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Abstract
Language processing is at the heart of current developments in artificial intelligence, and quantum computers are becoming 
available at the same time. This has led to great interest in quantum natural language processing, and several early proposals 
and experiments. This paper surveys the state of this area, showing how NLP-related techniques have been used in quantum 
language processing. We examine the art of word embeddings and sequential models, proposing some avenues for future 
investigation and discussing the tradeoffs present in these directions. We also highlight some recent methods to compute 
attention in transformer models, and perform grammatical parsing. We also introduce a new quantum design for the basic 
task of text encoding (representing a string of characters in memory), which has not been addressed in detail before. Quan-
tum theory has contributed toward quantifying uncertainty and explaining “What is intelligence?” In this context, we argue 
that “hallucinations” in modern artificial intelligence systems are a misunderstanding of the way facts are conceptualized: 
language can express many plausible hypotheses, of which only a few become actual.

Keywords Quantum language processing · QNLP · Quantum AI · Quantum string encoding

1 Introduction

In early 2024, quantum computing and AI are two of the 
most rapidly-moving and talked-about areas of science and 
technology. The availability of dialog systems based on large 
language models (LLMs) has raised the profile of natural 
language processing (NLP) to a historic high, developing 
and expanding very quickly. This expansion has led to AI 
models being deployed as systems and introduced as com-
ponents in new ways, leading to improvements and efficien-
cies, but also mistakes and concerns. Thus the demand for 

improvements in AI is at an all-time high, with a renewed 
focus on reliability and trust.

Quantum theory offers new forms of mathematical mod-
eling, computation and communication. Mathematical mod-
els for language operations motivated explicitly by quantum 
theory have been used in information retrieval [1, 2], logic 
and disambiguation [3], and language composition [4, 5]. 
Similar models have been developed in many social sciences 
and demonstrated successful results over classical alterna-
tives, long before any such models were implemented and 
run on quantum computers. More abstractly, entire classes of 
quantum machine learning (ML) models have been theoreti-
cally shown to have more expressive power than compara-
ble classical models [6, 7], though this does not guarantee 
improvements in results more generally [8]. Running basic 
NLP algorithms on quantum has become possible only in the 
last few years, with early-stage results reported by [9, 10].

This paper is intended as an introduction to this land-
scape, for those interested in language processing and quan-
tum computing, but not necessarily specialists in either. 
Firstly, Sect. 2 gives a brief introduction to quantum gates 
and circuits. Section 3 continues with an idealized exam-
ple of how quantum gates could be used to represent a text 
string of exponential length in a register of qubits, including 
some caveats and pitfalls. This gives a glimpse of some of 
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the wonder, and some of the challenges, of quantum com-
puting. The main body of the paper surveys ways in which 
other aspects of language processing have already been mod-
eled on quantum computers, including embedding vectors, 
sequences, attention, and grammatical structure (Sects. 4–7). 
This gives a snapshot of of where quantum NLP has got 
to at this stage of the NISQ era. Finally, Sect. 8 discusses 
the challenges of choosing and distinguishing between the 
hypothetical and the actual. This has taken on fresh urgency 
in AI systems for fact-checking, to avoid mistaking so-called 
hallucinations for assertions. We note that language models 
are designed to produce both hypothetical and actual state-
ments, and that quantum mechanics is a better starting point 
than classical mechanics for modeling this.

2  Quantum Computing Basics

In early 2024, quantum computers are real and in regular 
use, and quantum runtime is offered as-a-service by many 
companies, via the internet / cloud. This section introduces 
some of the basic building blocks of quantum computing, 
from the perspective of a developer designing quantum pro-
grams, particularly to run on today’s noisy-intermediate 
scale quantum (NISQ) hardware. The development process 
involves specifying a register of qubits, and saying what 
logic gates and measurements should be performed on these 
qubits.

The material here overlaps with the introduction of [11]. 
Some familiarity with quantum mechanics, especially Dirac 
notation, is assumed, so that �0⟩ and �1⟩ are the basis states 
for a single qubit whose state is represented in the complex 
vector space ℂ2 , a 2-qubit state is represented in the tensor 
product space ℂ2 ⊗ ℂ

2 ≅ ℂ
4 with basis states �00⟩, �01⟩, �10⟩ 

and �11⟩ , 3-qubit states are represented in ℂ⊗3 ≅ ℂ
8 with 

basis states �000⟩, �001⟩,… , �111⟩ , and so on. For introduc-
tions to how linear algebra is written and used in quantum 
mechanics, see [12, Ch 2]. Quantum measurement is prob-
abilistic: if ��⟩ is an eigenvector of a given measurement 
operator, then a system in the state ��⟩ is observed to be in 
the state ��⟩ with probability given by the square of their 
scalar product, ⟨���⟩2 (the Born rule), and if this outcome 
is observed, the system is now in the state ��⟩.

In mathematical terms, the key features that distin-
guish quantum from classical computers are superposi-
tion and entanglement. Superposition can be realized in a 
single qubit: the state ��0⟩ + ��1⟩ is a superposition of the 
states �0⟩ and �1⟩ , where � and � are complex numbers, with 
|�2| + |�2| = 1 . Each single-qubit logic gate is a linear opera-
tor that preserves the orthogonality of the basis states and 
this normalization condition, and the group of such opera-
tors is U(2), the group of complex 2 × 2 unitary matrices. 
Single-qubit gates that feature prominently in this paper are 

shown in Fig. 1. So single-qubit gates coherently manipulate 
the superposition state of an individual qubit.

Entanglement is a property that connects different qubits. 
Since the 1930’s, quantum entanglement has gone from a 
hotly-disputed scientific prediction, to a statistical property 
demonstrated with large ensembles, to a connection created 
between pairs of individual particles, to a working compo-
nent in quantum computers. All modern quantum comput-
ers have some implementation of an entangling gate, and 
only one kind is really needed, because all possible 2-qubit 
entangled states can be constructed mathematically by com-
bining appropriate single-qubit gates before and after the 
entangling gate. Furthermore, a single 2-qubit entangling 
gate and a set of single-qubit gates forms a universal gate-
set for quantum computing [12, §4.5]. Entanglement is the 
crucial feature that distinguishes quantum computing algo-
rithmically, because predicting the probability distributions 
that result from quantum operations with entanglement can 
become exponentially hard for classical computers. In sim-
pler terms, quantum computing is special because it offers 
special kinds of interference, not because it offers special 
kinds of in-between-ness.

A quantum circuit consists of a register of qubits, and a 
sequence of logic gates that act on these qubits. Some of the 
basic gates used in this paper are shown in Figs. 1 and 2. The 
Pauli-X gate is commonly used to flip a qubit between the 
�0⟩ and �1⟩ gates, which is why it is also sometimes called 
the quantum NOT gate. X-gates applied to different qubits 
can be used to prepare an input state representing a binary-
valued vector: the state �010⋯ 001⟩ is prepared by applying 
an X-gate to each of the qubits to be switched to the �1⟩ state.

The Hadamard (H) gate is commonly used to put a qubit 
into a superposition state: for example, it maps a qubit 

Fig. 1  Single-qubit gates used in this paper, and their corresponding 
matrices, which operate on the superposition state ��0⟩ + ��1⟩ written 
as the column vector 

[
� �

]T

Fig. 2  Two-qubit CNOT (controlled-X) and gate
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prepared in the state �0⟩ to the superposition 1√
2
(�0⟩ + �1⟩) . 

Applying an H-gate to each qubit in an array is used to ini-
tialize a binary vector all of whose coordinates have a 50-50 
chance of being observed in the �0⟩ or �1⟩ state.

Other probabilities, anywhere in the range [0, 1], can be 
arranged by using fractional rotations (which might involve 
sending just the same laser-pulse instructions, but for dif-
ferent time periods). An example is given in the RX(�) gate. 
Several variational quantum algorithms work by gradually 
optimizing such � parameters.

The CNOT gate is a 2-qubit entangling gate, that acts 
upon the state ��00⟩ + ��01⟩ + ��10⟩ + ��11⟩ . In the stand-
ard basis, its behavior can be described as “performing a 
NOT operation on the target qubit if the control qubit is in 
state �1⟩”.

By assembling several 1- and 2-qubit gates, more qubits 
can become entangled, and we can define multi-controlled 
gates. For example, the 3-qubit Toffoli gate in Fig. 3 flips the 
lowest qubit if the top qubit is in the �1⟩ state and the mid-
dle qubit in the �0⟩ state. It is relatively easy mathematically 
to start arranging such gate recipes into higher-level opera-
tions: for example, the 3-qubit gate acts as a logical AND, 
from which simple binary arithmetic can be constructed.

However, developers must be careful when using such 
constructions, because gate complexity and errors can easily 
build up. In practice, it takes 5 CNOT gates and 9 single-
qubit gates to assemble the 3-qubit Toffoli gate, so if gate 
errors are above 1%, the error-rate in a circuit with just 3 
Toffoli gates would be over 50%. In 2024, gate error rates 
tend to be much better than this, but still, typical circuits 
today do not reliably run more than a few hundred gates. 
NISQ-era quantum circuit development tends to tradeoff 
between sophistication (more gates introduces more tunable 
parameters) and reliability (fewer gates gives fewer errors). 
It also leads to designs where classical components are relied 
upon for many parts of an NLP pipeline, such as storing 
weights and comparing scores [10].

In quantum machine learning, variational circuits, or 
parametrized quantum circuits (PQCs), are a particularly 
clear example of such tradeoffs [13, Ch 5]. Variational 
circuit designs use i. a quantum circuit with parameters 
{�i} , often implemented as variable gate angles, that can 
be optimized according to a given loss function; and ii. a 

classical optimizer, responsible for evaluating the measure-
ment outputs of the quantum circuit, and proposing updates 
to the parameters {�i} . When both classical and quantum 
components play such a prominent role, the combination is 
sometimes called a hybrid system or hybrid workflow.

The transition from NISQ to fault-tolerant quantum com-
puting will be gradual, and arguably is already underway: 
recent months have seen encouraging progress in quantum 
error correction and memory fidelity [14]. This raises long-
term expectations that quantum computers will optimize 
crucial matrix operations, such as solving systems of equa-
tions [15], and quantum singular value transformation [16]. 
However, it is important to remember that even fault-tolerant 
quantum computing will come with serious caveats, and in 
particular, quantum components bring no advantage if their 
I/O costs outweigh their computational gains [17].

Through the rest of this paper, we highlight examples 
of some of these considerations and design differences as 
they appear.

3  A Quantum String Encoding Example

Character and string encoding is one of the most basic tasks 
in language processing, and this section gives a worked 
example of how this might be performed on a quantum com-
puter using some of the standard quantum circuit and gate 
patterns introduced in the previous section. This makes a 
good case-study of some of the promise and challenges of 
quantum computing, and (as far as we know) is the first such 
proposal for representing text strings in a quantum computer, 
comparable to the use of ASCII or Unicode specifications in 
mainstream classical computing.

To encode a text of meaningful length, this encoding 
would require many layers of 2-qubit gates, and this design 
would require fault-tolerant quantum computing, rather than 
being a NISQ-era proposal. Other methods of encoding the 
meanings of texts in quantum NLP work have been devised, 
such as vector embeddings for use in machine learning clas-
sifiers, and several such techniques will be surveyed in later 
sections. The example quantum circuit designs in this sec-
tion are for the (much older) protocol of representing words 
as a sequence of characters chosen from a relatively small 
character set. Some of the quantum word-encoding models 
based on a sequences and embeddings will be surveyed in 
later sections of this paper.

The established way to define a string in computer sci-
ence is to rely on an encoding standard such as ASCII 
which identifies letters with numbers (A=65, B=66, etc.), 
and then a string such as CAB can be represented as the 
number sequence [67, 65, 66]. Here the quantum developer 
faces an immediate and typical challenge: arrays and lists 
are not standardized components, and a strategy to read from 

Fig. 3  Three-qubit multi-controlled gate (Toffoli gate) with �1⟩ and �0⟩ 
control states
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the next location in memory needs to be introduced as part 
of the design. This lack generalizes: there is much more 
established literature, software, and hardware for quantum 
algorithms than for quantum data structures.

One data structure we can use as a building block in 
quantum circuits is binary positional notation for integers. 
For example, in a 4-qubit register, the state �1010⟩ could 
represent the decimal number 10 (if read left-to-right) or 5 
(if read right-to-left). This convention was used right at the 
beginning of quantum computing, in Feynman’s proposal 
of how to build a quantum adder circuit [18], and is part 
of Shor’s integer factoring algorithm [19]. These numbers 
can be represented in quantum circuits using X-gate bit-flip 
operations on the corresponding qubits, as in Fig. 4.

Our string encoding design works by entangling a 
“position” register that records where a character appears, 
along with an “alphabet” register that says which char-
acter appears in that position. So instead of a sequence 
[3,  1,  2], the string is represented as a tensor product 
1P ⊗ 3C + 2P ⊗ 1C + 3P ⊗ 2C , where nP is the state repre-
senting the Pth position, and mC is the state representing the 
Cth character. A similar pattern is used by [20] for represent-
ing images, and the encoding is called QPIXL. QPIXL uses 
one register to specify the location of a pixel in an image, 
entangled with another register saying which channel (e.g., 
red, green, or blue) is being referred to. So, QPIXL also 
keeps “what it is” and “where it is” in separate registers 
and entangles these. Emphasizing this similarity, we call our 
string encoding protocol QPOSTR, pronounced “Q-poster”, 
meaning “Quantum Positional String”.

The implementation of this formula as a quantum circuit 
component for encoding the string cab is outlined in Fig. 5. 
The top 2 qubits form the “position” register, and the values 
on the control qubits are represented by the open and closed 
circles, ◦ = 0 , ⋅ = 1 . Starting with the top as the least sig-
nificant bit, the control states are ◦◦ = 00 = 0 , ◦⋅ = 01 = 1 , 
⋅◦ = 10 = 2 , etc. The bottom 2 qubits form the “character” 
or “alphabet” register. Each letter in the alphabet is mapped 
to a number corresponding to its position, so the gate-recipe 
for each character is like one of the simple circuits shown 
in Fig. 4. To encode the string cab, a character register of 2 
qubits suffices. To encode 26 letters, a character register of 5 

qubits would be required (since 25 = 32 ), and for the ASCII 
character set, 7 qubits would be needed.

If the circuit above is prepared in the conventional �0000⟩ 
state, the first gate controlled on the ◦◦ = 00 state is the only 
one active, and the circuit output will be 00 (in the posi-
tion register) and 11 (in the character register), saying just 
“the zeroth character was a c.” To prepare a superposition 
of the characters in all of the positions, the position register 
is prepared in a uniform distribution over all the available 
character positions, using a standard array of Hadamard (H) 
gates. This gives the full circuit for encoding the string cab 
in Fig. 6. Character positions beyond the length of the string 
are untouched, or left with character “0” in that position. 
Using the convention that character “0” represents a space, 
this is equivalent to padding a string with trailing zeros to 
make its length a power of 2.

With n qubits, the position register can encode up to 
2n positions, and with m qubits, the alphabet register can 
encode up to 2m characters. Thus, a QPOSTR circuit with 
m + n qubits can represent a string of length up to 2n , with up 
to 2m characters. By contrast, a classical computer requires 
m × 2n classical bits to store the same string.

As a thought experiment, we can use GPT-3 train-
ing metadata to demonstrate this savings. The size of 
the training dataset is reported at ∼300B tokens [21], so 
a generous estimate of 12 characters-per-token allows for 
12 × 300 × 109 < 242 character-positions, for which the 
positional encoding fits in 42 qubits. There are currently 
149,813 Unicode characters, so even this alphabet fits in 18 
qubits, which means that the entire ∼45TB training dataset 
of GPT-3 could fit into a mere 18 + 42 = 60 qubits!

We can recover information about which character is in 
which position by adding an output register with the same 
number of qubits as the character register. The circuit for 
this is shown in Fig. 7. The multi-controlled gates that con-
nect the QPOSTR representation to the readout register are 
configured to detect the same position in the string. Each 
extra qubit in the controls for these gates is set to detect a 

Fig. 4  Simple encodings for a three-letter alphabet in a two-qubit 
register, using the convention that the top qubit in the register is the 
least-significant “units” bit in the binary encoding

Fig. 5  Position and Character Encoding for the string cab 

Fig. 6  QPOSTR Encoding for the string cab 
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particular bit in the character register, and if this bit is set to 
a 1, then the corresponding output bit is set to a 1.

If this process could be repeated many times, and if the 
output qubits could be reset to �0⟩ independently of the 
other qubits in the register, eventually the entire input string 
or any parts of it could be read out to classical memory. 
Superficially, this extension of the readout circuit gives a 
circuit that demonstrates that the whole original string 
can be recovered from the QPOSTR quantum encoding. 
In other words, it looks as if we can recover an exponen-
tially-long string ( 2n characters) from an encoding that uses 
n + ⌈log2(alphabet size)⌉ qubits!

However, this is deceptive: due to the H gates at the 
beginning, we have no way of knowing which position will 
be measured by each readout operation, and to guarantee 
statistically that each position is sampled, we would need 
an exponential number of measurements on different copies 
of the state. (In practice, many shots of the quantum circuit 
would need to be run.) This is in line with a general theo-
rem in quantum computing, the Holevo bound [12, 12.1.1], 
which limits the amount of classical information that can 
reliably be recovered from a quantum state.

Thus, QPOSTR gives an exponential space advantage 
over the classical alternative. However, it still takes a length 
of time at least linear in the length of the string to run the 
quantum circuit that loads the string into quantum memory. 
Like many quantum encodings, QPOSTR only gives an 
exponential space saving, which offers no obvious practical 
advantage without a corresponding time saving. Thus, even 
if we were to encode the GPT-3 training data, it is unclear at 
this moment what savings could come from doing so. That 
said, we optimistically speculate that future algorithms or 
data structures may be able to better take advantage of this 
encoding.

More generally, the challenge of preparing a quantum 
memory that can be maintained and successively queried is 
sometimes described as research in QROM and QRAM [22, 
23]. Minimizing the number of gate operations is a key goal 
in such work, and the position encoding used in QPOSTR 
can be regarded as one of the “simple (but suboptimal)” 
encoding methods described in Fig 3 of [23]. The task they 
are interested in is encoding electronic spectra, but they also 

consider encoding “words” as an example toy problem. The 
extra step that QPOSTR takes is explicitly to map register 
values to alphabetic characters, which enables such a uni-
tary positional encoding to represent a text as a sequence of 
alphabetic characters.

Rather than demonstrating a new quantum advantage, 
the QPOSTR example is intended to showcase some of the 
excitement, but also some of the gotchas of quantum com-
puting. It is astonishing that an exponentially long string can 
be encoded like this at all, but once the engineering caveats 
around that statement are properly understood, we see that 
the explicit information we can recover from this representa-
tion is much smaller.

4  Word Embeddings and Text Classification

Representing words as vectors of coordinates is a technique 
that goes back at least to the 1960 s and early information 
retrieval systems [24]. The key theoretical motivation behind 
such distributional semantics methods is that words that 
appear in similar contexts tend to have similar meanings 
[25, 26]. Based on their distribution in text, embedding tech-
niques map words to vector spaces, where their similarity is 
typically measured by the inner product of their correspond-
ing vectors.

Semantic properties of vectors in lower-dimensional 
projections were analyzed in the 1990 s [27], and by the 
early 2000 s, overlaps between the logic of word vectors in 
information retrieval and state vectors in quantum mechanics 
had been explicitly recognized [1, 28]. In the past decade, 
embeddings for classical NLP have jumped from having a 
resurgence in academia to becoming massively mainstream 
in industry [29–31]. Naturally, this suggests embeddings 
could be just as central for QNLP, especially since the math-
ematics of vectors and tensors has become a common lan-
guage for both AI and quantum computing [32].

There are many ways to add a quantum flavor to embed-
dings. In information retrieval, [2] used density matrices and 
quantum probability to include term-term dependencies in 
retrieval weighting. Their quantum probability model for 
bigrams prefigures the more general probabilistic models 
developed by [33].

Word2ket [34] was introduced as a quantum-inspired 
solution for compressing embeddings. A tensor network 
is a decomposition of a high-dimensional tensor into an 
approximate product of lower-dimensional tensors or vec-
tors. For example, if M ≈ U ⊗ V  then M can be represented 
using approximately dim(U) + dim(V) coordinates, rather 
than dim(U) × dim(V) . (More precisely, in matrix coordi-
nates, M� ≈ uvT for column vectors u and v corresponding 
to appropriately reshaped U and V, and M′ is a reshaped 
version of M; see [35, 36] for details.) Word2ket uses 

Fig. 7  QPOSTR readout circuit which recovers the character “a” 
from position ◦⋅ = 01 of the string cab 
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tensor networks to create low-dimensional approximations 
for individual word vectors, and entire vocabularies. This 
mathematical initiative continues: for example, [37] report 
using tensor networks to compress the parameters of an 
LLM (LlaMA-2 7B model) to 30% of its original size while 
retaining over 90% of the original accuracy.

These methods are quantum-inspired, in the sense of 
drawing deliberately on quantum mathematical models, but 
running on classical computers.

4.1  Building Quantum Embeddings

Next we discuss techniques relating to embeddings intended 
for use on actual quantum devices, treating separately the 
topics of building quantum embeddings and using them. The 
circuits proposed in this section are intended for NISQ-era 
rather than fault-tolerant devices.

One of the most well-known recent techniques for build-
ing word embeddings is word2vec [29]. Taking inspiration 
from this line of work, we propose a quantum computing 
implementation of word2vec.

Word2vec is a group of word embedding methods that use 
shallow neural networks to capture the semantic properties 
of words. Word2vec includes two popular methods: Con-
tinuous Bag-of-Words (CBOW) and Skip-gram. CBOW and 
Skip-gram have different ways of learning the word embed-
dings. CBOW takes the context words around the target 
word as input and tries to predict the target word. Skip-gram 
does the opposite: it takes the target word as input and tries 
to predict the context words. The output of both methods is 
a probability distribution over all of the words in the vocabu-
lary, which is computed using the softmax function. This can 
be computationally expensive and impractical when the size 
of vocabulary is large.

Skip-gram with Negative Sampling (SGNS) [38] is a vari-
ant of Skip-gram that reduces computational complexity by 
simplifying the objective function. Instead of predicting 
the probability over complete vocabulary, SGNS only tries 
to distinguish the true context words from a few randomly 
sampled negative words, which are assumed to be irrelevant 
to the target word. Thus, the classification problem is sim-
plified from multi-class to binary. The negative sampling 
procedure also effectively balances the training dataset.

In our implementation, we use quantum states as word 
vectors, and use quantum fidelity to apply cosine similar-
ity. That is, encoding two words as �x⟩ and �y⟩ , we measure 
their similarity as �⟨x�y⟩�2 via the swap test [39], as shown 
in Fig. 8.

One of the challenges of quantum word embedding is 
how to efficiently load words as quantum states. We con-
sider two potential schemes for embedding words to quan-
tum state: memory-efficient embedding and circuit-efficient 
embedding.

In memory-efficient embedding, the quantum state of 
every word in vocabulary of size N is represented by a 
single unitary operation U(�) ∈ SU(2n) , where n = ⌈log2 N⌉ 
and � is a set of learnable parameters. The m-qubit quan-
tum state for the k-th word �wk⟩ ∈ ℂ

⊗m is obtained from 
U(�) by applying it to the computational basis state �k⟩ and 
discarding ancillary n − m qubits.

This scheme allows us to store a large number of words 
in small number of qubits, which is exponentially efficient 
in memory usage. However, the resulting quantum circuit 
that has sufficient expressiveness to implement U(�) has 
exponential depth, making it impractical for circuit-based 
quantum computation. Moreover, the state preparation pro-
cess involves post-selection, and is thus non-deterministic 
due to the probabilistic nature of measurement.

In contrast, the second scheme, circuit-efficient embed-
ding, represents the k-th word by a quantum state of the 
form �wk⟩ ∶= U(𝜃k)�0⟩ ∈ ℂ

⊗m , where U(�k) ∈ SU(2m) is a 
unitary operation parameterized by �k , which is specific 
to each word. This allows us to prepare the quantum state 
using a depth-efficient circuit in a deterministic process, 
without using excessive ancillary qubits. While it requires 
more classical memory to store the parameters, it is more 
flexible since one can add or remove words from the 
vocabulary during training.

The circuit-efficient and memory-efficient patterns are 
depicted in Figs. 9 and 10. In structure, the circuit-effi-
cient pattern is like the word-embedding in word2ket [34], 
and the memory-efficient pattern is like the word2ketXS 
whole vocabulary encoding. For word2ket, the motivation 
for expressing a whole vocabulary in a more entangled 
tensor network is to reduce classical memory, whereas in 

Fig. 8  Swap test circuit, where the probability of measuring a �0⟩ in 
the top qubit is �⟨x�y⟩� reflecting the overlap between the �x⟩ and �y⟩ 
states [39]

Fig. 9  Circuit-efficient embedding
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this design, it makes more use of the efficient quantum 
memory.

To learn the parameters for these embedding schemes, we 
adapt the classical word2vec methods, CBOW, Skip-gram 
and SGNS, to the quantum setting. For quantum CBOW 
and Skip-gram, we introduce a parameterized unitary oper-
ator V(�) ∈ SU(2n) that defines the probability distribu-
tion p𝜙(k�w) ∶= �⟨k�V(𝜙)(�w⟩⊗ �0⟩)�2 , where w is either 
a pooled (e.g. averaged) embedding of context words for 
CBOW, or the embedding for the target word for Skip-gram. 
This removes the need of computing the costly softmax 
function, by using the natural output of the quantum circuit 
to predict the index among 2n computational basis states. 
We note that quantum CBOW, cannot be directly applied 
for quantum word embeddings, since the direct averaging 
of quantum states is not a natural operation for quantum 
computers. Instead, it may be possible to use superpositions 
of quantum states.

Quantum CBOW and Skip-gram inherit the difficulties 
of the multi-class problem from the classical version. Both 
also suffer from the training problem that does not affect the 
classical versions: barren plateaus [40]. The barren plateau 
describes the phenomenon where the loss function and its 
gradient exponentially concentrate as the number of qubits 
increases. The unitary V(�) leads to a barren plateau in the 
loss landscape, making the training process difficult to scale.

Hence, we propose quantum SGNS, which leverages a 
simplified structure to mitigate the scaling issue. Quantum 
SGNS uses the embeddings for two words directly, instead 
of needing to additionally train V(�) . Given the target 
word �w⟩ , quantum SGNS tries to maximize the likelihood 
p(v�w) ∶= �⟨v�w⟩�2 if v is a context word and minimize it if 
v is negative sample. By combining quantum SGNS with the 
circuit-efficient embedding scheme, we enable their practi-
cal use on current quantum devices. Future work includes 
exploring the effects of different similarity kernels on quan-
tum word2vec, extending these circuits to implement word-
2ket, and understanding algebra in the embedding space.

4.2  Using Quantum Embeddings

Once words are encoded as vectors, these vectors can be 
used in many machine learning systems, including sup-
port vector machines, which can be used for supervised 

classification. This sometimes involves calculating a kernel 
function, which computes similarities between input vectors, 
sometimes involving computations that would be intractable 
if all the coordinates were constructed and compared explic-
itly [41, Ch 5]. This is regarded as a promising research 
direction for quantum machine learning, because quantum 
kernel circuits that compare 2n coordinates or amplitudes 
can be implemented using just n qubits [13]. However, as 
with the QPOSTR string encoding example in Sect. 3, if the 
number of gates still scales with the number of coordinates, 
the use of a logarithmic number of qubits is a saving of 
space but with no corresponding time advantage.

Several quantum vector encodings or “feature maps” for 
word embedding vectors were compared by [42], and used 
for sentiment analysis experiments. The ZZ-feature map 
was found to be the most successful, achieving a classifica-
tion accuracy of 62% on classification experiments involv-
ing small test sets of roughly 10K words each. This result 
showed initial promise, and was the largest quantum text 
experiment reported to-date, but also indicates how small 
today’s quantum NLP experiments, are compared with even 
modest-sized classical NLP systems.

One additional use case for embeddings is in factual 
grounding and retrieval, which we discuss in more detail 
in Sect. 8.

5  Sequential Models for Text Generation

Quantum generative modeling is still a largely unexplored 
area of opportunity, with many unsolved challenges. In some 
cases, the data is too large and is partitioned into segments 
that are correlated but treated as independent for sake of 
computation [43]. In others, the term is used to describe set-
tings in which a quantum circuit is used as a discrete source 
of randomness within an otherwise classical neural network 
that memorizes a select few data samples [44].

In NLP specifically, [33] describes how to model the joint 
distribution p(X0,X1) of a given a set of bigrams (x0, x1) and 
compute the marginal distributions p(X0) and p(X1) using 
linear algebra operations native to quantum computing (here 
we use capital letters to denote random variables and lower-
case to denote particular values that the random variable 
can take). [10] follows this theory to implement a Quantum 
Circuit Born Machine (QCBM) [45] to learn the joint dis-
tribution p(X0,X1) . While the QCBM can efficiently sample 
pairs from p(X0,X1) or marginals p(X0) and p(X1) , generat-
ing text sequentially from this model requires sampling from 
the conditional p(X1|X0 = x0) . This requires discarding sam-
ples for which X0 ≠ x0 , which can become prohibitive when 
scaling to larger vocabularies, and especially for rare prefix 
words x0 . In addition, the bigram model forgoes a hidden 
state like those found in Recurrent Neural Networks (RNNs) 

Fig. 10  Memory-efficient embedding
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that can learn to represent longer dependencies. Thus, while 
this model can easily sample bigrams directly, it is not opti-
mized for the task of sampling longer sequences.

A class of Bayesian network models, called n-gram mod-
els, have been successful in multiple language processing 
tasks, including information retrieval, text generation, and 
part-of-speech tagging [46]. However, they suffer from 
poor performance and generalizability issues in sparse data 
regimes and fail to capture nonlocal syntactic relations. Han-
dling out-of-vocabulary words or resolving ambiguity also 
pose challenges as n-grams do not have built-in semantic 
understanding [47]. A Hidden Markov models (HMM) is a 
Markov model whose output from any given state is proba-
bilistic rather than deterministic, which hides the internal 
state. A canonical example is when the hidden states are 
part-of-speech tags, such N(oun) or V(erb), which generate 
explicit words with given probabilities [48, §9.2].

The feed forward and recurrent neural networks are spe-
cific instances of the HMM. However, HMMs also face chal-
lenges in estimating accurate probabilities when the con-
text size increases or when the correlations get too long in 
languages. Beyond language processing, HMMs have been 
widely used in other scientific fields as well. In [49], the 
authors discuss probabilistic models, particularly HMMs 
and their derivatives, and their applications in biological 
sequence analysis. Language models, particularly those 
developed for aligning and comparing sequences, can be 
designed to recognize patterns in biological sequences, infer 
evolutionary relationships, and identify functional elements.

Recently, quantum techniques are being explored along 
this direction due to their potential in capturing long-range 
correlations. [50] introduced a quantum enhanced version 
of the HMM, named the basis-enhanced Bayesian Circuit, 
which leverages quantum contextuality and non-locality 
to boost the expressivity of classical HMMs. They devel-
oped a minimal quantum extension of the bigram HMM, 
by incorporating measurements in a Bayesian circuit in 
multiple bases. They demonstrated improved performance 
of the quantum enhanced model in certain sequential data-
sets, including one containing DNA sequences with non-
local structures. This leads to many interesting questions 
about the potential and utility of similar quantum methods 
in natural language processing tasks. Particularly, if quantum 

properties like contextuality and non-locality still give a 
provable advantage in terms of model expressivity when 
processing and extracting semantic meaning from a long 
sequence of words or protein structures.

Building toward longer sequences, [51] train a quantum 
classifier for predicting the topic of sentences and describe 
a classical scheme for using the classifier to perform condi-
tional generation (that can also be used on classical classi-
fiers). Since it does not actually train a standalone quantum 
generative model, this method suffers from a similar problem 
of also needing to discard many samples from a base model 
in order to generate one sample from an induced model, 
though the correlated editing-based annealing scheme could 
be guided to be more efficient than independently sampled 
shots from a QCBM. [52], shown in Fig. 11, proposes a 
framework for a quantum RNN that can be used to build an 
actual generative model to autoregressively produce text. 
This autoregressive modeling allows for dealing with cor-
relations across segments of larger data, addressing the prob-
lem from [43]. However, the architecture, while expressive, 
is far too expensive for current hardware on non-trivial prob-
lem sizes. [53] perform sequence classification on actual 
hardware as shown in Fig. 12. Unfortunately, the architecture 
they propose is not powerful enough to perform autoregres-
sive modeling.

We explore how to bridge some of the gap between 
general but expensive sequence processing of [52] and the 
currently-achievable but underpowered architecture of [53]. 
To achieve this, we use the paradigm of [54] to combine the 
power of nonlinear Multi-Layer Perceptrons (MLPs) with 
the inherent randomness of quantum computing to directly 

Fig. 11  Bausch (2023) circuit. The input is the sequence (x0, x1) . The mixing and hidden blocks are prohibitive for current hardware. The output 
is the next token in the sequence as the outcome from a single shot

Fig. 12  London et  al. (2023) circuit. The input is the sequence 
(x0, x1) . Only the first qubit is measured. The output is the probability 
that the sequence is in class 1
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sample from rich classes of probability distributions. Com-
pared to [52], our proposed architecture, shown in Fig. 13, 
drops the use of the reset operation and uses identity mixing, 
similar to [53].

In the figures, the details of the quantum neurons have 
been abstracted away to highlight the main similarities and 
differences between the methods. The text labeling on the 
left denotes the purpose of the register. E(x) denotes a block 
of gates for encoding inputs x, N(�) denotes a nonlinear neu-
ron parameterized by variables � as in [55], and the dark 
gray gate with the �0⟩-ket is a reset operation. The parameter 
subscript i denotes input, o denotes output, h denotes hid-
den, and m denotes mixing. The light gray vertical rounded 
rectangle denotes that the qubits in the register are being 
used as control for the corresponding neuron as a sequence 
of single-control gates, not as true multi-control gates. We 
depict the architectures from [52] and [53] with a sequence 
length of 2 with input sequence (x0, x1) , and the Multi-Layer 
Perceptron (MLP) from [54] with a single hidden layer.

In simulation, the model is trained using backpropaga-
tion from gradients computed from noiseless state vector 
simulation. The model produces the probability distribution 
over the 11 words in the vocabulary corresponding to the 
word that the model predicts comes next after the observed 
sequence. In actual implementation, the model would be 
trained using backpropagation from estimated gradients e.g. 
via the parameter-shift rule [56]. The model would produce 
for each shot a sample corresponding to the index of a single 
predicted word.

Our proposed architecture is evaluated in a small-scale 
noiseless simulation. We consider a dataset of 7 sentences 
using a vocabulary of 11 unique words. We compare our 
proposal against two baseline models: one random uniform 
prediction model and one inspired by [53]. We compare per-
formance between models trained on 5 sentences by evaluat-
ing on the remaining 2 sentences their perplexity [57], for 
which a lower score indicates better performance. A naive 
uniform random prediction on this dataset yields a perplex-
ity of 11. Using a 9-qubit [53] model with 297 parameters, 
we achieve a perplexity of 8.15. Using a 9-qubit model that 
we propose with 172 parameters, we achieve a perplexity 
of 2.79.

To our knowledge, this is the first fully quantum sequen-
tial text generation architecture that is designed with the 
capabilities and limitations of current NISQ-era devices in 

mind. Our simulation results demonstrate the viability of 
the approach for implementation on actual hardware while 
achieving a reasonable level of perplexity.

6  Attention in Quantum NLP Models

So far we have discussed models for studying sentences 
as word / token sequences. Making such models scale to 
longer sequences has always been a challenge: with n-gram 
models, the value of n has always been small [48, Ch 6]; 
and RNN architectures including LSTMs, while accurate 
for short sequences, had trouble scaling to cover long-range 
dependencies [41, Ch 15].

6.1  Attention in Classical LLMs

Attention is designed to address this problem. The attention 
methodology was used to enhance an RNN sequence model 
for machine translation by [58], which enabled the model 
to capture longer-range relationships as well. Although it 
still relied on the encoder-decoder paradigm, the bidirec-
tional RNN architecture introduced in [58] features a distinct 
context vector for each word in the sentence. Each context 
vector depends on a sequence of annotations which contains 
information about the entire sentence with a strong focus on 
the parts of the sentence surrounding the context vector’s 
associated input word. The annotations are weighted accord-
ing to an alignment model, which scores how well an output 
token matches inputs around a given position.

This approach further was developed further by [59], 
demonstrating a system where transformer blocks incorpo-
rating attention, layer norm, multi-layer perceptrons, and 
residual connections, fully replace recursive units. This 
Transformer model — centered around scaled dot-product 
attention — made previous RNN-based encoder-decoder 
architectures obsolete when it demonstrated improved per-
formance on various translation tasks.

Importantly, [59] adapted the Transformer architecture for 
use in text generation. Their model is auto-regressive, and 
at each step it consumes the previously generated symbols 
as additional input when producing new text. In addition, 
it is worthy to note that the Transformer was later adapted 
to the setting of computer vision, where it outperformed 

Fig. 13  Proposed circuit. The 
input is the sequence (x0, x1) . 
The output can be the next 
token in the sequence as the 
outcome from a single shot
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state-of-the-art convolutional neural networks in various 
image classification challenges [60].

In general, “an attention function can be described as 
mapping a query and a set of key-value pairs to an output, 
where the query, keys, values, and outputs are all vectors” 
representing embedded tokens; the output is a weighted sum 
of the values, with the weights measuring the compatibility 
between corresponding query and key [59]. Self-attention 
refers to computing attention coefficients intra-sequence, i.e., 
on the same input sequence. A key feature of self-attention 
layers is that they provide a mechanism for different tokens 
in the input sequence to interact, thereby allowing models 
to infer contextual information about individual tokens by 
weighing the importance of pairwise interactions; in other 
words, how much attention a given input token should pay 
to every other token in the sequence.

In particular, the “Scaled Dot-Product” attention layer 
featured in [59] computes the dot-products of the query with 
all the keys, normalizes according to the dimension of the 
query and key vectors, and then applies the softmax function 
to obtain the weights of all the pairs, which are the values. 
Rather than enumerate all the indices for summation, it is 
typical to write the lists of vectors as matrices, whereby the 
definition takes the common form

where d is the embedding dimension, Q, K, and V are matri-
ces of size wd where w is the number of words / tokens in 
a sequence, and the softmax function xi → exi∕

∑
i(e

xi ) is 
applied to each row. This formulates dot product attention as 
a matrix multiplication (time O(w2d) ), a softmax step (time 
O(w2) ), and a final matrix multiplication (time O(wd2)).

A key advantage enjoyed by the Transformer over the 
previous RNN architectures is that this multiplication can 
be parallelized, which computes the pairwise relationships 
between all the tokens in a sequence at once. In addition, the 
computational cost does not depend on the distance between 
tokens in the sequence, as in previous models. Together, 
these properties accounted for a drastic reduction in training 
time over sequential RNN models. The main drawback is 
that the computational complexity still scales quadratically 
in the number of tokens in a given sequence (roughly the 
number of words in a sentence). The problem of approximat-
ing or providing an alternative to self-attention with sub-
quadratic complexity spawned its own burgeoning research 
field [61, 62].

6.2  Near‑term Quantum Self‑attention Mechanisms

In hopes of improving this quadratic scaling, and since atten-
tion layers have become so successful as key components 

Attention(Q,K,V) = softmax

�
QKT

√
d

�
V ,

in state-of-the-art models for NLP tasks, various quantum 
approaches have been suggested. This section focuses on 
near-term quantum circuit designs.

A quantum self-attention network called QSANN is 
implemented by [63], who claim it is the first of these. By 
mapping encoded feature vectors into a high-dimensional 
Hilbert space using a quantum circuit, QSANN aims to 
extract correlations that are intractable classically. For an 
illustration see Fig. 14. First they construct an encoder cir-
cuit to load classical feature vectors onto an n-qubit quantum 
state; they use one classical feature vector for each token 
in the input sequence. The number of qubits n is a hyper-
parameter that should be adjusted as relevant to available 
hardware. Next they apply parametrized quantum circuits, 
with identical gate layouts but different parameter values in 
order to compute the query, key, and value vectors for each 
classical feature vector. The circuit layout is illustrated in 

Fig. 14  The Quantum Self-Attention Neural Network (QSANN) 
architecture proposed in [63]. The network features various consecu-
tive self-attention layers. At the (l − 1) st layer, the classical feature 
vectors y(l−1)

k
 are encoded into a high-dimensional qubit state space 

(circuits boxed in purple). The process is repeated three times. Then 
parametrized ansatze, with gate layout as in Fig. 15, representing the 
query, key, and value transformations are applied (circuits boxed in 
red). The resulting states are measured and various expectation values 
are computed to produce the classical query, key, and value vectors. 
These are sent to a classical device for processing, where weights 
are computed using a Gaussian kernel and the results are averaged to 
obtain final attention coefficients

Fig. 15  Parametrized ansatz implementing the query, key, and value 
transformations in [63]’s QSANN
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Fig. 15. At this stage the query, key, and value vectors are 
encoded as quantum states, so measurements must be made 
in order to extract useful information; the resulting query 
and key are the expectation values of the Pauli-Z operators 
applied to the first qubit of the resulting states, and the value 
is a vector of expectation values of various Pauli operators. 
Attention scores are then computed on a classical device 
as a weighted average of the output values. Interestingly, 
[63] introduce a Gaussian kernel to compute the weights 
on the values vector; they claim the Gaussian kernel can 
more easily correlate quantum states with little overlap, 
which is needed, e.g., if two tokens are closely related in 
a sentence but their quantum state embeddings happen to 
be distant in the qubit state space. The proposal of [63] still 
requires quadratic classical computation, and its main source 
of quantum advantage relies on using efficiently processing 
vectors in high-dimensional Hilbert space to unearth hidden 
relationships between embedded tokens.

The work of [64] builds on these ideas, seeking quan-
tum advantage in the same vein. By introducing various sets 
of ancilla qubits, the authors obviate the need to perform 
intermediate measurements during the attention compu-
tation. (This could be thought of as a more sophisticated 
example of the ancilla readout qubits pattern used in the 
QPOSTR design of Sect. 2.) In this modality, query, key, 
and value quantum state-vectors are computed by applying 
parametrized ansatze and swapping onto ancilla registers 
sequentially, as shown in Fig. 16. Compatibility between 
query and keys is computed by a Quantum Logical Similar-
ity (QLS) module, which is implemented as a sequence of 
Toffoli and CNOT gates, as shown in Fig. 17. This is a key 
step: it computes the overlap between query on keys directly 
on the quantum device, thereby improving on [63].

While these two proposals address quantum self-attention 
mechanisms in QNLP directly, [65] proposes one for use 
in Vision Transformers for image classification, seeking 
quantum advantage in reducing the computational cost of 
the scaled dot-product attention calculation. Concretely, the 
authors introduce so-called orthogonal layers to compute 
compatibility scores between query and keys on the quantum 
hardware; these layers efficiently implement parametrized 
transformations on encoded feature vectors, as described in 
Fig. 18. The main novelty here is that [65] use the unary 
encoding circuit to encode token feature vectors into the 
Hamming weight-1 subspace of the qubit state space. This 
encoding is advantageous because their orthogonal lay-
ers preserve the subspace, and they can be used to com-
pute dot-products between query and keys in logarithmic 
time, assuming quantum gates can be applied in parallel. 
[65] report preliminary results from simulation, and with a 
6-qubit quantum processor.

Fig. 16  The Quantum Self-Attention Network (QSAN) introduced 
in [64]. This architecture uses ancilla qubits to hold intermediate 
results and proposes computing the attention coefficients entirely on 
the quantum processor, obviating the need for intermediate measure-
ments. In addition, it features a slicing operation to reduce the num-
ber of measurements required

Fig. 17  The Quantum Logic Similarity (QLS) module proposed in 
[64], implemented as a sequence of Toffoli and CNOT gates

Fig. 18  Computational complexity of the dot-product compatibility 
between query and keys using circuits with parallel two-qubit gates as 
proposed by [65]’s quantum Vision Transformer
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6.3  Attention on Fault‑Tolerant Quantum 
Computers

The role of attention in systems like GPT [21] has spurred 
more ambitious proposals, including the recent preprints 
of [66] and [67], which describe large-scale versions of 
full transformer-inspired processes on fault-tolerant error-
correcting quantum computers. [67] use quantum signal 
processing and singular value transformation techniques to 
apply a polynomial approximate softmax, whereas [66], like 
[64], replace softmax with a linear quantum alternative.

A main challenge for such proposals remains quantum 
I/O, which these papers acknowledge, but do not solve 
explicitly. To extract all the weights from a matrix stored 
in a quantum state would typically require many more shots 
than there are weights. A smaller alternative is to output 
token indices directly. A natural NISQ-inspired suggestion is 
to adapt the token index generation approaches from Sect. 5 
to transformer prototypes. While adding a token-generation 
head may be useful for circumventing I/O issues, the com-
plexity and depth of the remaining bodies of the circuits in 
these proposals puts practical implementations beyond the 
NISQ era.

A quantum decoder, for optimized search through a much 
larger space of long proposed token sequences, is proposed 
by [68], which casts the problem as probabilistically branch-
ing tree-search, which is mathematically equivalent to proba-
bilistic grammar parsing. Even though the hardware capabil-
ities for such quantum operations are still some years away, 
this connects optimizations in sequence generation from 
today’s softmaxed probabilities, with traditional syntactic 
approaches to language modeling, which we discuss next.

7  Syntactic Parsing and Logical Forms

The use of general AI techniques such as RNNs and attention 
has fueled much recent success with NLP, partly because it 
has enabled much cross-fertilization between language and 
other kinds of data such as images, audio, and graphs. There 
are also more traditional NLP techniques, based on gram-
matical structures found particularly in human language.

Natural languages (and artificial programming lan-
guages) express many structured relationships that go 
beyond proximity in a sequence model. For example, in 
the sentence “Kim kicked the ball into the goal from half-
way down the pitch, right past the goalkeeper, and scored”, 
the grammatical structure of English enables us to infer 
easily that the person who scored is Kim, in spite of there 
being 16 words (including 4 other nouns) in between the 
noun Kim and the verb scored. Language grammar and 
syntax studies how these relationships are expressed and 

structured in different languages, and this field powerfully 
influenced much of theoretical and computational linguis-
tics during the second-half of the 20th century, particularly 
through the work of [69, 70]. In such a framework, syntax 
is the central generative system, on which other aspects of 
language like phonology and semantics depend [71, Ch 5].

During the 21st century, the reliance of NLP techniques 
on grammatical rules has declined. This is partly due to 
the success of statistical and machine-learned models that 
share methods with other data-intensive areas of AI, and 
perhaps because the increasing preponderance of informal 
text created on smartphones immediately contradicts any 
assumption that the input to an NLP system should con-
sist of distinct grammatical sentences. In computational 
terms, best-performing parsing algorithms have included 
the CYK-parser which is worst-case O(n3) , while the more 
general attention mechanism discussed in the previous sec-
tion has a baseline O(n2) performance, which robustly ena-
bles more resources to be targeted at important long-range 
relationships. Hence in most large-scale NLP systems 
today, a grammatical parser is not an explicit component: 
and with the challenge of reducing computational costs 
below quadratic, there would need to be a strong reason 
for requiring the extra burden of a cubic computing step 
for any large-scale model. When grammatical parsing is 
discussed, it is often as a historical challenge that LLMs 
can solve quite effectively, not a contemporary challenge 
for building language models in the first place [72].

However, the use of grammatical parsers has been re-
introduced in parts of quantum NLP, motivated especially 
by a mathematical correspondence between the compo-
sitional rules of tensors and categorial grammars dem-
onstrated by [5]. This framework is implemented in the 
lambeq system of [73] which is particularly designed 
for quantum computers [9]. In this system, a grammati-
cal parser prepares a parse-tree from a sentence, which is 
structurally mapped to a tensor network which is compiled 
into a quantum circuit: so the quantum circuit encodes the 
grammatical dependencies of the sentence, assuming its 
input data consists of uniquely-parsed sentences.

The parsing problem itself is also an interesting chal-
lenge for quantum computing, for combinatoric reasons. 
Computationally, the problem can be phrased as taking a 
list of words as input, and returning a parse-tree, which is 
a data structure saying how the elements of the sentence 
are grouped together, and what grammatical role they play. 
The two possible tree-structures for a 3-word sentence are 
shown in Fig. 19. For the simple case of a 3-word sen-
tence, there are only 2 possible trees, one for the structure 
[[A B] C] and one for the structure [A [B C]] . For a 4-word 
sentence, the five possible trees are are shown in Fig. 20. 
The number of possible parse trees for a sentence of length 
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n grows exponentially and is given by the Catalan number 

Cn =
1

n+1

(
2n

n

)
.

Ideally, a parser will find an exact parse that accounts 
for the role of each constituent in the sentence, represented 
by a single tree-structure. Grammatical rules such as “A 
sentence in English can be made of a noun phrase subject 
followed by a verb phrase” can be represented as recipes 
like S → (NP, VP) , and a probabilistic phrase-structure 
grammar (PCFG) may include many such rules, along with 
probabilities or weights learned from training data. Various 
methods for parsing exist, relying on dynamic programming 
and probabilistic techniques [46, Ch 17]. Multiple parses are 
often possible, because (for example) prepositional phrases 
may attach in various locations. The goal is to find the parse 
tree that maximizes the overall probability of the parse, com-
puted from the combined probability of all the rules used in 
derivation.

The depiction in Fig. 20 emphasizes the parsing prob-
lem as a combinatoric challenge. The search for a best parse 

looks like a kind of minimal spanning tree problem, which 
might be formulated as an Ising model, amenable to quan-
tum optimization [74], if the weights or costs for visiting 
each node could be derived from the PCFG.

However, a key challenge with the parsing problem is 
that we start with labels only for the leaf nodes, and until 
there is some hypothesis for the which internal nodes repre-
sent which syntactic chunks, there are no estimates for the 
weights on internal links. (This is part of the motivation for 
the use of dynamic programming in classical parsers.) Com-
binatorically, the problem is not exactly to find a minimum 
spanning tree, because internal nodes that do not correspond 
to distinct grammatical phrases or constituents do not need 
to be visited. (Moreover, the initial graph is directed: this 
precludes solutions where the leaf nodes are all visited by 
a zigzag path along the bottom, because upward steps are 
forbidden.)

Hence, quantum parsing does not appear to fit one of the 
known techniques of quantum combinatorial optimization, 
but the problems are tantalizingly similar, and we hope this 
framing of the challenge helps the language parsing problem 
to capture the interest of quantum researchers.

One potential benefit of quantum parsing is that a quan-
tum system may represent more nuanced proposals than just 
returning a single best parse, or even a classical mixture 
(estimated probability distribution over different discrete 
parse proposals). Rather than insisting that all language 
inputs must pass a parsing test before being processed, a 
syntactic parser that exchanges quantum information with 
semantic components in parallel may become a different 
kind of asset in more parallel architectures.

In another interesting combination of quantum mathe-
matics and natural language syntax, it has been shown that 
tensor product networks can encode grammatical structure 
more effectively than LSTMs for generating image cap-
tions [75]. Tensor product networks have also been used to 
construct an attention mechanism from which grammatical 
structure can be recovered by unbinding role-filler tensor 
compositions [76].

8  Facts and Language Generation

Throughout its history, quantum theory has motivated new 
insights on probability and randomness, how the potential 
and actual are related, and this has led to proposed models 
for various aspects of human behavior and consciousness 
[77, 78]. Rapid advancements in customer-facing AI sys-
tems, particularly conversational dialog systems supported 
by large language models (LLMs), have raised many ques-
tions about how such systems should be built and used, 
what should be expected of them, and about whether they 
exhibit conscious behavior. This section discusses some of 

Fig. 19  The simplest nontrivial tree-parsing challenge is to distin-
guish between the two distinct branching options for a tree with 3 leaf 
nodes. S = Sentence, N = Nouns, V = Verb, D = Determiner, P = 
Phrase

Fig. 20  The five possible binary-branching trees over a 4-item 
sequence, each of which can be constructed by deleting unwanted 
branches and nodes from the connected lattice-graph in the center
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the concerns and work in this area, including how quantum 
theory addresses the difference between hypothetical and 
actual reality.

One of the key complaints about current LLMs is their 
propensity to hallucinate, or produce sentences with factu-
ally false information that still correctly adhere to gram-
matical rules. While this behavior is in line with what gen-
erative models are statistically designed to do, in practice 
it goes against the public expectation of the AI agent as 
an all-knowing oracle, especially when manifested as an 
interactive, question-answering chat interface. Thus, several 
lines of research have emerged to address the usability issues 
caused by hallucination. In this section, we first review some 
of these research directions, and then take a step back to see 
how quantum computing relates to the philosophical issues 
that arise in understanding and using LLMs.

Two prominent realms of research are chain-of-thought 
(CoT) prompting and retrieval augmented generation (RAG). 
CoT, while often used in the context of complex reasoning 
tasks [79], is believed to produce more self-consistent results 
and indeed can be improved by explicitly encouraging self-
consistency [80]. However, in the setting of factuality, errors 
early in the chain may yield incorrect results even with con-
sistent reasoning later in the chain, and the explanation of 
reasoning provided by the chain may not be correct [81].

Factual grounding via RAG may avoid some issues still 
present in CoT, often at the cost of either additional training 
or larger number of inferences. RAG can be largely classed 
into two paradigms, a priori and post-hoc, though there 
is not reason that these techniques could not be combined 
or even performed iteratively in a loop. A priori RAG is 
explored in [82, 83] using learned embeddings stored in a 
database and accessed with a learned neural retriever. Scal-
ing up the database and shrinking the language model is 
explored by [84], matching state-of-the-art performance 
and illustrating that the world knowledge of a LLM is more 
separable from its linguistic ability than previously demon-
strated. Together, this line of work suggests separability and 
knowledge base scaling as one possible path forward for uti-
lizing word embeddings to reduce hallucination. While these 
a priori methods show promise, they modify the generation 
pipeline and require additional training.

Post-hoc text editing methods [85–87] are seeing interest 
for use with LLMs in part due to the resources required to 
even fine-tune modern LLMs, let alone pre-train them from 
scratch. For example, [88] uses the abilities of pre-trained 
language models and existing information retrieval systems 
to edit and verify generated text, but requires running several 
rounds of inference on the base LLM. This trades off a zero 
fixed cost of using a pre-trained model for a higher variable 
cost of inference.

In such paradigms, one natural place where quantum com-
puting has potential to enhance performance is in accessing 

and designing the knowledge base. Grover’s algorithm [89] 
yields a quadratic speedup over classical methods for search-
ing a database, and hence forms the backbone of quantum 
information retrieval systems [90]. Going one step further, 
[91] propose using Grover’s search to inform the design of 
the database itself, and specifically target vector databases as 
the intended application. However, they do not directly com-
pare the quadratic speedup with the complexities achievable 
by using efficient classical data structures, and a potential 
interesting direction in this area is the question of how (if 
possible) to design a practical hybrid knowledge base that 
combines the best of both classical and quantum processing.

Although techniques such as retrieval-based and knowl-
edge-based generation are a new area in the present-day con-
text of fixing LLMs, methods such as that of [84] hearken 
back to an older class of designs where the facts are stored 
in a knowledge base, and the language model is effectively 
a source of templates, not of facts. The spotlight on lan-
guage generation in the past few years has refocused work 
on such methods, and how best to combine them with LLMs 
[92]. For example, in Fig. 21, a knowledge base is used to 
find the variable that satisfies the question “When was J.S. 
Bach born?” (the answer being “1685”), and then a language 
model is used to express this as the sentence “J.S. Bach was 
born in the year 1685.” (A standard early use of such designs 
was in mail merging, where a template for a message is com-
bined with a list of different names to generate personalized 
messages.) Such a language model can just as easily gener-
ate the sentence “J.S. Bach was born in 1985”, not because 
it’s hallucinating, but because it’s working correctly with a 
different knowledge base.

More generally, probabilistic language models are 
designed to note that Wednesday and Thursday are similar, 
and so having seen the phrase “Let’s meet on Wednesday”, 
the model should judge the phrase “Let’s meet on Thursday” 
to be similarly plausible. Saying that such a probabilistic 
model “hallucinates” when it generates an untrue sentence 
reflects a fundamental misunderstanding of probabilistic 
models. Sampling from a probabilistic model is like rolling 
dice: if we previously observe a 3 and the dice-roll gives 
a 4, the dice aren’t hallucinating a 4 instead of the “true” 
value of 3. The problem lies in the assumption that plausible 

Fig. 21  A traditional division of responsibilities between a knowledge 
base and a language model that cooperate in generating the answer 
“J.S. Bach was born in 1685.”
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probabilistic samples of language should correspond to facts 
at all.

The assumption that language expertise and factual reli-
ability should go together is easy to make, especially since 
a significant amount of actual knowledge is conveyed both 
explicitly and implicitly through writing. In the phrase “Dave 
beat John”, we might ask “Which Dave and which John?” 
before assessing its truthfulness: but sometimes words take 
on fixed unique meanings in particular situations, so that 
if someone says “Caesar beat Pompey”, we automatically 
assume they mean two particular people from the 1st century 
BC, and if they said “Pompey beat Caesar”, that would be 
considered untrue. However, speaking strictly in the sense 
of language modelling, a model that also generates “Pompey 
beat Caesar” sometimes as well as “Caesar beat Pompey”, is 
arguably better, because it generates a more comprehensive 
variety of perfectly fluent and plausible sentences.

The practice of generating text from just a language 
model was popularized by successful machine translation 
systems [58]. With machine translation, it makes sense that 
the system is not responsible for factual accuracy, because 
this is the user’s responsibility. In concrete terms, a correct 
translation of “J.S. Bach was born in 1985” from English 
to German might be “J.S. Bach wurde 1985 geboren”, not 
“Input error: prompt contains factual inaccuracy.” Gradually 
models such as GPT demonstrated that a whole range of 
prompts, not just translation targets, could elicit plausible 
and fluent responses [21]. The Chomskian program claimed 
grammatical fluency as the heart of language decades ago: 
today, we are seeing that this fluency is another aspect of 
human behavior that computers can mimic effectively; and 
the ability to assemble erudite text has become one of the 
most impressively-solved parts of AI, sometimes leading to 
problems elsewhere.

Quantum theory intersects with these topics even more 
fundamentally, by explicitly distinguishing the possible from 
the actual. A quantum circuit has many possible outcomes 
that could be observed, but only one outcome is observed 
when measured: and this fixes the hypothetical situation so 
that the same outcome is observed next time. A multiplicity 
of possibilities can become a single fixed event [93]. Formal 
similarities between this process and language ambiguity 
were noted by [94], and the quantum economic theory of 
[95] is based on the use of quantum information to model 
beliefs about values, and classical information to model 
amounts of money agreed in fixed transactions.

The problem of distinguishing things that might happen 
from things that do happen was behind some of the contro-
versies of early classical mechanics. Leibniz discussed the 
notion of possible worlds, and maintained that there must be 
a rational necessity behind (God’s) choosing this world [96]. 
Newton’s belief in absolute space implied a fixed zero-point 
or origin, and Leibniz argued that this implied that God must 

have made an arbitrary choice without a necessary reason, 
which was unacceptable [97]. Such considerations of neces-
sity vs. contingency and their relationship to past, present, and 
future in time, go back at least to the famous sea-fight discus-
sion in Aristotle’s De Interpretatione [98].

The notion that there are different possible worlds where 
a macroscopic event did or did not happen, that one of those 
worlds is chosen based on a small local decision, and this pos-
sible world thus becomes the actual world, was thrust into the 
limelight by quantum mechanics. The implication of super-
position and large-scale randomness was troubling to Einstein 
(“God does not play dice!”) and Schrödinger, whose famous 
paradoxical cat was designed to illustrate the absurdity of 
quantum mechanics in large-scale reality, where “the working 
of an organism requires exact physical laws” [99]. By contrast, 
Bohr and Heisenberg supported the Copenhagen Interpreta-
tion, where the wave-function represents real possibilities, and 
“the transition from the “possible” to the “actual” takes place 
during the act of observation" [93, Ch 3].

Some of the challenges inherent in large stochastic prob-
lems, like weather forecasting, are thus philosophically related 
to key questions of how one possible future is selected and 
becomes the past. Quantum mechanics does not completely 
answer this question, but it does better than classical mechan-
ics, where the assumption of a deterministic universe avoids 
the problem. Heisenberg’s analysis of where different uncer-
tainties come from, and how we should think about them, has 
useful insights including “This probability function represents 
a mixture of two things, partly a fact and partly our knowledge 
of a fact"  [93, Ch 3]. This does not tell us how to fix language 
models, but it is a good reminder that our ways of stating and 
communicating facts are entirely human. Practically, it helps 
to understand probabilistic language models as generators of 
hypothetical utterances, rather than factual statements, and the 
generative nature of language models is precisely what ena-
bles them to go smoothly from data they encountered to data 
they might just as well have encountered. In a sense, a large 
language generator is a kind of hypothesis-generator with the 
gift of the gab. Language models do this task very well, but 
this should never have convinced us that a model will generate 
truthful language without an independent source of knowl-
edge. With these considerations, quantum theory has some 
insight on potential solutions to improve language modeling 
systems, and at least guards against mistakes that arise from 
over-deploying hypothesis-generation systems without suitable 
observation processes.

9  Conclusion

We have taken a whirlwind tour of the state of quantum 
NLP, seeing the potential and limitations of using quantum 
computers for understanding language. While we recognize 
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this overview, like any other, cannot be fully comprehensive, 
we hope that it is nonetheless useful for both the theoretician 
and practitioner alike.

We reviewed fundamentals of gate-based quantum com-
puting, and from here moved into understanding how these 
low-level structures and concepts can be used to efficiently 
encode basic units of language, i.e. text. From there, we built 
into progressively higher-level concepts, roughly following 
the hierarchy found in classical NLP.

Through this journey, we have seen how the current scale 
of applications for quantum NLP on actual hardware has not 
yet matched that of classical computing techniques. How-
ever, quantum methods being developed at the small scale 
show promise for use on intermediate scale problems as 
hardware continues progressing, and quantum models that 
have been shown to be more expressive than their analogous 
classical counterparts hold potential at large scales.

In the meantime, methods from quantum theory continue 
to inform AI. During the 2010 s, vectors and tensors became 
a common mathematical toolset permeating AI, and the 
adaptation of tensor network methods for scalability con-
tinues this theme. We have especially focused on the topical 
problems that current classical LLMs face. Here, quantum 
theory has much philosophical guidance to offer on the 
issues of assessing factuality and sequential inference.
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