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Abstract
Active learning (AL) algorithms are increasingly being used to train models with limited data for annotation tasks. However, 
the selection of data for AL is a complex issue due to the restricted information on unseen data. To tackle this problem, a 
technique we refer to as Partial Image Active Annotation (PIAA) employs the edge information of unseen images as prior 
knowledge to gauge uncertainty. This uncertainty is determined by examining the divergence and entropy in model predic-
tions across edges. The resulting measure is then applied to choose superpixels from input images for active annotation. We 
demonstrate the effectiveness of PIAA in multi-class Optical Coherence Tomography (OCT) segmentation tasks, attaining 
a Dice score comparable to state-of-the-art OCT segmentation algorithms trained with extensive annotated data. Concur-
rently, we successfully reduce annotation label costs to 12%, 2.3%, and 3%, respectively, across three publicly accessible 
datasets (Duke, AROI, and UMN).
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1  Introduction

In recent years, Deep Learning (DL) based methods have 
achieved considerable success in medical image segmenta-
tion [1]. However, their progress has often been constrained 
as they require large datasets. AL has the potential to sig-
nificantly enhance the efficiency of any intelligent diagnos-
tic system such as [2] by mitigating the need for extensive 
annotation efforts, as evidenced in previous studies [3, 4]. 
For example, ophthalmologists use the segmentation of ocu-
lar OCT images for diagnosis, and treatment of eye diseases 
such as Diabetic Retinopathy (DR) and Diabetic Macular 
Edema (DME) [5, 6]. Labeling medical image data for AL is 
a time-consuming and expensive process as domain experts 
are required to annotate them manually. In this study, we 
primarily rely on data derived from OCT. This technology 
has gained significant popularity in the field of ophthalmol-
ogy imaging due to its effectiveness. OCT employs the use 

of light waves, enabling it to generate high-definition, cross-
sectional visuals of the internal structures of the eyes.

In ophthalmology, OCT is used to diagnose and monitor 
conditions such as macular degeneration, diabetic retinopa-
thy, and glaucoma. OCT images can provide detailed infor-
mation about the thickness and integrity of retinal layers, 
the presence of fluid or swelling, and the size and shape 
of optic nerve structures. To observe the development and 
changes in retinal layers, the presence of fluid or swelling, 
and the size and shape of optic nerve structures during the 
treatment phase, doctors annotate the images. This allows 
them to easily track how the retinal layers change over the 
course of treatment.

AL can serve as a beneficial tool in the realm of medi-
cal image segmentation. It has the potential to alleviate the 
extensive effort required for annotation by leveraging the 
model to obtain annotations for image regions where the 
model exhibits high confidence. Conversely, in instances 
where the model demonstrates lower confidence, experts 
can contribute by providing more ground truth data [3]. In 
practice, expert annotation of large-scale medical image 
databases is highly laborious, resource-intensive, and often 
infeasible.

In response to this challenge, we propose PIAA, a region-
based AL technique. This technique, which trains over time 
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using a minimal amount of annotated regions, aids oph-
thalmologists by generating OCT segments. The PIAA 
framework capitalizes on the prediction uncertainty across 
the boundaries of the semantic regions of input images, 
informing the end user about the segmentation areas it is 
confident about and of those it is not. The end user only 
accepts segmentation output from the confident areas while 
providing feedback to the model on less confident areas. 
The model learns based on this feedback, and as a result, its 
performance improves over time. Edge information is one of 
the image’s most salient features, and it can boost segmenta-
tion accuracy when integrated into neural model training [7]. 
We formulate a novel acquisition function that leverages the 
variance of the predicted score across the gradient surface 
of the input to measure uncertainty.

Empirical results show that PIAA outperforms other 
state-of-the-art AL methods in three OCT image datasets. 
This paper is an extended version of EdgeAL [8], offering 
additional experimental results, illustrations, and practical 
use cases to provide a more comprehensive elaboration of 
the methodology, experiments, and results of the algorithm. 
The extended content is presented to enhance the under-
standing of the algorithm’s capabilities and use cases.

2 � Related work

Active learning is applied to a variety of tasks, including 
natural language processing, computer vision, and reinforce-
ment learning, and it is expected to play a major role in 
the development of interactive machine learning methods. 
It is a cost-effective method that selects the most informa-
tive samples for annotation to improve model performance 
based on uncertainty [9], data distribution [10], expected 
model change [11], and other criteria [12]. A simpler way 
to define uncertainty is to use the posterior probability of 
the predictions, e.g., to select an instance with the least con-
fident posterior probability [9, 13] or the margin between 
posterior probabilities for different predicted class [14, 15]. 
Some methods [16, 17] use the entropy of class posterior 
as an uncertainty measure. These methods are often used 
in conjunction with sampling-based strategies to estimate 
model uncertainty which is based on the inconsistency of 
predictions [3, 12, 18].

In the context of active learning, when dealing with a pool 
of unlabeled data, there are primarily three major strategies 
that can be employed to select the next batch of data that 
needs to be labeled. These strategies include uncertainty-
based approaches, distribution-based approaches, and meth-
ods based on expected model change [19].

In the uncertainty-based approach, the learning algorithm 
seeks out samples that carry the highest degree of prediction 
uncertainty. This can be gauged by measuring the posterior 

probability of a predicted class [13, 20]. The fundamental 
belief underpinning this approach is that these samples, 
once they have been labeled, hold the potential to provide 
the most critical information that can enhance the learning 
capacity of the model.

The distribution-based approach in active learning is 
centered on the selection of data points that embody the 
entire distribution of an unlabeled data pool. The underlying 
premise of this approach is that learning from a representa-
tive subset of the data can yield results that are as competi-
tive as learning from the entire data pool. This approach 
can be implemented in several ways. For instance, Nguyen 
and Smeulders [21] employ a clustering algorithm to parti-
tion the data pool, thereby facilitating the identification of 
representative data points. Alternatively, Yang et al. [22], 
Guo [23] and Elhamifar et al. [24] formulate the selection 
of a representative subset as a discrete optimization prob-
lem, thus ensuring the selection of the most informative data 
points. Another approach, as proposed by [25, 26], involves 
evaluating the proximity of a data point to its surrounding 
data points, thereby selecting data points that can effectively 
propagate knowledge across the dataset. These methods, 
therefore, ensure the selection of the most representative 
and informative data points for model training, thereby opti-
mizing the active learning process.

The technique of the expected model change is a more 
advanced and decision-theoretic strategy for model enhance-
ment. This technique utilizes the existing model to predict 
the expected length of the gradient [27], anticipated future 
errors [28], or predicted changes in output [29] for all poten-
tial labels. These strategies, initially designed for use with 
smaller models and datasets, can be assessed for their effi-
ciency when applied to larger deep networks [30, 31] and 
extensive datasets [32].

The approach based on uncertainty [13, 33] has shown 
robust results for classification tasks. However, it requires 
a task-specific design for other tasks as it leverages net-
work outputs. In a more general approach, Gal et al. [34] 
achieves uncertainty estimates via multiple forward passes 
using Monte Carlo Dropout. Although this method has been 
validated with small-scale classification tasks, it is compu-
tationally demanding for recent large-scale learning due to 
the need for dense dropout layers, which significantly slow 
down the convergence rate. Beluch et al. [35] proposes an 
ensemble method that consists of 5 deep networks to measure 
uncertainty through disagreement. While it has demonstrated 
cutting-edge classification performance, it is not efficient in 
terms of memory and computation for large-scale challenges.

Many AL methods are adopted for segmentation tasks 
[14, 36, 37]. Gorriz et al. [36] propose an AL framework 
Melanoma segmentation by extending Cost-Effective Active 
Learning (CEAL) [38] algorithm where complimentary 
samples of both high and low confidence are selected for 
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annotation. Mackowiak et al. [37] use a region-based selec-
tion approach and estimate model uncertainty using MC 
dropout to reduce human-annotation cost. Nath et al. [14] 
propose an ensemble-based method where multiple AL 
frameworks are jointly optimized, and a query-by-committee 
approach is adopted for sample selection. These methods 
overlook the incorporation of prior information, such as the 
structure of the image, edge details, and morphological data, 
in their uncertainty estimation process. Authors in [39] pro-
pose an AL framework for multi-view datasets [40] segmen-
tation task where model uncertainty is estimated based on 
Kullback–Leibler divergence (KL-divergence) of posterior 
probability distributions for a disjoint subset of prior features 
such as depth, and camera position.

However, this viewpoint information is not always read-
ily available in medical imaging, and even when it is, it may 
not make a significant difference. This is largely due to the 
static positioning of most medical imaging devices, which 
limits the variability and potential impact of different view-
points. We leverage edge information as a prior for AL sam-
pling based on previous studies where edge information has 
improved the performance of segmentation tasks [7]. To the 
best of our knowledge, while numerous classical computer 
vision research studies have demonstrated that edge detec-
tion methods can be utilized for segmentation [41], there has 
not yet been any exploration of using image edges as an a 
priori in active learning.

Moreover, there is not sufficient research other than [42] 
related to Active Learning for OCT segmentation. The pro-
posed approach in [42] requires foundation models [31] to be 

pre-trained on large-scale datasets in similar domains, which 
can be infeasible to collect due to data privacy. On the other 
hand, our method requires only few samples ( ∼ 2% of the 
usual subset) for initial training, overcoming the limitation 
of the need for a large dataset.

3 � Methodology

Figure 1 illustrates our active learning method which com-
prises four key phases. First, we initiate network training 
using a subset of labeled images, typically a small fraction of 
the entire dataset (e.g., 2%). Next, we calculate uncertainty 
metrics for both individual input instances and specific input 
regions, and using this information we make choices regard-
ing which superpixels to annotate, and we acquire annota-
tions through a simulated oracle.

3.1 � Segmentation Network

At first, we train our OCT semantic segmentation model by 
selecting a small, random subset of labeled data Ds , which 
is used as the seed set. The remainder of the labeled data is 
used to simulate an Oracle. For our primary architecture, 
we use Y-net-gen-ffc (YN*), and we choose not to initialize 
it with pre-trained weights due to its documented superior 
performance [5].

Y-Net is composed of two distinct encoder branches: the 
spatial encoder for convolutional blocks and the spectral 
encoder to integrate fast Fourier convolutional (FFC) blocks 

Fig. 1   Workflow of our algorithm. Given OCT images, by using 
Monte-Carlo simulation our algorithm first computes the edge 
entropy (EE) and edge divergence (ED) maps of the outputs of the 
segmentation model. Based on these maps, it calculates the overlaps 

between superpixels and recommends the annotation regions. The 
algorithm then utilizes the recommended region to guide the annota-
tion process, with the annotation being stored for future trainings
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[43]. The decoding process is handled by a single decoder 
architecture, which takes the spatial and spectral features 
extracted by the encoder networks as input and generates 
the segmentation map. Similar to the architectural design 
of U-Net [44], Y-Net follows an autoencoder-based struc-
ture, incorporating skip connections that link spatial encoder 
blocks with decoder blocks. The function of the spectral 
encoder is to identify and handle global features originat-
ing from the frequency domain, which could be overlooked 
when depending exclusively on spatial convolutions.

Moreover, we also train DeepLabv3 and U-net models 
with ResNet and MobileNetv2 as encoder backbone for abla-
tion experiments. For these models, we conduct experiments 
with ImageNet [32] and Kaiming [45] weight initialization.

3.2 � Computing Prediction Uncertainity

PIAA aims to enhance the model’s performance by actively 
querying uncertain regions within unlabeled data Du following 
its training on an initial dataset Ds . These uncertain regions 
are believed to be particularly valuable for further training. To 
achieve this goal, we introduce a novel edge-based uncertainty 
measurement strategy. This approach involves the computa-
tion of two key metrics: the edge entropy score and the edge 
divergence score. They are utilized to assess the prediction 
ambiguity associated with the edges between layers in the 
OCT images. Figure 2 provides visual examples of input 

OCT data along with the measured edge entropy and edge 
KL-divergence corresponding to the input.

3.2.1 � Edge Entropy Score

Analyzing the edges of raw OCT (Optical Coherence Tomog-
raphy) inputs can provide crucial insights into image features 
and texture. While these edges may appear noisy at first glance, 
they serve as a concise representation of all the alterations 
present in an image. The Sobel operator, as detailed in [7], is a 
suitable tool for detecting edges in the input image. Let’s define 
the normalized absolute value of edges in an image Ii of size 
(M, N) as Si . In this context, |∇Ii| represents the absolute gradi-
ent, and Si is calculated using the following equation:

min(|∇Ii|) and max(|∇Ii|) represent the minimum and 
maximum values, respectively, within the absolute gradient 
matrix |∇Ii|.

Additionally, to assess the probability that each pixel in 
an image belongs to a specific class denoted as c, we rely 
on the network’s output, represented as P(m,n)

i
(c) . To intro-

duce uncertainty into our observations, we adopt a Monte 
Carlo (MC) dropout simulation method as outlined in [34]. 
This involves averaging predictions over |D| occurrences. 
Consequently, an MC probability distribution indicates the 
likelihood of a pixel at position (m, n) in the image Ii belong-
ing to class c, where C represents the set of segmentation 
classes. During the neural network evaluation phase, we run 
MC dropouts |D| times and measure P(m,n)

i
(c) using Eq. (1):

Following [46], we apply contextual calibration on P(m,n)

i
(c) 

by Si to prioritize significant input surface variations. Now, 
Si is linked with a probability distribution, with �(m,n)

i
(c) hav-

ing information about the edges of input. This formulation 
makes our implementation unique from other active learning 
methods in image segmentation.

We name �m,n

i
(c) as contextual probability and define our 

edge entropy by following the entropy formula of [17].

S
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(a) OCT (b) Entropy map

(c) Divergence map (d) Annotation area

Fig. 2   Illustrations of an instance of a an OCT slice along with its 
associated b edge entropy map, c edge divergence map, and d desig-
nated query region by our PIAA method. These visual representations 
highlight a notable observation: the right side of the OCT slice exhib-
its reduced clarity in retinal layer separation lines. This diminished 
clarity could potentially account for the model’s heightened uncer-
tainty within that specific region
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3.2.2 � Edge Divergence Score

In regions with pronounced edges or gradients, the edge 
entropy metric signifies the extent of inconsistency in the 
network’s predictions for each individual pixel in the input. 
Nevertheless, it is imperative to quantify the extent of this 
uncertainty. To achieve this, we employ the concept of KL-
divergence to quantify the dissimilarity between P(m,n)

i
 and 

�
(m,n)

i
 for a specific pixel located at coordinates (m, n) within 

an input image. This approach is based on the concept of 
self-knowledge distillation within the context of Ii [47]. The 
edge divergence score, denoted as ED(m,n)

i
, can be formally 

defined using Eqs.  1 and 2 as follows:

Here DKL

(
P
(m,n)

i
||�(m,n)

i

)
 quantifies the distinction between 

the model’s predictive probability and the contextual prob-
ability for pixels belonging to the edges of the input (Fig. 2).

3.3 � Superpixel Selection

Clinical images often have a sparse representation, and the 
critical or relevant information is localized in a small portion 
of the image. This characteristic can be particularly advanta-
geous for active learning-based annotations allowing experts 
to concentrate on the most informative areas [37]. We use a 
traditional segmentation technique, SEEDS [48], to leverage 
the local structure from images for finding superpixels. Anno-
tating superpixels and regions for active learning may be more 
beneficial to the user than annotating the entire picture [37].

We calculate the mean edge entropy EEr
i
 and mean edge 

divergence EDd
i
 for a certain area r within a superpixel. 

These can be expressed as follows:

Here, |r| represents the number of pixels within the super-
pixel region.

We use regional entropy to identify the optimal super-
pixel for our selection strategy, selecting the one with the 
highest value based on [39].

Following [39], we identify a subset of superpixels in the 
dataset with a 50% overlap, forming a set, R. We choose the 

ED
(m,n)

i
= DKL

(
P
(m,n)

i
||�(m,n)

i

)

(4)EEr
i
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∑
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(5)EDr
i
=

1

|r|
∑

(m,n)∈r

ED
(m,n)

i

(6)(i, r) = argmax
(j,s)

EEs
j

superpixels with the largest edge divergence to determine 
the ultimate query (sample) for annotation:

After each selection, we remove the chosen superpixels from 
set R. This selection process continues until we have selected 
a total of K superpixels from set R.

In the edge case, when gradients are absent in the image, 
edge divergence ( ED(m,n)

i
 ) is assigned constant for every 

pixel, as the contextual probability ( �(m,n)

i
 ) becomes the 

same as the original probability ( P(m,n)

i
 ). This results in 

edge divergence being zero for every pixel. However, edge 
entropy ( EE(m,n)

i
 ) is calculated based on calibrated probabil-

ity ( �(m,n)

i
 ), which is basically P(m,n)

i
.

During the process of query selection, we initially arrange 
superpixels based on edge entropy ( EEs

j
 ). From this set of 

superpixels, we select the one with the highest edge diver-
gence ( EDs

j
 ). In cases where all divergence values are the 

same (zero), the selection of queries is determined randomly 
based on divergence values. Nevertheless, since the initial 
criterion for superpixel selection was the order of EEs

j
 , the 

entropy of a superpixel becomes the decisive factor in query 
selection criteria. If edges are present in the image, the query 
criteria are determined by edge divergence. On the other 
hand, in the absence of edges, the criteria shift to the entropy 
of the model MC output, P(m,n)

i
.

3.4 � Simulated Labeling (Oracle)

A simulated annotator is used to label the ground truth for 
our active learning system. This virtual annotator is known 
as the oracle, and it has access to all of the ground truth 
label information, as illustrated in Fig. 1. Upon obtaining the 
selected superpixel maps described in Sect. 3.3, we acquire 
the corresponding ground truth information for those regions 
from the oracle. At each active iteration labeled data set 
expands with the annotated data and the unlabeled data 
set shrinks. In each active learning iteration, the model is 
freshly trained on the updated dataset.

4 � Experiments and Results

In this section, we give a comprehensive overview of the 
datasets and architectures utilized in our experiments. Then, 
we present our extensive experimental results and compare 
them with results from other state-of-the-art methods to 
illustrate the effectiveness of our approach. We compare our 
AL method with nine other well-established active learning 
strategies: softmax margin (MAR) [15], softmax confidence 
(CONF) [38], MC dropout entropy (MCDR) [34], softmax 

(7)(p, q) = argmax
(j,s)∈R

{
EDs

j
| (j, s) ∩ (i, r);(i, r) ∈ Du)}
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entropy (ENT)[17], cost-effective active learning (CEAL), 
core-set selection (CORESET) [49, 36], and regional MC 
dropout entropy (RMCDR) [37], maximum representations 
(MAXRPR) [50], and random selection (Random).

4.1 � Datasets and Networks

To evaluate the performance of our method, PIAA, we 
conduct experiments on three OCT segmentation datasets: 

Table 1   Results from a fivefold 
cross-validation (mean Dice 
scores ± standard deviation) 
for the PIAA and other active 
learning techniques method on 
the Duke dataset for the YN* 
segmentation Model

The bold font indicates the highest performance of the corresponding method
Notably, PIAA outperforms other methods, achieving 99% performance of the model trained on a fully 
labeled dataset while utilizing only 12% of the annotated data

GT(%) 2% 12% 22% 33% 43% 100%

RMCDR 0.40 ± 0.05 0.44 ± 0.04 0.63 ± 0.05 0.58 ± 0.07 0.70 ± 0.03 0.82 ± 0.03
CEAL 0.40 ± 0.05 0.54 ± 0.04 0.54 ± 0.04 0.55 ± 0.06 0.79 ± 0.03 0.82 ± 0.03
CORESET 0.38 ± 0.04 0.44 ± 0.05 0.62 ± 0.04 0.57 ± 0.04 0.69 ± 0.03 0.82 ± 0.03
PIAA 0.40 ± 0.05 0.82 ± 0.03 0.83 ± 0.03 0.81 ± 0.04 0.83 ± 0.02 0.82 ± 0.02
MAR 0.40 ± 0.09 0.44 ± 0.03 0.58 ± 0.04 0.67 ± 0.03 0.70 ± 0.04 0.83 ± 0.02
MAXRPR 0.41 ± 0.04 0.54 ± 0.09 0.67 ± 0.07 0.61 ± 0.03 0.80 ± 0.04 0.83 ± 0.02
CONF 0.40 ± 0.05 0.44 ± 0.05 0.58 ± 0.03 0.66 ± 0.05 0.70 ± 0.02 0.82 ± 0.03
ENT 0.40 ± 0.05 0.44 ± 0.04 0.58 ± 0.03 0.66 ± 0.03 0.68 ± 0.04 0.83 ± 0.03
MCDR 0.40 ± 0.05 0.45 ± 0.03 0.65 ± 0.02 0.62 ± 0.05 0.70 ± 0.01 0.83 ± 0.03
P100 0.82 ± 0.02 0.82 ± 0.02 0.82 ± 0.02 0.82 ± 0.02 0.82 ± 0.02 0.82 ± 0.02
P99 0.81 ± 0.02 0.81 ± 0.02 0.81 ± 0.02 0.81 ± 0.02 0.81 ± 0.02 0.81 ± 0.02
Random 0.40 ± 0.05 0.63 ± 0.03 0.75 ± 0.04 0.70 ± 0.04 0.78 ± 0.04 0.82 ± 0.02

Table 2   Overview of the test 
performance (average Dice 
score) is achieved by different 
active learning algorithms when 
they are combined with various 
deep learning architectures

The bold font indicates the highest performance of the corresponding method
These architectures include models with pre-trained weights and those trained with only 12% of actively 
selected data from the Duke dataset. The reported results (average value ± standard deviation) are obtained 
by averaging the outcomes from two separate runs with different random seeds. The superscript ’r’ cor-
responds to ResNet, ’m’corresponds to MobileNet version 3 as the backbone, and ’†’ signifies that the 
networks are initialized with pre-trained weights sourced from ImageNet [32]

Arch p100 PIAA CEAL CORESET RMCDR MAXRPR

YN*[5] 0.83 ± 0.02 0.83 ± 0.01 0.52 ± 0.01 0.45 ± 0.02 0.44 ± 0.01 0.56 ± 0.01
YN [5] 0.82 ± 0.02 0.81 ± 0.02 0.48 ± 0.01 0.47 ± 0.02 0.45 ± 0.01 0.53 ± 0.01
UN[31] 0.79 ± 0.02 0.80 ± 0.01 0.39 ± 0.01 0.48 ± 0.02 0.63 ± 0.01 0.51 ± 0.01
DP-V3r 0.74 ± 0.04 0.74 ± 0.02 0.62 ± 0.01 0.49 ± 0.01 0.57 ± 0.01 0.61 ± 0.01
DP-V3m 0.61 ± 0.01 0.61 ± 0.01 0.28 ± 0.02 0.25 ± 0.01 0.59 ± 0.02 0.51 ± 0.01
DP-V3r,† 0.78 ± 0.01 0.79 ± 0.01 0.29 ± 0.01 0.68 ± 0.01 0.68 ± 0.01 0.73 ± 0.01
DP-V3m,† 0.78 ± 0.01 0.79 ± 0.01 0.18 ± 0.01 0.57 ± 0.01  0.79 ± 0.02 0.75 ± 0.02

Fig. 3   The performance of the segmentation model (YN*) is indi-
cated by the mean Dice score. PIAA and various other active learn-
ing (AL) methods are compared to baseline results across the Duke, 

AROI, and UNM datasets. The solid and dashed lines respectively 
denote 100% and 99% performance scores of the YN* when trained 
with the entire labeled dataset
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Duke [51], AROI [52], and UMN [53]. The Duke dataset 
consists of 100 B-scans obtained from 10 different patients, 
the AROI dataset contains 1136 B-scans from 24 patients, 
and the UMN dataset comprises 725 OCT B-scans from 29 
patients. Notably, the segmentation task in these datasets 
involves classifying into nine, eight, and two distinct seg-
mentation classes in Duke, AROI, and UMN, respectively, 
encompassing various fluid and retinal layers. In accord-
ance with established conventions and dataset guidelines, 
we adhere to a 60:20:20 train-test-validation split for the 
experiments, ensuring that data from a single patient is not 
mixed across these splits.

Furthermore, for uniformity and compatibility with 
our experimental setup, we resize all images and their 

Fig. 4   Sample OCT (Duke) test images, along with manually anno-
tated ground truth segmentation maps and our prediction results. 
The corresponding predictions are generated after training the model 
(YN*) using only 12% of the available samples

Table 3   The fivefold test result of the YN* segmentation model trained on 12% actively selected data (Duke) using different active learning 
methods (rows)

The bold font indicates the highest performance of the corresponding method
The columns represent the performance of different retinal layers and fluid layers. (Mean±sd) are calculated based on the five-fold test perfor-
mances. p100 indicates the state-of-the-art test performance while the model is trained on the complete train set. From the table, we can con-
clude that PIAA has superior and consistent performance in fivefold cross-validation

Method Above/below ILM NFL-IPL INL OPL ONL-ISM ISE OS-RPE Fluid Overall

MAXRPR 0.82±0.08 0.12± 0.24 0.22±0.27 0.33±0.15 0.01±0.01 0.78±0.06 0.66±0.17 0.00±0.00 0.03±0.04 0.54± 0.09
MCDR 0.81±0.09 0.63±0.07 0.28±0.1 0.0±0.15 0.22±0.05 0.81±0.05 0.42±0.06 0.78±0.04 0.08±0.07 0.45±0.03
CORESET 0.77±0.10 0.67±0.04 0.23±0.08 0.0±0.00 0.21±0.23 0.82±0.05 0.45±0.09 0.75± 0.05 0.07±0.06 0.44± 0.05
CEAL 0.85±0.04 0.72±0.05 0.4±0.15 0.31±0.18 0.11±0.16 0.76±0.11 0.67±0.14 0.77±0.03 0.25±0.09 0.54± 0.04
MAR 0.72±0.10 0.67±0.08 0.2±0.06 0.00±0.00 0.14±0.12 0.76±0.10 0.48±0.13 0.77±0.05 0.24±0.05 0.44±0.05
ENT 0.73± 0.10 0.66±0.09 0.21±0.06 0.00±0.00 0.12±0.08 0.77 ±0.09 0.50±0.10 0.76±0.05 0.24±0.07 0.44±0.04
CONF 0.72±0.11 0.65± 0.09 0.21±0.08 0.00±0.00 0.15±0.11 0.76±0.09 0.48±0.12 0.77±0.05 0.23±0.09 0.44±0.05
RMCDR 0.70±0.07 0.68±0.05 0.18±0.04 0.00±0.00 0.35±0.19 0.77±0.10 0.42±0.16 0.75 ±0.06 0.07±0.05 0.44± 0.04
Random 0.98±0.01 0.60±0.70 0.78±0.04 0.61±0.05 0.05±0.05 0.84±0.05 0.72±0.06 0.79±0.03 0.28±0.12 0.63± 0.03
PIAA 1.00±0.00 0.86±0.01 0.89±0.02 0.78±0.03 0.73±0.04 0.88±0.03 0.86±0.02 0.83±0.03 0.57±0.06 0.82±0.03
p100 0.99±0.00 0.86±0.01 0.87±0.02 0.71±0.11 0.71±0.06 0.86±0.06 0.85± 0.02 0.83±0.02 0.43±0.20 0.82± 0.02

Table 4   The class-wise (columns) performance comparison between different active learning methods (rows) on AROI dataset when YN* model 
is trained on 3% actively selected data

The bold font indicates the highest performance of the corresponding method
Each method is trained on two random seeds, and mean Dice scores and standard deviations are reported. Columns (2–9) report the prediction 
results of 8 different retinal layers and fluid layers, and Column 10 (Overall) is the average score. Results show that with 3% of actively selected 
annotations, only our method (PIAA) achieves full training (p100) performance

Method/class Above ILM ILM-IPL/INL IPL/INL-RPE RPE-BM Under BM PED SRF IRF Overall

MAXRPR 1.00± 0.00 0.91± 0.01 0.85± 0.00 0.11± 0.15 0.97± 0.01 0.01± 0.01 0.31± 0.08 0.98± 0.00 0.64± 0.01
MCDR 0.98± 0.02 0.91± 0.00 0.88± 0.01 0.11± 0.03 0.98± 0.00 0.18± 0.24 0.21± 0.14 0.92± 0.09 0.65± 0.04
CORESET 1.00± 0.00 0.93± 0.01 0.90± 0.01 0.09± 0.03 0.98± 0.00 0.43± 0.01 0.37± 0.00 0.92± 0.00 0.70± 0.00
CEAL 0.99± 0.00 0.90± 0.01 0.86± 0.00 0.26± 0.18 0.98± 0.00 0.29± 0.29 0.37± 0.00 0.95± 0.04 0.70± 0.01
MAR. 0.99± 0.00 0.88± 0.02 0.87± 0.01 0.34± 0.20 0.98± 0.00 0.23± 0.19 0.37± 0.00 0.86± 0.17 0.69± 0.03
CONF 0.99± 0.00 0.88± 0.05 0.86± 0.04 0.31± 0.22 0.98± 0.00 0.18± 0.06 0.30± 0.10 0.96± 0.00 0.68± 0.02
ENT 0.99± 0.01 0.91± 0.00 0.87± 0.03 0.30± 0.27 0.98± 0.00 0.15± 0.08 0.37± 0.00 0.97± 0.00 0.69± 0.05
RMCDR 0.99± 0.01 0.93± 0.01 0.88± 0.00 0.18± 0.12 0.97± 0.00 0.10± 0.13 0.33± 0.05 0.91± 0.01 0.66± 0.01
Random 1.00± 0.00 0.92± 0.01 0.89± 0.01 0.18± 0.26 0.97± 0.02 0.18± 0.24 0.30± 0.10 0.92± 0.07 0.67± 0.05
PIAA 1.00± 0.00 0.97± 0.00 0.95± 0.00 0.64± 0.01 0.99± 0.00 0.63± 0.03 0.52± 0.00 0.98± 0.00 0.83± 0.01
p100 1.00± 0.00 0.97± 0.00 0.95± 0.00 0.64± 0.01 0.98± 0.00 0.60± 0.06 0.52± 0.01 0.98± 0.00 0.83± 0.00
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corresponding ground truth segmentations to a common res-
olution of 224 × 224 using a Bilinear approximation method.

To assess the robustness and generalizability of PIAA, 
we perform a fivefold cross-validation (CV) specifically on 
the Duke dataset, while taking care not to include data from 
specific patients in the same fold for both training and test 
sets. The results of this fivefold CV analysis are presented 
in Table 1, summarizing the performance outcomes of our 
approach.

We conduct experiments using the Y-net (YN) [5], U-net 
(UN) [31], and DeepLab-V3 (DP-V3) [39] architectures, 
employing both ResNet and MobileNet backbones [31]. The 
results of these experiments are presented in Table 2.

It’s worth noting that we do not utilize any pre-trained 
weights in our experiments, except for the ablation study 
outlined in Table 2. We utilize a mixed loss combining Dice 
and Cross-entropy and employ the Adam optimizer with 
learning rates of 0.005 and a weight decay of 0.0004. The 
training process spans 100 epochs with a maximum batch 
size of 10, which remains consistent throughout all active 
learning iterations. Our hyperparameter settings and evalu-
ation metric (Dice score) are in alignment with those speci-
fied in [5], which serves as the baseline for our experiments.

4.2 � Comparisons

Figure 3 compares the performance of PIAA with other 
contemporary active learning algorithms for image anno-
tation across three datasets. Results show that PIAA out-
performs other methods on all three datasets. By using 
only 12% ( ∼ 8 samples), 2.3% ( ∼ 16 samples), and 3% ( ∼ 14 
samples) labeled data on Duke, AROI, and UNM datasets 
respectively, our method can consistently achieve 99% of 
maximum model performance. Other AL methods, includ-
ing CEAL, RMCDR, CORESET, and MAR, require signifi-
cantly more samples to achieve these performances and their 
performances are not consistent across the three OCT image 
datasets. For a fairer comparison, we report the results using 
the same segmentation network YN* and hyperparameters 
(described in Sect. 3.1) for all the active learning strategies.

Table 1 describes fivefold cross-validation results on the 
Duke dataset. The segmentation results are reported in mean 
Dice scores. We can observe that for all the AL methods 
we achieve similar performance of the segmentation model, 
after training on a 2% seed set. However, on 12% actively 
selected training data, PIAA achieves performance close to 
model training on full data and significantly outperforms 
the other AL approaches. Results in row p100 indicate the 
performance on the testset when the model is trained using 
the complete training dataset. CEAL and MAXRPR could 
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(a) (b) (c)

Fig. 5   Examples of a input images, b ground truth segmenting, and 
c the corresponding query (highlighted white-colored regions) from 
our active learning algorithm. For our method, annotation beyond the 

white region can be skipped during training because the model has 
lower uncertainty in that region. As a result, partial annotation is suf-
ficient for training
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perform similarly after training YN* on 43% of actively 
selected samples.

Additionally, in order to investigate the robustness of 
PIAA independently, we conduct experiments using four 
different network architectures and default weight initiali-
zation methods in PyTorch (LeCun initialization)1 and Ima-
geNet weight initialization. Results in Table 2 show that our 
proposed active learning method consistently outperforms 
other AL methods across different foundation models for 
segmentation. In contrast, other active learning methods like 
RMCDR and MAXRPR exhibit strong performance only 
when applied to pre-trained models Table 2.

Classwise segmentation performance comparison of 
different AL methods for different retinal and fluid layers 
of the Duke, AROI, and UMN datasets are also reported 
in Tables 3, 4 and 5 respectively. For the Duke dataset in 
Table 3, by training the Y-net segmentation model (YN*) 
with 12% actively selected data using PIAA strategy, we 
achieve model performance close to p100 across all the 9 
segmentation classes. The other AL methods achieve sig-
nificant scores for a few classes including ONL-ISM and 
OS-RPE but underperform for the rest of the classes. Similar 
trends are also observed for different retinal and fluid layers 
for the AROI (Table 4) and UMN (Table 5) datasets. Moreo-
ver, Fig. 4 visually demonstrates the outputof the segmenta-
tion model trained using our AL strategy.

To highlight the significance of the partial annotation, 
qualitative examples are described in Fig. 5. Instead of 
requiring the full images to be annotated, our region-based 
active learning strategy, PIAA, finds the partial region that 
is most uncertain and needs to be annotated. Thus reducing 
the annotation effort significantly.

5 � Conclusion

PIAA is a novel active learning technique for OCT image 
segmentation, which accomplished results similar to full 
training with a relatively small amount of data by utiliz-
ing edge information to identify regions of uncertainty. 
By harnessing edge information, our method not only 
minimized the labeling effort but also exhibited signifi-
cant promise in the medical domain where labeled data is 
scarce. The performance of PIAA in OCT segmentation 
suggests that a significant amount of data is not always 
required to learn data distribution in medical imaging.

Furthermore, the reliance on edges as a fundamental 
image characteristic positions PIAA for potential adap-
tation and application in diverse domains with minimal 
model modifications. This adaptability opens up pros-
pects for future research and development, encouraging 

exploration in other classical image processing and 
analysis areas. Our findings suggest that PIAA can sig-
nificantly contribute to future active learning techniques 
for more resource-efficient and effective methods across 
multiple fields.

Our future work in the development of our active learn-
ing framework will focus on enhancing scalability, security, 
and efficiency while maintaining data sovereignty. Maintain-
ing the privacy and security of patient data is paramount. 
To address these concerns, we have planned to implement 
the Minimum Data Transfer Service to anonymize struc-
tured and unstructured data, including medical images. This 
should ensure that no identifiable patient information trans-
fers to any Cloud Computing Services by minimizing train-
ing data, and aligning with data sovereignty requirements.

Storing the entire medical data on the cloud can lead to 
privacy breaches, regulatory non-compliance, data sover-
eignty issues, increased security risks, and higher opera-
tional costs. The proposed PIAA active learning strategy 
will be utilized for selectively identifying and labeling rel-
evant data, minimizing unnecessary data exposure to the 
cloud. Currently, the active learning framework is deployed 
on GPUs with limited power. We plan to transition the 
model training step to the cloud platform. The use of Sover-
eign Cloud may provide additional data protection measures 
compared to standard cloud platforms and could enhance 
trust among healthcare industry partners for the hosting of 
healthcare data in a secure manner. 
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