probability
that the sequence is in class 1

KI - Künstliche Intelligenz

sample from rich classes of probability distributions. Com-
pared to [52], our proposed architecture, shown in Fig. 13,
drops the use of the reset operation and uses identity mixing,
similar to [53].

In the figures, the details of the quantum neurons have
been abstracted away to highlight the main similarities and
differences between the methods. The text labeling on the
left denotes the purpose of the register. E(x) denotes a block
of gates for encoding inputs x, N(�) denotes a nonlinear neu-
ron parameterized by variables � as in [55], and the dark
gray gate with the �0⟩-ket is a reset operation. The parameter
subscript i denotes input, o denotes output, h denotes hid-
den, and m denotes mixing. The light gray vertical rounded
rectangle denotes that the qubits in the register are being
used as control for the corresponding neuron as a sequence
of single-control gates, not as true multi-control gates. We
depict the architectures from [52] and [53] with a sequence
length of 2 with input sequence (x0, x1) , and the Multi-Layer
Perceptron (MLP) from [54] with a single hidden layer.

In simulation, the model is trained using backpropaga-
tion from gradients computed from noiseless state vector
simulation. The model produces the probability distribution
over the 11 words in the vocabulary corresponding to the
word that the model predicts comes next after the observed
sequence. In actual implementation, the model would be
trained using backpropagation from estimated gradients e.g.
via the parameter-shift rule [56]. The model would produce
for each shot a sample corresponding to the index of a single
predicted word.

Our proposed architecture is evaluated in a small-scale
noiseless simulation. We consider a dataset of 7 sentences
using a vocabulary of 11 unique words. We compare our
proposal against two baseline models: one random uniform
prediction model and one inspired by [53]. We compare per-
formance between models trained on 5 sentences by evaluat-
ing on the remaining 2 sentences their perplexity [57], for
which a lower score indicates better performance. A naive
uniform random prediction on this dataset yields a perplex-
ity of 11. Using a 9-qubit [53] model with 297 parameters,
we achieve a perplexity of 8.15. Using a 9-qubit model that
we propose with 172 parameters, we achieve a perplexity
of 2.79.

To our knowledge, this is the first fully quantum sequen-
tial text generation architecture that is designed with the
capabilities and limitations of current NISQ-era devices in

mind. Our simulation results demonstrate the viability of
the approach for implementation on actual hardware while
achieving a reasonable level of perplexity.

6 Attention in Quantum NLP Models

So far we have discussed models for studying sentences
as word / token sequences. Making such models scale to
longer sequences has always been a challenge: with n-gram
models, the value of n has always been small [48, Ch 6];
and RNN architectures including LSTMs, while accurate
for short sequences, had trouble scaling to cover long-range
dependencies [41, Ch 15].

6.1 Attention in Classical LLMs

Attention is designed to address this problem. The attention
methodology was used to enhance an RNN sequence model
for machine translation by [58], which enabled the model
to capture longer-range relationships as well. Although it
still relied on the encoder-decoder paradigm, the bidirec-
tional RNN architecture introduced in [58] features a distinct
context vector for each word in the sentence. Each context
vector depends on a sequence of annotations which contains
information about the entire sentence with a strong focus on
the parts of the sentence surrounding the context vector’s
associated input word. The annotations are weighted accord-
ing to an alignment model, which scores how well an output
token matches inputs around a given position.

This approach further was developed further by [59],
demonstrating a system where transformer blocks incorpo-
rating attention, layer norm, multi-layer perceptrons, and
residual connections, fully replace recursive units. This
Transformer model — centered around scaled dot-product
attention — made previous RNN-based encoder-decoder
architectures obsolete when it demonstrated improved per-
formance on various translation tasks.

Importantly, [59] adapted the Transformer architecture for
use in text generation. Their model is auto-regressive, and
at each step it consumes the previously generated symbols
as additional input when producing new text. In addition,
it is worthy to note that the Transformer was later adapted
to the setting of computer vision, where it outperformed

Fig. 13 Proposed circuit. The
input is the sequence (x0, x1) .
The output can be the next
token in the sequence as the
outcome from a single shot

 KI - Künstliche Intelligenz

state-of-the-art convolutional neural networks in various
image classification challenges [60].

In general, “an attention function can be described as
mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and outputs are all vectors”
representing embedded tokens; the output is a weighted sum
of the values, with the weights measuring the compatibility
between corresponding query and key [59]. Self-attention
refers to computing attention coefficients intra-sequence, i.e.,
on the same input sequence. A key feature of self-attention
layers is that they provide a mechanism for different tokens
in the input sequence to interact, thereby allowing models
to infer contextual information about individual tokens by
weighing the importance of pairwise interactions; in other
words, how much attention a given input token should pay
to every other token in the sequence.

In particular, the “Scaled Dot-Product” attention layer
featured in [59] computes the dot-products of the query with
all the keys, normalizes according to the dimension of the
query and key vectors, and then applies the softmax function
to obtain the weights of all the pairs, which are the values.
Rather than enumerate all the indices for summation, it is
typical to write the lists of vectors as matrices, whereby the
definition takes the common form

where d is the embedding dimension, Q, K, and V are matri-
ces of size wd where w is the number of words / tokens in
a sequence, and the softmax function xi → exi∕

∑
i(e

xi) is
applied to each row. This formulates dot product attention as
a matrix multiplication (time O(w2d)), a softmax step (time
O(w2)), and a final matrix multiplication (time O(wd2)).

A key advantage enjoyed by the Transformer over the
previous RNN architectures is that this multiplication can
be parallelized, which computes the pairwise relationships
between all the tokens in a sequence at once. In addition, the
computational cost does not depend on the distance between
tokens in the sequence, as in previous models. Together,
these properties accounted for a drastic reduction in training
time over sequential RNN models. The main drawback is
that the computational complexity still scales quadratically
in the number of tokens in a given sequence (roughly the
number of words in a sentence). The problem of approximat-
ing or providing an alternative to self-attention with sub-
quadratic complexity spawned its own burgeoning research
field [61, 62].

6.2 Near‑term Quantum Self‑attention Mechanisms

In hopes of improving this quadratic scaling, and since atten-
tion layers have become so successful as key components

Attention(Q,K,V) = softmax

�
QKT

√
d

�
V ,

in state-of-the-art models for NLP tasks, various quantum
approaches have been suggested. This section focuses on
near-term quantum circuit designs.

A quantum self-attention network called QSANN is
implemented by [63], who claim it is the first of these. By
mapping encoded feature vectors into a high-dimensional
Hilbert space using a quantum circuit, QSANN aims to
extract correlations that are intractable classically. For an
illustration see Fig. 14. First they construct an encoder cir-
cuit to load classical feature vectors onto an n-qubit quantum
state; they use one classical feature vector for each token
in the input sequence. The number of qubits n is a hyper-
parameter that should be adjusted as relevant to available
hardware. Next they apply parametrized quantum circuits,
with identical gate layouts but different parameter values in
order to compute the query, key, and value vectors for each
classical feature vector. The circuit layout is illustrated in

Fig. 14 The Quantum Self-Attention Neural Network (QSANN)
architecture proposed in [63]. The network features various consecu-
tive self-attention layers. At the (l − 1) st layer, the classical feature
vectors y(l−1)

k
 are encoded into a high-dimensional qubit state space

(circuits boxed in purple). The process is repeated three times. Then
parametrized ansatze, with gate layout as in Fig. 15, representing the
query, key, and value transformations are applied (circuits boxed in
red). The resulting states are measured and various expectation values
are computed to produce the classical query, key, and value vectors.
These are sent to a classical device for processing, where weights
are computed using a Gaussian kernel and the results are averaged to
obtain final attention coefficients

Fig. 15 Parametrized ansatz implementing the query, key, and value
transformations in [63]’s QSANN

KI - Künstliche Intelligenz

Fig. 15. At this stage the query, key, and value vectors are
encoded as quantum states, so measurements must be made
in order to extract useful information; the resulting query
and key are the expectation values of the Pauli-Z operators
applied to the first qubit of the resulting states, and the value
is a vector of expectation values of various Pauli operators.
Attention scores are then computed on a classical device
as a weighted average of the output values. Interestingly,
[63] introduce a Gaussian kernel to compute the weights
on the values vector; they claim the Gaussian kernel can
more easily correlate quantum states with little overlap,
which is needed, e.g., if two tokens are closely related in
a sentence but their quantum state embeddings happen to
be distant in the qubit state space. The proposal of [63] still
requires quadratic classical computation, and its main source
of quantum advantage relies on using efficiently processing
vectors in high-dimensional Hilbert space to unearth hidden
relationships between embedded tokens.

The work of [64] builds on these ideas, seeking quan-
tum advantage in the same vein. By introducing various sets
of ancilla qubits, the authors obviate the need to perform
intermediate measurements during the attention compu-
tation. (This could be thought of as a more sophisticated
example of the ancilla readout qubits pattern used in the
QPOSTR design of Sect. 2.) In this modality, query, key,
and value quantum state-vectors are computed by applying
parametrized ansatze and swapping onto ancilla registers
sequentially, as shown in Fig. 16. Compatibility between
query and keys is computed by a Quantum Logical Similar-
ity (QLS) module, which is implemented as a sequence of
Toffoli and CNOT gates, as shown in Fig. 17. This is a key
step: it computes the overlap between query on keys directly
on the quantum device, thereby improving on [63].

While these two proposals address quantum self-attention
mechanisms in QNLP directly, [65] proposes one for use
in Vision Transformers for image classification, seeking
quantum advantage in reducing the computational cost of
the scaled dot-product attention calculation. Concretely, the
authors introduce so-called orthogonal layers to compute
compatibility scores between query and keys on the quantum
hardware; these layers efficiently implement parametrized
transformations on encoded feature vectors, as described in
Fig. 18. The main novelty here is that [65] use the unary
encoding circuit to encode token feature vectors into the
Hamming weight-1 subspace of the qubit state space. This
encoding is advantageous because their orthogonal lay-
ers preserve the subspace, and they can be used to com-
pute dot-products between query and keys in logarithmic
time, assuming quantum gates can be applied in parallel.
[65] report preliminary results from simulation, and with a
6-qubit quantum processor.

Fig. 16 The Quantum Self-Attention Network (QSAN) introduced
in [64]. This architecture uses ancilla qubits to hold intermediate
results and proposes computing the attention coefficients entirely on
the quantum processor, obviating the need for intermediate measure-
ments. In addition, it features a slicing operation to reduce the num-
ber of measurements required

Fig. 17 The Quantum Logic Similarity (QLS) module proposed in
[64], implemented as a sequence of Toffoli and CNOT gates

Fig. 18 Computational complexity of the dot-product compatibility
between query and keys using circuits with parallel two-qubit gates as
proposed by [65]’s quantum Vision Transformer

 KI - Künstliche Intelligenz

6.3 Attention on Fault‑Tolerant Quantum
Computers

The role of attention in systems like GPT [21] has spurred
more ambitious proposals, including the recent preprints
of [66] and [67], which describe large-scale versions of
full transformer-inspired processes on fault-tolerant error-
correcting quantum computers. [67] use quantum signal
processing and singular value transformation techniques to
apply a polynomial approximate softmax, whereas [66], like
[64], replace softmax with a linear quantum alternative.

A main challenge for such proposals remains quantum
I/O, which these papers acknowledge, but do not solve
explicitly. To extract all the weights from a matrix stored
in a quantum state would typically require many more shots
than there are weights. A smaller alternative is to output
token indices directly. A natural NISQ-inspired suggestion is
to adapt the token index generation approaches from Sect. 5
to transformer prototypes. While adding a token-generation
head may be useful for circumventing I/O issues, the com-
plexity and depth of the remaining bodies of the circuits in
these proposals puts practical implementations beyond the
NISQ era.

A quantum decoder, for optimized search through a much
larger space of long proposed token sequences, is proposed
by [68], which casts the problem as probabilistically branch-
ing tree-search, which is mathematically equivalent to proba-
bilistic grammar parsing. Even though the hardware capabil-
ities for such quantum operations are still some years away,
this connects optimizations in sequence generation from
today’s softmaxed probabilities, with traditional syntactic
approaches to language modeling, which we discuss next.

7 Syntactic Parsing and Logical Forms

The use of general AI techniques such as RNNs and attention
has fueled much recent success with NLP, partly because it
has enabled much cross-fertilization between language and
other kinds of data such as images, audio, and graphs. There
are also more traditional NLP techniques, based on gram-
matical structures found particularly in human language.

Natural languages (and artificial programming lan-
guages) express many structured relationships that go
beyond proximity in a sequence model. For example, in
the sentence “Kim kicked the ball into the goal from half-
way down the pitch, right past the goalkeeper, and scored”,
the grammatical structure of English enables us to infer
easily that the person who scored is Kim, in spite of there
being 16 words (including 4 other nouns) in between the
noun Kim and the verb scored. Language grammar and
syntax studies how these relationships are expressed and

structured in different languages, and this field powerfully
influenced much of theoretical and computational linguis-
tics during the second-half of the 20th century, particularly
through the work of [69, 70]. In such a framework, syntax
is the central generative system, on which other aspects of
language like phonology and semantics depend [71, Ch 5].

During the 21st century, the reliance of NLP techniques
on grammatical rules has declined. This is partly due to
the success of statistical and machine-learned models that
share methods with other data-intensive areas of AI, and
perhaps because the increasing preponderance of informal
text created on smartphones immediately contradicts any
assumption that the input to an NLP system should con-
sist of distinct grammatical sentences. In computational
terms, best-performing parsing algorithms have included
the CYK-parser which is worst-case O(n3) , while the more
general attention mechanism discussed in the previous sec-
tion has a baseline O(n2) performance, which robustly ena-
bles more resources to be targeted at important long-range
relationships. Hence in most large-scale NLP systems
today, a grammatical parser is not an explicit component:
and with the challenge of reducing computational costs
below quadratic, there would need to be a strong reason
for requiring the extra burden of a cubic computing step
for any large-scale model. When grammatical parsing is
discussed, it is often as a historical challenge that LLMs
can solve quite effectively, not a contemporary challenge
for building language models in the first place [72].

However, the use of grammatical parsers has been re-
introduced in parts of quantum NLP, motivated especially
by a mathematical correspondence between the compo-
sitional rules of tensors and categorial grammars dem-
onstrated by [5]. This framework is implemented in the
lambeq system of [73] which is particularly designed
for quantum computers [9]. In this system, a grammati-
cal parser prepares a parse-tree from a sentence, which is
structurally mapped to a tensor network which is compiled
into a quantum circuit: so the quantum circuit encodes the
grammatical dependencies of the sentence, assuming its
input data consists of uniquely-parsed sentences.

The parsing problem itself is also an interesting chal-
lenge for quantum computing, for combinatoric reasons.
Computationally, the problem can be phrased as taking a
list of words as input, and returning a parse-tree, which is
a data structure saying how the elements of the sentence
are grouped together, and what grammatical role they play.
The two possible tree-structures for a 3-word sentence are
shown in Fig. 19. For the simple case of a 3-word sen-
tence, there are only 2 possible trees, one for the structure
[[A B] C] and one for the structure [A [B C]] . For a 4-word
sentence, the five possible trees are are shown in Fig. 20.
The number of possible parse trees for a sentence of length

KI - Künstliche Intelligenz

n grows exponentially and is given by the Catalan number

Cn =
1

n+1

(
2n

n

)
.

Ideally, a parser will find an exact parse that accounts
for the role of each constituent in the sentence, represented
by a single tree-structure. Grammatical rules such as “A
sentence in English can be made of a noun phrase subject
followed by a verb phrase” can be represented as recipes
like S → (NP, VP) , and a probabilistic phrase-structure
grammar (PCFG) may include many such rules, along with
probabilities or weights learned from training data. Various
methods for parsing exist, relying on dynamic programming
and probabilistic techniques [46, Ch 17]. Multiple parses are
often possible, because (for example) prepositional phrases
may attach in various locations. The goal is to find the parse
tree that maximizes the overall probability of the parse, com-
puted from the combined probability of all the rules used in
derivation.

The depiction in Fig. 20 emphasizes the parsing prob-
lem as a combinatoric challenge. The search for a best parse

looks like a kind of minimal spanning tree problem, which
might be formulated as an Ising model, amenable to quan-
tum optimization [74], if the weights or costs for visiting
each node could be derived from the PCFG.

However, a key challenge with the parsing problem is
that we start with labels only for the leaf nodes, and until
there is some hypothesis for the which internal nodes repre-
sent which syntactic chunks, there are no estimates for the
weights on internal links. (This is part of the motivation for
the use of dynamic programming in classical parsers.) Com-
binatorically, the problem is not exactly to find a minimum
spanning tree, because internal nodes that do not correspond
to distinct grammatical phrases or constituents do not need
to be visited. (Moreover, the initial graph is directed: this
precludes solutions where the leaf nodes are all visited by
a zigzag path along the bottom, because upward steps are
forbidden.)

Hence, quantum parsing does not appear to fit one of the
known techniques of quantum combinatorial optimization,
but the problems are tantalizingly similar, and we hope this
framing of the challenge helps the language parsing problem
to capture the interest of quantum researchers.

One potential benefit of quantum parsing is that a quan-
tum system may represent more nuanced proposals than just
returning a single best parse, or even a classical mixture
(estimated probability distribution over different discrete
parse proposals). Rather than insisting that all language
inputs must pass a parsing test before being processed, a
syntactic parser that exchanges quantum information with
semantic components in parallel may become a different
kind of asset in more parallel architectures.

In another interesting combination of quantum mathe-
matics and natural language syntax, it has been shown that
tensor product networks can encode grammatical structure
more effectively than LSTMs for generating image cap-
tions [75]. Tensor product networks have also been used to
construct an attention mechanism from which grammatical
structure can be recovered by unbinding role-filler tensor
compositions [76].

8 Facts and Language Generation

Throughout its history, quantum theory has motivated new
insights on probability and randomness, how the potential
and actual are related, and this has led to proposed models
for various aspects of human behavior and consciousness
[77, 78]. Rapid advancements in customer-facing AI sys-
tems, particularly conversational dialog systems supported
by large language models (LLMs), have raised many ques-
tions about how such systems should be built and used,
what should be expected of them, and about whether they
exhibit conscious behavior. This section discusses some of

Fig. 19 The simplest nontrivial tree-parsing challenge is to distin-
guish between the two distinct branching options for a tree with 3 leaf
nodes. S = Sentence, N = Nouns, V = Verb, D = Determiner, P =
Phrase

Fig. 20 The five possible binary-branching trees over a 4-item
sequence, each of which can be constructed by deleting unwanted
branches and nodes from the connected lattice-graph in the center

 KI - Künstliche Intelligenz

the concerns and work in this area, including how quantum
theory addresses the difference between hypothetical and
actual reality.

One of the key complaints about current LLMs is their
propensity to hallucinate, or produce sentences with factu-
ally false information that still correctly adhere to gram-
matical rules. While this behavior is in line with what gen-
erative models are statistically designed to do, in practice
it goes against the public expectation of the AI agent as
an all-knowing oracle, especially when manifested as an
interactive, question-answering chat interface. Thus, several
lines of research have emerged to address the usability issues
caused by hallucination. In this section, we first review some
of these research directions, and then take a step back to see
how quantum computing relates to the philosophical issues
that arise in understanding and using LLMs.

Two prominent realms of research are chain-of-thought
(CoT) prompting and retrieval augmented generation (RAG).
CoT, while often used in the context of complex reasoning
tasks [79], is believed to produce more self-consistent results
and indeed can be improved by explicitly encouraging self-
consistency [80]. However, in the setting of factuality, errors
early in the chain may yield incorrect results even with con-
sistent reasoning later in the chain, and the explanation of
reasoning provided by the chain may not be correct [81].

Factual grounding via RAG may avoid some issues still
present in CoT, often at the cost of either additional training
or larger number of inferences. RAG can be largely classed
into two paradigms, a priori and post-hoc, though there
is not reason that these techniques could not be combined
or even performed iteratively in a loop. A priori RAG is
explored in [82, 83] using learned embeddings stored in a
database and accessed with a learned neural retriever. Scal-
ing up the database and shrinking the language model is
explored by [84], matching state-of-the-art performance
and illustrating that the world knowledge of a LLM is more
separable from its linguistic ability than previously demon-
strated. Together, this line of work suggests separability and
knowledge base scaling as one possible path forward for uti-
lizing word embeddings to reduce hallucination. While these
a priori methods show promise, they modify the generation
pipeline and require additional training.

Post-hoc text editing methods [85–87] are seeing interest
for use with LLMs in part due to the resources required to
even fine-tune modern LLMs, let alone pre-train them from
scratch. For example, [88] uses the abilities of pre-trained
language models and existing information retrieval systems
to edit and verify generated text, but requires running several
rounds of inference on the base LLM. This trades off a zero
fixed cost of using a pre-trained model for a higher variable
cost of inference.

In such paradigms, one natural place where quantum com-
puting has potential to enhance performance is in accessing

and designing the knowledge base. Grover’s algorithm [89]
yields a quadratic speedup over classical methods for search-
ing a database, and hence forms the backbone of quantum
information retrieval systems [90]. Going one step further,
[91] propose using Grover’s search to inform the design of
the database itself, and specifically target vector databases as
the intended application. However, they do not directly com-
pare the quadratic speedup with the complexities achievable
by using efficient classical data structures, and a potential
interesting direction in this area is the question of how (if
possible) to design a practical hybrid knowledge base that
combines the best of both classical and quantum processing.

Although techniques such as retrieval-based and knowl-
edge-based generation are a new area in the present-day con-
text of fixing LLMs, methods such as that of [84] hearken
back to an older class of designs where the facts are stored
in a knowledge base, and the language model is effectively
a source of templates, not of facts. The spotlight on lan-
guage generation in the past few years has refocused work
on such methods, and how best to combine them with LLMs
[92]. For example, in Fig. 21, a knowledge base is used to
find the variable that satisfies the question “When was J.S.
Bach born?” (the answer being “1685”), and then a language
model is used to express this as the sentence “J.S. Bach was
born in the year 1685.” (A standard early use of such designs
was in mail merging, where a template for a message is com-
bined with a list of different names to generate personalized
messages.) Such a language model can just as easily gener-
ate the sentence “J.S. Bach was born in 1985”, not because
it’s hallucinating, but because it’s working correctly with a
different knowledge base.

More generally, probabilistic language models are
designed to note that Wednesday and Thursday are similar,
and so having seen the phrase “Let’s meet on Wednesday”,
the model should judge the phrase “Let’s meet on Thursday”
to be similarly plausible. Saying that such a probabilistic
model “hallucinates” when it generates an untrue sentence
reflects a fundamental misunderstanding of probabilistic
models. Sampling from a probabilistic model is like rolling
dice: if we previously observe a 3 and the dice-roll gives
a 4, the dice aren’t hallucinating a 4 instead of the “true”
value of 3. The problem lies in the assumption that plausible

Fig. 21 A traditional division of responsibilities between a knowledge
base and a language model that cooperate in generating the answer
“J.S. Bach was born in 1685.”

KI - Künstliche Intelligenz

probabilistic samples of language should correspond to facts
at all.

The assumption that language expertise and factual reli-
ability should go together is easy to make, especially since
a significant amount of actual knowledge is conveyed both
explicitly and implicitly through writing. In the phrase “Dave
beat John”, we might ask “Which Dave and which John?”
before assessing its truthfulness: but sometimes words take
on fixed unique meanings in particular situations, so that
if someone says “Caesar beat Pompey”, we automatically
assume they mean two particular people from the 1st century
BC, and if they said “Pompey beat Caesar”, that would be
considered untrue. However, speaking strictly in the sense
of language modelling, a model that also generates “Pompey
beat Caesar” sometimes as well as “Caesar beat Pompey”, is
arguably better, because it generates a more comprehensive
variety of perfectly fluent and plausible sentences.

The practice of generating text from just a language
model was popularized by successful machine translation
systems [58]. With machine translation, it makes sense that
the system is not responsible for factual accuracy, because
this is the user’s responsibility. In concrete terms, a correct
translation of “J.S. Bach was born in 1985” from English
to German might be “J.S. Bach wurde 1985 geboren”, not
“Input error: prompt contains factual inaccuracy.” Gradually
models such as GPT demonstrated that a whole range of
prompts, not just translation targets, could elicit plausible
and fluent responses [21]. The Chomskian program claimed
grammatical fluency as the heart of language decades ago:
today, we are seeing that this fluency is another aspect of
human behavior that computers can mimic effectively; and
the ability to assemble erudite text has become one of the
most impressively-solved parts of AI, sometimes leading to
problems elsewhere.

Quantum theory intersects with these topics even more
fundamentally, by explicitly distinguishing the possible from
the actual. A quantum circuit has many possible outcomes
that could be observed, but only one outcome is observed
when measured: and this fixes the hypothetical situation so
that the same outcome is observed next time. A multiplicity
of possibilities can become a single fixed event [93]. Formal
similarities between this process and language ambiguity
were noted by [94], and the quantum economic theory of
[95] is based on the use of quantum information to model
beliefs about values, and classical information to model
amounts of money agreed in fixed transactions.

The problem of distinguishing things that might happen
from things that do happen was behind some of the contro-
versies of early classical mechanics. Leibniz discussed the
notion of possible worlds, and maintained that there must be
a rational necessity behind (God’s) choosing this world [96].
Newton’s belief in absolute space implied a fixed zero-point
or origin, and Leibniz argued that this implied that God must

have made an arbitrary choice without a necessary reason,
which was unacceptable [97]. Such considerations of neces-
sity vs. contingency and their relationship to past, present, and
future in time, go back at least to the famous sea-fight discus-
sion in Aristotle’s De Interpretatione [98].

The notion that there are different possible worlds where
a macroscopic event did or did not happen, that one of those
worlds is chosen based on a small local decision, and this pos-
sible world thus becomes the actual world, was thrust into the
limelight by quantum mechanics. The implication of super-
position and large-scale randomness was troubling to Einstein
(“God does not play dice!”) and Schrödinger, whose famous
paradoxical cat was designed to illustrate the absurdity of
quantum mechanics in large-scale reality, where “the working
of an organism requires exact physical laws” [99]. By contrast,
Bohr and Heisenberg supported the Copenhagen Interpreta-
tion, where the wave-function represents real possibilities, and
“the transition from the “possible” to the “actual” takes place
during the act of observation" [93, Ch 3].

Some of the challenges inherent in large stochastic prob-
lems, like weather forecasting, are thus philosophically related
to key questions of how one possible future is selected and
becomes the past. Quantum mechanics does not completely
answer this question, but it does better than classical mechan-
ics, where the assumption of a deterministic universe avoids
the problem. Heisenberg’s analysis of where different uncer-
tainties come from, and how we should think about them, has
useful insights including “This probability function represents
a mixture of two things, partly a fact and partly our knowledge
of a fact" [93, Ch 3]. This does not tell us how to fix language
models, but it is a good reminder that our ways of stating and
communicating facts are entirely human. Practically, it helps
to understand probabilistic language models as generators of
hypothetical utterances, rather than factual statements, and the
generative nature of language models is precisely what ena-
bles them to go smoothly from data they encountered to data
they might just as well have encountered. In a sense, a large
language generator is a kind of hypothesis-generator with the
gift of the gab. Language models do this task very well, but
this should never have convinced us that a model will generate
truthful language without an independent source of knowl-
edge. With these considerations, quantum theory has some
insight on potential solutions to improve language modeling
systems, and at least guards against mistakes that arise from
over-deploying hypothesis-generation systems without suitable
observation processes.

9 Conclusion

We have taken a whirlwind tour of the state of quantum
NLP, seeing the potential and limitations of using quantum
computers for understanding language. While we recognize

 KI - Künstliche Intelligenz

this overview, like any other, cannot be fully comprehensive,
we hope that it is nonetheless useful for both the theoretician
and practitioner alike.

We reviewed fundamentals of gate-based quantum com-
puting, and from here moved into understanding how these
low-level structures and concepts can be used to efficiently
encode basic units of language, i.e. text. From there, we built
into progressively higher-level concepts, roughly following
the hierarchy found in classical NLP.

Through this journey, we have seen how the current scale
of applications for quantum NLP on actual hardware has not
yet matched that of classical computing techniques. How-
ever, quantum methods being developed at the small scale
show promise for use on intermediate scale problems as
hardware continues progressing, and quantum models that
have been shown to be more expressive than their analogous
classical counterparts hold potential at large scales.

In the meantime, methods from quantum theory continue
to inform AI. During the 2010 s, vectors and tensors became
a common mathematical toolset permeating AI, and the
adaptation of tensor network methods for scalability con-
tinues this theme. We have especially focused on the topical
problems that current classical LLMs face. Here, quantum
theory has much philosophical guidance to offer on the
issues of assessing factuality and sequential inference.

References

 1. Van Rijsbergen CJ (2004) The Geometry of Information Retrieval.
Cambridge University Press, Cambridge

 2. Sordoni A, Nie JY, Bengio Y (2013) Modeling Term Dependen-
cies with Quantum Language Models for IR. In: Proceedings of
the 36th International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’13, p 653–662

 3. Widdows D, Peters S (2003) Word vectors and quantum logic. In:
Proceedings of the Eighth Mathematics of Language Conference,
Bloomington, Indiana

 4. Clark S, Pulman S (2007) Combining symbolic and distributional
models of meaning. In: AAAI Spring Symposium: Quantum Inter-
action, p 52–55

 5. Coecke B, Sadrzadeh M, Clark S (2010) Mathematical founda-
tions for a compositional distributional model of meaning. CoRR,
Preprint at arXiV: 1003. 4394

 6. Coyle B, Mills D, Danos V, Kashefi E (2020) The Born
supremacy: quantum advantage and training of an Ising Born
machine. npj Quant Inf 6(1):1–11. https:// doi. org/ 10. 1038/
s41534- 020- 00288-9

 7. Yu Z, Chen Q, Jiao Y, Li Y, Lu X, Wang X, Yang JZ (2023)
Provable Advantage of Parameterized Quantum Circuit in Func-
tion Approximation. https:// doi. org/ 10. 48550/ arXiv. 2310. 07528,
http:// arxiv. org/ abs/ 2310. 07528, arXiv: 2310. 07528 [quant-ph]

 8. Bowles J, Ahmed S, Schuld M (2024) Better than classical? the
subtle art of benchmarking quantum machine learning models.
Preprint at arXiv: 2403. 07059

 9. Lorenz R, Pearson A, Meichanetzidis K, Kartsaklis D, Coecke B
(2023) Qnlp in practice: Running compositional models of mean-
ing on a quantum computer. J Artif Intell Res 76:1305–1342

 10. Widdows D, Alexander A, Zhu D, Zimmerman C, Majumder A
(2024) Near-term advances in quantum natural language process-
ing. Ann Math Artif Intell, p 1–24

 11. Widdows D, Bhattacharyya A (2024) Quantum financial modeling
on noisy intermediate-scale quantum hardware: Random walks
using approximate quantum counting. Quantum Economics and
Finance

 12. Nielsen MA (2016) Chuang I (2002) Quantum computation
and quantum information. Cambridge University Press Edition,
Cambridge

 13. Schuld M, Petruccione F (2021) Machine Learning with Quantum
Computers. Springer, Cham

 14. Bravyi S, Cross AW, Gambetta JM, Maslov D, Rall P, Yoder TJ
(2024) High-threshold and low-overhead fault-tolerant quantum
memory. Nature 627(8005):778–782

 15. Harrow AW, Hassidim A, Lloyd S (2009) Quantum algorithm for
linear systems of equations. Phys Rev Lett 103(15):150502

 16. Gilyén A, Su Y, Low GH, Wiebe N (2019) Quantum singular
value transformation and beyond: exponential improvements for
quantum matrix arithmetics. In: Proceedings of the 51st Annual
ACM SIGACT Symposium on Theory of Computing, p 193–204

 17. Aaronson S (2015) Read the fine print. Nat Phys 11(4):291–293
 18. Feynman RP (1985) Quantum mechanical computers. Opt. News

11(2):11–20
 19. Shor PW (1994) Algorithms for quantum computation: discrete

logarithms and factoring. In: Proceedings 35th annual symposium
on foundations of computer science, Ieee, p 124–134

 20. Amankwah MG, Camps D, Bethel EW, Van Beeumen R, Per-
ciano T (2022) Quantum pixel representations and compression
for n-dimensional images. Sci Rep 12(1):7712

 21. Brown T, Mann B, Ryder N, Subbiah M, Kaplan JD, Dhariwal P,
Neelakantan A, Shyam P, Sastry G, Askell A, Agarwal S, Herbert-
Voss A, Krueger G, Henighan T, Child R, Ramesh A, Ziegler D,
Wu J, Winter C, Hesse C, Chen M, Sigler E, Litwin M, Gray S,
Chess B, Clark J, Berner C, McCandlish S, Radford A, Sutskever
I, Amodei D (2020) Language models are few-shot learners. Adv
Neural Inf Process Syst 33:1877–1901

 22. Giovannetti V, Lloyd S, Maccone L (2008) Quantum random
access memory. Phys Rev Lett 100(16):160501

 23. Babbush R, Gidney C, Berry DW, Wiebe N, McClean J, Paler A,
Fowler A, Neven H (2018) Encoding electronic spectra in quan-
tum circuits with linear t complexity. Phys Rev X 8(4):041015

 24. Salton G, McGill M (1983) Introduction to modern information
retrieval. McGraw-Hill, New York

 25. Wittgenstein L (1953) Philospphical Investigations. Blackwell,
Blackwell, 3rd edition, 2001

 26. Firth J (1957) A synopsis of linguistic theory 1930-1955. Studies
in Linguistic Analysis, Philological Society, Oxford

 27. Landauer T, Dumais S (1997) A solution to Plato’s problem:
the latent semantic analysis theory of acquisition. Psychol Rev
104(2):211–240

 28. Widdows D (2004) Geometry and meaning. CSLI Publications,
Stanford

 29. Mikolov T, Chen K, Corrado G, Dean J (2013) Efficient estimation
of word representations in vector space. arxiv. https:// doi. org/ 10.
48550/ ARXIV. 1301. 3781

 30. Bridgwater A (2023) The Rise Of Vector Databases. https:// www.
forbes. com/ sites/ adria nbrid gwater/ 2023/ 05/ 19/ the- rise- of- vector-
datab ases/, section: Cloud

 31. Metinko C (2023) Pinecone Hits $750M Valuation As AI Heats
Up Vector Database Market. https:// news. crunc hbase. com/ ai- robot
ics/ start up- ventu re- fundi ng- datab ase- pinec one/

 32. Widdows D, Kitto K, Cohen T (2021) Quantum mathematics in
artificial intelligence. J Artif Intell Res 72:1307–1341

 33. Bradley TD (2020) At the interface of algebra and statistics. City
University of New York, New York

http://arxiv.org/abs/1003.4394
https://doi.org/10.1038/s41534-020-00288-9
https://doi.org/10.1038/s41534-020-00288-9
https://doi.org/10.48550/arXiv.2310.07528
http://arxiv.org/abs/2310.07528
http://arxiv.org/abs/2310.07528
http://arxiv.org/abs/2403.07059
https://doi.org/10.48550/ARXIV.1301.3781
https://doi.org/10.48550/ARXIV.1301.3781
https://www.forbes.com/sites/adrianbridgwater/2023/05/19/the-rise-of-vector-databases/
https://www.forbes.com/sites/adrianbridgwater/2023/05/19/the-rise-of-vector-databases/
https://www.forbes.com/sites/adrianbridgwater/2023/05/19/the-rise-of-vector-databases/
https://news.crunchbase.com/ai-robotics/startup-venture-funding-database-pinecone/
https://news.crunchbase.com/ai-robotics/startup-venture-funding-database-pinecone/

KI - Künstliche Intelligenz

 34. Panahi A, Saeedi S, Arodz T (2019) word2ket: Space-efficient
word embeddings inspired by quantum entanglement. Preprint at
arXiv: 1911. 04975

 35. Hitchcock FL (1927) The Expression of a Tensor or a Polyadic as
a Sum of Products. J Math Phys 6(1–4):164–189. https:// doi. org/
10. 1002/ sapm1 92761 164

 36. Van Loan CF (2000) The ubiquitous Kronecker product. J Com-
put Appl Math 123(1):85–100. https:// doi. org/ 10. 1016/ S0377-
0427(00) 00393-9

 37. Tomut A, Jahromi SS, Singh S, Ishtiaq F, Muñoz C, Bajaj PS,
Elborady A, del Bimbo G, Alizadeh M, Montero D, et al. (2024)
CompactifAI: Extreme compression of large language models
using quantum-inspired tensor networks. Preprint at arXiv: 2401.
14109

 38. Mikolov T, Sutskever I, Chen K, Corrado GS, Dean J (2013b)
Distributed representations of words and phrases and their com-
positionality. Adv Neural Inf Process Syst 26

 39. Barenco A, Berthiaume A, Deutsch D, Ekert A, Jozsa R, Macch-
iavello C (1997) Stabilisation of quantum computations by sym-
metrisation. SIAM J Comput 26(5):1541–1557. https:// doi. org/
10. 1137/ S0097 53979 63024 52

 40. McClean JR, Boixo S, Smelyanskiy VN, Babbush R, Neven H
(2018) Barren plateaus in quantum neural network training land-
scapes. Nat Commun 9(1):4812

 41. Géron A (2019) Hands-On Machine Learning with Scikit-Learn,
Keras, and TensorFlow: Concepts, Tools, and Techniques to Build
Intelligent Systems. O’Reilly Media,

 42. Alexander A, Widdows D (2022) Quantum text encoding for clas-
sification tasks. In: 2022 IEEE/ACM 7th Symposium on Edge
Computing, p 355–361

 43. Huang HL, Du Y, Gong M, Zhao Y, Wu Y, Wang C, Li S, Liang
F, Lin J, Xu Y, Yang R, Liu T, Hsieh MH, Deng H, Rong H, Peng
CZ, Lu CY, Chen YA, Tao D, Zhu X, Pan JW (2021) Experimen-
tal quantum generative adversarial networks for image genera-
tion. Phys Rev Appl 16(2):024051. https:// doi. org/ 10. 1103/ PhysR
evApp lied. 16. 024051. arXiv: 2010. 06201 [quant-ph]

 44. Rudolph MS, Toussaint NB, Katabarwa A, Johri S, Peropadre
B, Perdomo-Ortiz A (2022) Generation of high-resolution hand-
written digits with an ion-trap quantum computer. Phys Rev X
12(3):031010. https:// doi. org/ 10. 1103/ PhysR evX. 12. 031010.
(publisher: American Physical Society)

 45. Benedetti M, Garcia-Pintos D, Perdomo O, Leyton-Ortega V, Nam
Y, Perdomo-Ortiz A (2019) A generative modeling approach for
benchmarking and training shallow quantum circuits. NPJ Quant
Inf 5(1):1–9. https:// doi. org/ 10. 1038/ s41534- 019- 0157-8

 46. Jurafsky D, Martin JH (2023) Speech and Language Processing
(3rd Edition draft). Stanford, California, https:// web. stanf ord. edu/
~juraf sky/ slp3/

 47. Bengio Y, Ducharme R, Vincent P (2000) A neural probabilistic
language model. In: Leen T, Dietterich T, Tresp V (eds) Advances
in Neural Information Processing Systems, vol 13. MIT Press,
Cambridge

 48. Manning CD, Schütze H (1999) Foundations of Statistical Natural
Language Processing. The MIT Press, Cambridge

 49. Durbin R, Eddy SR, Krogh A, Mitchison G (1998) Biological
Sequence Analysis: Probabilistic Models of Proteins and Nucleic
Acids. Cambridge University Press, Cambridge

 50. Gao X, Anschuetz ER, Wang ST, Cirac JI, Lukin MD (2022)
Enhancing generative models via quantum correlations. Phys Rev
X 12(2):021037

 51. Karamlou A, Pfaffhauser M, Wootton J (2022) Quantum natural
language generation on near-term devices. arXiv. https:// doi. org/
10. 48550/ arXiv. 2211. 00727

 52. Bausch J (2020) Recurrent Quantum Neural Networks. In:
Advances in Neural Information Processing Systems, Curran
Associates, Inc., vol 33, pp 1368–1379, https:// proce edings. neuri

ps. cc/ paper/ 2020/ hash/ 0ec96 be397 dd6d3 cf2fe cb4a2 d627c 1c-
Abstr act. html

 53. London C, Brown D, Xu W, Vatansever S, Langmead CJ, Kart-
saklis D, Clark S, Meichanetzidis K (2023) Peptide binding clas-
sification on quantum computers. Quant Mach Intell. https:// doi.
org/ 10. 48550/ arXiv. 2311. 15696

 54. Gili K, Sveistrys M, Ballance C (2023) Introducing nonlin-
ear activations into quantum generative models. Phys Rev A
107(1):012406

 55. Cao Y, Guerreschi GG, Aspuru-Guzik A (2017) Quantum Neuron:
an elementary building block for machine learning on quantum
computers. arXiv. https:// doi. org/ 10. 48550/ arXiv. 1711. 11240

 56. Schuld M, Bergholm V, Gogolin C, Izaac J, Killoran N (2019)
Evaluating analytic gradients on quantum hardware. Phys Rev
A 99(3):032331. https:// doi. org/ 10. 1103/ PhysR evA. 99. 032331.
(publisher: American Physical Society)

 57. Jelinek F, Mercer RL, Bahl LR, Baker JK (1977) Perplexity-a
measure of the difficulty of speech recognition tasks. J Acoust
Soc Am 62(S1):S63. https:// doi. org/ 10. 1121/1. 20162 99

 58. Bahdanau D, Cho K, Bengio Y (2014) Neural machine translation
by jointly learning to align and translate. Preprint at arXiv: 1409.
0473

 59. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez
AN, Kaiser Ł, Polosukhin I (2017) Attention is all you need. Adv
Neural Inf Process Syst, p 5998–6008

 60. Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X,
Unterthiner T, Dehghani M, Minderer M, Heigold G, Gelly S,
et al. (2020) An image is worth 16x16 words: Transformers for
image recognition at scale. ICLR / Preprint at arXiv: 2010. 11929

 61. Zaheer M, Guruganesh G, Dubey KA, Ainslie J, Alberti C,
Ontanon S, Pham P, Ravula A, Wang Q, Yang L, Ahmed A (2020)
Big Bird: Transformers for Longer Sequences. Adv Neural Inf
Process Syst 33:17283–17297

 62. Poli M, Massaroli S, Nguyen E, Fu DY, Dao T, Baccus S, Bengio
Y, Ermon S, Re C (2023) Hyena hierarchy: Towards larger convo-
lutional language models. International Conference on Machine
Learning https:// openr eview. net/ forum? id= 1sxiB aGEtg

 63. Li G, Zhao X, Wang X (2022) Quantum self-attention neural net-
works for text classification. Preprint at arXiv: 2205. 05625

 64. Zhao Rx, Shi J, Zhang S (2022) QSAN: A near-term achievable
quantum self-attention network. Preprint at arXiv: 2207. 07563

 65. Cherrat EA, Kerenidis I, Mathur N, Landman J, Strahm M, Li
YY (2022) Quantum vision transformers. Preprint at arXiv: 2209.
08167

 66. Liao Y, Ferrie C (2024) Gpt on a quantum computer. Preprint at
arXiv: 2403. 09418

 67. Guo N, Yu Z, Agrawal A, Rebentrost P (2024) Quantum linear
algebra is all you need for transformer architectures. Preprint at
arXiv: 2402. 16714

 68. Bausch J, Subramanian S, Piddock S (2021) A quantum search
decoder for natural language processing. Quant Mach Intell
3(1):16

 69. Chomsky N (1957) Syntactic structures. Mouton de Gruyter, The
Hague

 70. Chomsky N (1965) Aspects of the Theory of Syntax, vol 11. MIT
Press, Cambridge

 71. Jackendoff R (2002) Foundations of Language. Oxford Universiry
Press, Oxford

 72. Min B, Ross H, Sulem E, Veyseh APB, Nguyen TH, Sainz O,
Agirre E, Heintz I, Roth D (2023) Recent advances in natural lan-
guage processing via large pre-trained language models: a survey.
ACM Comput Surv 56(2):1–40

 73. Kartsaklis D, Fan I, Yeung R, Pearson A, Lorenz R, Toumi A,
de Felice G, Meichanetzidis K, Clark S, Coecke B (2021) lam-
beq: An Efficient High-Level Python Library for Quantum NLP.
Preprint at arXiv: 2110. 04236

http://arxiv.org/abs/1911.04975
https://doi.org/10.1002/sapm192761164
https://doi.org/10.1002/sapm192761164
https://doi.org/10.1016/S0377-0427(00)00393-9
https://doi.org/10.1016/S0377-0427(00)00393-9
http://arxiv.org/abs/2401.14109
http://arxiv.org/abs/2401.14109
https://doi.org/10.1137/S0097539796302452
https://doi.org/10.1137/S0097539796302452
https://doi.org/10.1103/PhysRevApplied.16.024051
https://doi.org/10.1103/PhysRevApplied.16.024051
http://arxiv.org/abs/2010.06201
https://doi.org/10.1103/PhysRevX.12.031010
https://doi.org/10.1038/s41534-019-0157-8
https://web.stanford.edu/%7ejurafsky/slp3/
https://web.stanford.edu/%7ejurafsky/slp3/
https://doi.org/10.48550/arXiv.2211.00727
https://doi.org/10.48550/arXiv.2211.00727
https://proceedings.neurips.cc/paper/2020/hash/0ec96be397dd6d3cf2fecb4a2d627c1c-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/0ec96be397dd6d3cf2fecb4a2d627c1c-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/0ec96be397dd6d3cf2fecb4a2d627c1c-Abstract.html
https://doi.org/10.48550/arXiv.2311.15696
https://doi.org/10.48550/arXiv.2311.15696
https://doi.org/10.48550/arXiv.1711.11240
https://doi.org/10.1103/PhysRevA.99.032331
https://doi.org/10.1121/1.2016299
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/2010.11929
https://openreview.net/forum?id=1sxiBaGEtg
http://arxiv.org/abs/2205.05625
http://arxiv.org/abs/2207.07563
http://arxiv.org/abs/2209.08167
http://arxiv.org/abs/2209.08167
http://arxiv.org/abs/2403.09418
http://arxiv.org/abs/2402.16714
http://arxiv.org/abs/2110.04236

 KI - Künstliche Intelligenz

 74. Lucas A (2014) Ising formulations of many np problems. Front
Phys 2:5

 75. Huang Q, Smolensky P, He X, Deng L, Wu D (2017) Tensor
product generation networks for deep NLP modeling. Preprint at
arXiv: 1709. 09118

 76. Huang Q, Deng L, Wu D, Liu C, He X (2019) Attentive tensor
product learning. Proc AAAI Conf Artif Intell 33:1344–1351

 77. Busemeyer JR, Bruza PD (2012) Quantum models of cognition
and decision. Cambridge University Press, Cambridge

 78. Atmanspacher H (2020) Quantum Approaches to Consciousness.
In: Zalta EN (ed) The Stanford Encyclopedia of Philosophy, Sum-
mer, 2020th edn. Stanford University, Stanford

 79. Wei J, Wang X, Schuurmans D, Bosma M, Ichter B, Xia F, Chi
E, Le QV, Zhou D (2022) Chain-of-Thought Prompting Elicits
Reasoning in Large Language Models. Advances in Neural Infor-
mation Processing Systems 35:24824–24837, https:// proce edings.
neuri ps. cc/ paper_ files/ paper/ 2022/ hash/ 9d560 96135 24ecf 4f15a
f0f7b 31abc a4- Abstr act- Confe rence. html

 80. Wang X, Wei J, Schuurmans D, Le Q, Chi E, Narang S, Chowd-
hery A, Zhou D (2023) Self-Consistency Improves Chain of
Thought Reasoning in Language Models. https:// doi. org/ 10.
48550/ arXiv. 2203. 11171, http:// arxiv. org/ abs/ 2203. 11171, arXiv:
2203. 11171 [cs]

 81. Turpin M, Michael J, Perez E, Bowman SR (2023) Language
Models Don’t Always Say What They Think: Unfaithful Expla-
nations in Chain-of-Thought Prompting. https:// doi. org/ 10. 48550/
arXiv. 2305. 04388, http:// arxiv. org/ abs/ 2305. 04388, arXiv: 2305.
04388 [cs]

 82. Lewis P, Perez E, Piktus A, Petroni F, Karpukhin V, Goyal N,
Kuttler H, Lewis M, Wt Yih, Rocktaschel T, Riedel S, Kiela D
(2020) Retrieval-augmented generation for knowledge-intensive
NLP tasks. Adv Neural Inf Process Syst 33:9459–9474

 83. Guu K, Lee K, Tung Z, Pasupat P, Chang M (2020) Retrieval
Augmented Language Model Pre-Training. In: Proceedings of
the 37th International Conference on Machine Learning, PMLR,
pp 3929–3938, https:// proce edings. mlr. press/ v119/ guu20a. html,
iSSN: 2640-3498

 84. Borgeaud S, Mensch A, Hoffmann J, Cai T, Rutherford E, Millican
K, Driessche GBVD, Lespiau JB, Damoc B, Clark A, Casas DDL,
Guy A, Menick J, Ring R, Hennigan T, Huang S, Maggiore L,
Jones C, Cassirer A, Brock A, Paganini M, Irving G, Vinyals O,
Osindero S, Simonyan K, Rae J, Elsen E, Sifre L (2022) Improv-
ing Language Models by Retrieving from Trillions of Tokens.
In: Proceedings of the 39th International Conference on Machine
Learning, PMLR, pp 2206–2240, https:// proce edings. mlr. press/
v162/ borge aud22a. html, iSSN: 2640-3498

 85. Thorne J, Vlachos A (2021) Evidence-based Factual Error Cor-
rection. In: Zong C, Xia F, Li W, Navigli R (eds) Proceedings of
the 59th Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers), Association for
Computational Linguistics, Online, pp 3298–3309, https:// doi. org/
10. 18653/ v1/ 2021. acl- long. 256, https:// aclan tholo gy. org/ 2021.
acl- long. 256

 86. Balachandran V, Hajishirzi H, Cohen WW, Tsvetkov Y (2022)
Correcting diverse factual errors in abstractive summarization via
post-editing and language model infilling. arXiv. https:// doi. org/
10. 48550/ arXiv. 2210. 12378

 87. Schick T, Dwivedi-Yu J, Jiang Z, Petroni F, Lewis P, Izacard G,
You Q, Nalmpantis C, Grave E, Riedel S (2022) PEER: A Col-
laborative Language Model. https:// doi. org/ 10. 48550/ arXiv. 2208.
11663, http:// arxiv. org/ abs/ 2208. 11663, arXiv: 2208. 11663 [cs]

 88. Gao L, Dai Z, Pasupat P, Chen A, Chaganty AT, Fan Y, Zhao V,
Lao N, Lee H, Juan DC, Guu K (2023) RARR: Researching and
Revising What Language Models Say, Using Language Models.
In: Rogers A, Boyd-Graber J, Okazaki N (eds) Proceedings of the
61st Annual Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), Association for Computational
Linguistics, Toronto, Canada, pp 16477–16508, https:// doi. org/
10. 18653/ v1/ 2023. acl- long. 910, https:// aclan tholo gy. org/ 2023.
acl- long. 910

 89. Grover LK (1996) A fast quantum mechanical algorithm for data-
base search. In: Proceedings of the twenty-eighth annual ACM
symposium on Theory of computing - STOC ’96, ACM Press,
Philadelphia, Pennsylvania, United States, pp 212–219, https://
doi. org/ 10. 1145/ 237814. 237866, http:// portal. acm. org/ citat ion.
cfm? doid= 237814. 237866

 90. Giri PR, Korepin VE (2017) A review on quantum search algo-
rithms. Quant Inf Process 16(12):315. https:// doi. org/ 10. 1007/
s11128- 017- 1768-7

 91. Pronin CB, Ostroukh AV (2023) Synthesis of quantum vector
databases based on grovers algorithm. arXiv. https:// doi. org/ 10.
48550/ arXiv. 2306. 15295

 92. Zhang H, Song H, Li S, Zhou M, Song D (2023) A survey of
controllable text generation using transformer-based pre-trained
language models. ACM Comput Surv 56(3):1–37

 93. Heisenberg W (1958) Physics and philosophy: The revolution in
modern science. Vladimir Djambov

 94. Widdows D (2003) A mathematical model for context and word-
meaning. In: Fourth International and Interdisciplinary Confer-
ence on Modeling and Using Context, Stanford, California

 95. Orrell D (2020) Quantum Economics and Finance: An Applied
Mathematics Introduction. Panda Ohana Publishing, New York

 96. Rescher N (1996) Leibniz on possible worlds. Studia Leibnitiana
pp 129–162

 97. Bouquiaux L (2008) Leibniz against the unreasonable Newtonian
physics. In: Bouquiaux L (ed) Leibniz: What Kind of Rationalist?
Springer, Cham, pp 99–110

 98. McKeon R (ed) (1941) The Basic Works of Aristotle. Random
House

 99. Schrödinger E (1944) What is life? Cambridge University Press
(with mind and matter and autobiographical sketches, 1996)

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

http://arxiv.org/abs/1709.09118
https://proceedings.neurips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://doi.org/10.48550/arXiv.2203.11171
https://doi.org/10.48550/arXiv.2203.11171
http://arxiv.org/abs/2203.11171
http://arxiv.org/abs/2203.11171
http://arxiv.org/abs/2203.11171
https://doi.org/10.48550/arXiv.2305.04388
https://doi.org/10.48550/arXiv.2305.04388
http://arxiv.org/abs/2305.04388
http://arxiv.org/abs/2305.04388
http://arxiv.org/abs/2305.04388
https://proceedings.mlr.press/v119/guu20a.html
https://proceedings.mlr.press/v162/borgeaud22a.html
https://proceedings.mlr.press/v162/borgeaud22a.html
https://doi.org/10.18653/v1/2021.acl-long.256
https://doi.org/10.18653/v1/2021.acl-long.256
https://aclanthology.org/2021.acl-long.256
https://aclanthology.org/2021.acl-long.256
https://doi.org/10.48550/arXiv.2210.12378
https://doi.org/10.48550/arXiv.2210.12378
https://doi.org/10.48550/arXiv.2208.11663
https://doi.org/10.48550/arXiv.2208.11663
http://arxiv.org/abs/2208.11663
http://arxiv.org/abs/2208.11663
https://doi.org/10.18653/v1/2023.acl-long.910
https://doi.org/10.18653/v1/2023.acl-long.910
https://aclanthology.org/2023.acl-long.910
https://aclanthology.org/2023.acl-long.910
https://doi.org/10.1145/237814.237866
https://doi.org/10.1145/237814.237866
http://portal.acm.org/citation.cfm?doid=237814.237866
http://portal.acm.org/citation.cfm?doid=237814.237866
https://doi.org/10.1007/s11128-017-1768-7
https://doi.org/10.1007/s11128-017-1768-7
https://doi.org/10.48550/arXiv.2306.15295
https://doi.org/10.48550/arXiv.2306.15295

	Quantum Natural Language Processing
	Abstract
	1 Introduction
	2 Quantum Computing Basics
	3 A Quantum String Encoding Example
	4 Word Embeddings and Text Classification
	4.1 Building Quantum Embeddings
	4.2 Using Quantum Embeddings

	5 Sequential Models for Text Generation
	6 Attention in Quantum NLP Models
	6.1 Attention in Classical LLMs
	6.2 Near-term Quantum Self-attention Mechanisms
	6.3 Attention on Fault-Tolerant Quantum Computers

	7 Syntactic Parsing and Logical Forms
	8 Facts and Language Generation
	9 Conclusion
	References

