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Abstract
Research in automated planning traditionally focuses on model-based approaches that often sacrifice expressivity for com-
putational efficiency. For artificial agents that operate in complex environments, however, frequently the agent needs to 
reason about the beliefs of other agents and be capable of handling uncertainty. We present Spectra, a STRIPS-inspired AI 
planner built atop automated reasoning. Our system is expressive, in that we allow for state spaces to be defined as arbitrary 
formulae. Spectra is also designed to be logic-agnostic, as long as an automated reasoner exists that can perform entailment 
and question-answering over it. Spectra can handle environments of unbounded uncertainty; and with certain non-classical 
logics, our system can create plans under epistemic beliefs. We highlight all of these features using the cognitive calculus 
DCC . Lastly, we discuss that under this framework, in order to fully plan under uncertainty, a defeasible (= non-monotonic) 
logic can be used in conjunction with our planner.

1 Introduction

Agents who interact with the physical world often encounter 
uncertainty in the environment. One strategy to deal with 
uncertainty is to capture it in declarative form. For example, 
consider a situation where in the coming days the weather 
will either be rain (R), snow (S), or sunny ( S∗ ). One goal 
that a rational agent might have is to ensure it stays dry 
while outside (D). We can represent the initial state space 
( Γ0 ), with its uncertainty w.r.t. weather conditions, as the 
formula R ∨ S ∨ S∗ . The agent can then attempt to find a plan 
or sequence of actions that takes an agent from Γ0 to a state 
space that satisfies its goal D.

Model-based automated planning has primarily focused 
on environments wherein complete state information is pro-
vided to the agent as a collection of facts. This is standardly 
enabled through the usage of the closed world assumption 
(CWA), which states that any fact not specified in the state 

description is assumed to be false. Model-based conformant 
planning extends this by replacing an individual state with a 
finite collection of states otherwise known as a belief state. 
Each state within the belief state is individually closed under 
CWA. We take this a step further in our work: we allow 
and handle uncertain situations that can be captured by a 
collection of arbitrary (potentially higher-order and modal) 
formulae. This allows us to not only plan over a finite set of 
states, but potentially over an infinite set in the quantified 
case. We allow for the usage of arbitrary theories, such as 
Peano Arithmetic, to consider problems that require complex 
actions to reach the goal. We achieve this by making use of 
automated reasoning within the planning process itself.

Automated planning through reasoning was first investi-
gated by Green [20] in 1981. Work continued throughout the 
early 2000s, where the planning problem was represented 
using the event calculus [11, 30, 31, 43] and/or the situation 
calculus [13, 39, 42]. Model-based approaches, however, 
have gained more traction over the years due to efficient 
implementations such as Fast Downward [23] with strong 
heuristics like delete relaxation [4], lm-cut [24], cost parti-
tioning [26], and potential heuristics [38]. Mikhail and Ryan 
recently developed a planner that makes use of both heuristic 
search and reasoning over the situation calculus [45]. We 
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believe this direction deserves additional attention; however, 
we are primarily concerned with problems that require non-
classical, specifically intensional,1 reasoning. Examples of 
such problems arise in modeling misconceptions of beliefs 
between multiple agents; such modeling must for instance 
require sufficient expressivity to formalize the propositions 
that Agent 1 believes that Agent 2 believes that Agent 1 
believes there is a stack of blocks that are to be unstacked, 
even when no such belief on the part of Agent 2 is veridical.2

In addition, we’re interested in looking beyond deductive 
logics and toward inductive ones to allow for careful treat-
ment of information gathered and its likelihood [8, 9]. For 
example, one might wish to have an artificial agent assign 
a belief derived from perception a higher likelihood than a 
belief derived from agent communication. These are exam-
ples of issues that the relevant non-classical-logic commu-
nity aims to tackle.

We introduce Spectra,3 a planner founded on automated 
reasoning. We designed Spectra to be logic agnostic, allow-
ing one to plug in any logic that has an associated automated 
reasoner capable of determining entailment and question-
answering. This allows the user to model the planning prob-
lem in a logic they’re accustomed to. We showcase Spectra 
with the non-classical, specifically intensional, cognitive 
calculi DCC , a fragment of DCEC (which has been used in 
numerous prior papers and simulations; e.g. [18]). We pro-
vide an example of how Spectra with DCC can solve epis-
temic planning problems. Finally, we discuss how defeasible 
(= non-monotonic) logics can be used in our framework to 
create plans over a large range of uncertain scenarios.

2  Background and Related Work

Model-based automated classical planning can be cap-
tured by a propositional STRIPS model [12]. This is a tuple 
⟨P,O, I,G⟩ where P is a finite set of ground atomic formu-
lae, O is the finite set of operators, I ⊆ P is the initial state, 
and G are the goals. Operators consist of preconditions 
��� ⊆ P , add effects ��� ⊆ P , and delete effects ��� ⊆ P . 

Given a state s ⊆ P , an action is applicable iff ��� ⊆ s . 
After performing an action o on state s, the next state will 
be (s − ���) ∪ ���.

Alternatives to the STRIPS model include but are not 
limited to Functional STRIPS [15], ADL [35], and SAS+ [2]. 
However, often the more compact representation of PDDL 
[21] is used. This allows declarative information to be cap-
tured through predicate logic as opposed to only proposi-
tional logic, along with other features such as conditional 
effects. However, due to the domain-closure assumption, this 
representation can be translated to an equivalent STRIPS 
problem with an exponential blowup of grounded operators 
compared to the lifted ones described with predicate logic. 
When using PDDL, a finite list of object labels Obj are pro-
vided. Formulae may include ∀ and ∃ statements; however, 
these get grounded to their propositional form. The domain-
closure assumption takes all quantifiers and replaces them 
using the truth-functional expansion over the list of object 
labels Obj. That is, ∀x P(x) is equivalent to

and ∃x P(x) is equivalent to

Conformant planning extends the STRIPS model by chang-
ing the initial state I to a finite set of possible initial states, 
often called a belief state in the literature [3]. Actions are 
then applicable at a given belief state b if it is applicable 
for all states s ∈ b . Similarly, a belief state b satisfies a goal 
G iff for all s ∈ b , G ⊆ s . In addition to CWA and domain-
closure assumptions, classical model-based planning also 
carries the unique-name assumption and grounds all actions 
prior to search. This assumption states that for any two dis-
tinct object labels o1, o2 ∈ Obj , they do not refer to the same 
object; i.e., obj(o1) ≠ obj(o2) . Before the search algorithm 
commences, a traditional classical model-based planner 
will ground all actions to their propositional form. Over 
the years, domains have been identified where the size of 
their grounded representations are too large to contain in 
device memory. [22, 28]. An alternate line of research that 
addresses this is lifted planning.

We use a fragment of the Deontic Cognitive Event Cal-
culus ( DCEC ) (see e.g. [7]) in order to showcase our planner 
solving epistemic tasks. DCEC is a quantified, multi-modal,,4 

⋀

o∈Obj

P(o),

⋁

o∈Obj

P(o).

1 As a reminder, extensional logics are marked by the fact that 
semantic values of “inner” parts of formulae compositionally deter-
mine such values for these formulae. Hence if it’s false that a is a 
block, ¬Block(a) , then standard compositionality in first-order logic 
dictates that Block(a) → Block(b) is true. In contrast, despite the 
fact that ¬Block(a) , it could be that Jones believes the opposite, i.e. 
B(j,Block(a)) . Efficient coverage of the fundamental distinction 
between extensional versus intensional logics is given in [14].
2 A traditional “engine” of demands for such intensional expressivity 
from computational logics has been increasingly demanding versions 
of the false-belief task see e.g. [6]; and for apparently the first for-
malization and simulation of the task see [1].
3 Code is available at https:// github. com/ rairl ab/ spect ra.

4 For every substantive cognitive verb in the human case (e.g., 
intends desires, says/communicates, perceives, the epistemic verbs 
(the class most relevant to the present paper), attends to, etc.), the 
approach of which this particular calculus is an example ultimately 
calls for a corresponding modal operator to be present.

https://github.com/rairlab/spectra


KI - Künstliche Intelligenz 

sorted cognitive-event calculus. Our fragment DCC disre-
gards time and treats all timepoints as equivalent. The box 
labeled ‘ DCC Signature’ shows the signature of our frag-
ment. Cognitive operators here are only: Believes, Common-
knowledge, Says, Perceives, and Knows. A sample reading 
of the formula

is “agent a believes that a says to agent b that agent c per-
ceives � .” The formula ∀x ∶ � reads that � holds for all 
bound variables x ranging over the domain of discourse. 
A subset of our inference schemata are shown in the box 
labeled ‘ DCC Inference Schemata (Subset).’

Regarding related work, Soutchanski and Young [45] 
designed an automated planner that also performs a heu-
ristic search guided by automated reasoning. Their work is 
specific to the situation calculus and instead of states, they 
transition over situations which are formulae in the situation 
calculus. The Planning Techniques and Action Languages 
(PLATAS) project integrates planning and the GOLOG 
action language by embedding the planning description lan-
guage PDDL into GOLOG, which uses an extended version 
of the situation calculus [10].5 Our work differs in that our 

B(a,S(a, b,P(c,�)))

system is logic-agnostic, and our state spaces consist of a 
set of arbitrary formulae that may get added to and deleted 
in keeping with performed actions. Answer-set planning, 
recently surveyed in [46], translates planning problems to 
logic problems whose answer sets correspond to solutions 
or plans for the original planning problem. Instead of find-
ing proofs that actions are applicable or that the goal is 
reached, answer-set planners find an answer set or logical 
model that corresponds to a solution. Approaches within 
answer-set planning typically require the grounding of predi-
cates prior to search. For conformant problems, the number 
of states within a belief state may grow exponentially with 
the number of unknown predicates. In our work, it is often 
the case that the state space does not increase in size with 
the number of unknown formulae, since a tautology � ∨ ¬� 
does not need to be included within a state space. Multi-
ple techniques have been introduced to compile conformant 
planning problems into classical planning problems via a 
sound yet incomplete method [33], a complete method for 
a bounded contingent width [34], and a linear translation 
for problems of contingent width 1 [5]. All these methods 
require knowing ahead of time the contingent width of the 
problem, or in other words the maximum number of uncer-
tain state variables that interact through conditional effects.

3  STRIPS‑Inspired Planning over Automated 
Reasoning

Taking inspiration from STRIPS, we model our planning 
problem with actions having addition and deletion effects. 
The main difference is that we’re operating over state spaces 
as opposed to a single state. A planning-with-formulae 
(PwF) problem Π is the tuple ⟨L,A,Γ0,G⟩ where L is some 
logic, A is the set of lifted actions that take an agent from 
one state space to another, Γ0 ⊂ L is the initial state space 
characterized by formulae from the logic, and G ⊂ L is a 
partial state space that represents a goal. Care must be taken 
to ensure that the initial state space is consistent; otherwise, 
for logics including the principle of explosion, the goal will 
be satisfied.

A lifted action a ∈ A is a tuple ⟨� , ���, ���, ���,C⟩ 
where � is a set of variables and ��� a partial state space, 
parameterized by � and required to be be satisfied in order 
for an action to be taken. ��� is the set of formulae, param-
eterized by � , that get added to the state space Γ when the 
action is taken. ��� is the set of formulae, parameterized by 
� , that gets removed from the state space Γ when the action 
is taken. Lastly, C ∈ ℕ is the cost of the action, assumed 
to be 1 if left unspecified. A substitution is a mapping 
from a variable to a term. Let Dom(�) return the domain 
of a substitution � . Then for a given action a, a substitu-
tion � is valid iff it has a mapping for all the variables in 

5 Readers unfamiliar with GOLOG can start with [27]. A number 
of interesting questions arise from comparison of PLATAS with 
our approach, for future analysis and engineering. We mention two 
very briefly: (1) As mentioned in [10], and discussed at some length 
lucidly in the complementary [41], in this line of work it is often 
desirable to consider restrictions in underlying declarative expres-
sivity (e.g. to the PDDL fragment ADL). In contrast, we find such 
restrictions to be in considerable tension with human-level cognition, 
in planning. (2) An inferential backbone of resolution (GOLOG is 
written in Prolog) is in many ways incontestably advantageous, but 
we are guided by the fact that first-rate human deductive reasoning is 
almost invariably carried out in natural deduction, first invented for 
the extensional case in 1935 [16, 25].
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�  within the action. That is, ∀v ∈ �(a), v ∈ Dom(�) . A 
ground action ground(a, �) from an action a and valid sub-
stitution � is the tuple ⟨∅, ���′, ���′, ���′,C⟩ . In this tuple, 
���� = {f� ∣ f ∈ ���} . A similar formulation is defined for 
���′ and ���′ . We denote ag to be an arbitrary grounding 
of an action a. A state space Γ satisfies a partial state space 
� iff Γ ⊢ 𝛾 . A ground action ag is applicable in state space 

Γt iff Γt satisfies ���(ag) . If an applicable ground action 

ag is executed on state space Γt , then the next state space 

is Γt+1 = (Γt − ���(ag)) ∪ ���(ag) . A solution to the PwF 

problem Π is a plan � = (a1,… , an) that takes an agent from 
an initial state space to a state space that satisfies the goal, 
where each ai ∈ � is an applicable action.

There are two key points in this formulation where an 
automated reasoner is crucial; the first is in deciding whether 
or not a given state space Γt satisfies the goal G. This is 
determined as an entailment check by an automated reasoner 

(e.g. Γ
t

?

⊢ G ). Secondly, we rely on the automated reasoner 
to find the set of applicable grounded actions Ag for a given 
action a. This is equivalent to finding the set of substitu-
tions � that when applied to our precondition, the grounded 
precondition holds under the current state space Γt . For an 
arbitrary �i ∈ � , i.e. for all f ∈ ���(a) , we have Γt ⊢ f𝜎i . It 
is possible that the size of � is empty or infinite depending 
on the theory used. If � is empty, then we are unable to apply 
any grounded actions from that particular lifted action. In 
the infinite case, we would need to place a bound on the 
length of � returned by the automated reasoner.

In addition to changes in the planning structure, Spectra 
relaxes a few of the commonly made assumptions in model-
based automated planning. Spectra does not assume CWA, 
domain closure, or the unique-name assumption. Nor does 
Spectra require that all grounded actions are found in the 
beginning portion of the algorithm. Instead, Spectra relies 
on the question-answering algorithm to iteratively find appli-
cable actions.

4  Implementation

Spectra is implemented using the programming language Java 
and it’s source code is available on GitHub (https:// github. com/ 
rairl ab/ spect ra). Similar to model-based automated planners, 
we employ the A∗ search algorithm as our core loop in order 
to find K plans that solve the given PwF problem P. An item 
in our search space � is a tuple ⟨Γt,�⟩ , where Γt is a state 
space and � the plan to get the initial state space Γ0 to Γt . We 
make use of a priority queue Ω consisting of tuples � . Each 
⟨Γt,�⟩ ∈ Ω is assigned a priority h(Γt) + C(�) , where h is the 
heuristic function over state spaces and C the cost function 

over plans. In our current implementation, we assign an unin-
formed heuristic over all state spaces, i.e. ∀Γ, h(Γ) = 0 . Future 
work will include identifying domain-independent heuristics 
that can apply over a wide range of logics. Given an admis-
sible heuristic, the first plan we find will be optimal. However, 
the other generated plans may not be optimal due to duplicate 
pruning. C(�) is the cost of a plan � , which is the sum of the 
cost of all actions within � , i.e.

 
Algorithm 1  A∗ Search Over PwF Problem

The core search procedure is specified in Algorithm 1. We 
perform an A∗ search over the transition space until either no 
more applicable actions can be performed, or the number of 
requested plans have been met. Viewing the core loop from 
the perspective of an arbitrary � = ⟨Γt,�t⟩ ∈ Ω : We first 
check if the current state space Γt satisfies our goal. This is 
equivalent to making a call to an automated reasoner to see 
if Γt ⊢ G . If so, we add �t—the plan to get from Γ0 to Γt—to 
the list of found plans. Then for each lifted action a ∈ A , we 
find the set of applicable ground actions for the state space Γt . 
As described in Sect. 3, we rely on the question-answering 
algorithm of the automated reasoner to find a set � of valid 
substitutions for the given action. If � is non-empty, then for 
each �i ∈ � we ground the lifted action. With each grounded 
action, we compute a new � consisting of our new state space 
Γt+1 and the plan to get from the initial state space to Γt+1 ; i.e. 
� = ⟨Γt+1,�t ∪ {ag}⟩ . This new � gets added to the priority 
queue if Γt+1 has not already been visited.

C(�) =
∑

a∈�

C(a).

https://github.com/rairlab/spectra
https://github.com/rairlab/spectra
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5  Cognitive Planning with DCC

ShadowProver [19] is an automated reasoner over cognitive 
calculi such as DCEC . It is under active development with sup-
port for entailment and enhanced question-answering. Again, 
herein we use the fragment DCC of DCEC in which the num-
ber of cognitive operators are reduced and all timepoints are 
identified. Consider the Grapevine domain from [32]. In this 
problem, a group of agents have a secret they may wish to 
communicate with each other. Agents in this environment can 
move freely between rooms and broadcast to everyone in the 
room their secret. The initial state of this problem specifies 
that agents only know their own secret. One possible goal is 
for an agent to propagate their secrets to a subset of agents. 
Let’s analyze an instance of this problem with n = 3 agents 
and p = 2 rooms. As before, each agent has their own secret, 
and no one except a believes a’s secret. Ignoring type predi-
cates and unique-name axioms, the initial state space can be 
characterized as

The goal for this problem includes three components: 1) 
agent b believes a’s secret; 2) c does not believe a’s secret; 3) 
agent a believes that agent b believes a’s secret. The partial 
state space G is then specified as:

The available actions are: left, right, share-both, 
share-single. We denote p1 as the left room and p2 as the 
right room. For an agent to move left, they must be in the right 
room; vice versa for the right action. For the share-both 
action, all agents must be in the same room. One agent then 
shares their secret, and both agents believe the secret, and the 
agent sharing believes that the other agents believe the secret. 
The action share-single is similar; however, the precon-
dition is that one agent is not in the same room, and that agent 
does not gain a belief about the secret. We provide an example 
of how the share-single action would get encoded in Spectra in 
Fig. 1. Note that in the example we delete the negation of the 
added formulae in order to stay consistent. The Believes! 
keyword denotes the model operator B within DCC , and the 
predicate the represents the secret of the agent specified in its 
parameter. The figure does not provide a complete example, as 
one would need to add type restrictions as well as restrictions 
that all arguments are unique for that lifted action. Requesting 
K = 2 plans from Spectra provides the following two plans:

and

Γ0 = {at(a, p1),¬at(a, p2), at(b, p1),¬at(b, p2), at(c, p1)

¬at(c, p2),B(a, the(a)),B(b, the(b)),B(c, the(c)),

¬B(b, the(a))¬B(c, the(a))}

G = {B(b, the(a)),¬B(c, the(a)),B(a,B(b, the(a)))}

�1 = ((����� a) (����� b) (����������� a b c p2))

6  Planning Under Uncertainty

In the last example, we looked at a problem whose state 
space is equivalent to a single state. In this section, we 
discuss how to move beyond this restriction and consider 
state spaces that represent multiple possible states. This 
is equivalent to planning under uncertainty. To begin, let 
us put aside DCC and consider Spectra using a classical 
first-order-logic reasoner. What we discuss here will eas-
ily extend to the epistemic uncertainty case. So, consider 
the “safe problem” from the conformant planning litera-
ture [36]. In this problem, there is a closed safe and the 
agent has only one correct combination out of a collection 
thereof that can open that safe. At the outset of the prob-
lem, the agent does not know which one of these combina-
tions is correct. Narrowing to an instance of this problem, 
consider two possible combinations c1 and c2 . The initial 
state space of this problem is that one of the two combina-
tions is correct. We can represent that as follows:

There is one available action, try, which takes a combina-
tion and, if it’s correct, opens the safe. The try action is 
shown in Fig. 2. Note that the condition that the combina-
tion is correct is only specified in the addition effect. This is 
because for the action try to be applicable for a given state 
space Γt , all states s ∈ Γt must satisfy the preconditions of 
try. Now imagine that the agent tried both combination c1 
and c2 sequentially from the initial state. The updated state 
space is then:

�2 = ((����� c) (����������� a b c p1)).

Γ0 = {(correct(c1) ∧ ¬correct(c2)) ∨ (¬correct(c1) ∧ correct(c2))}

Γ2 = Γ0 ∪ {correct(c1) → open, correct(c2) → open}

Fig. 1  Share-single action from grapevine
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The alert reader might notice that Γ2 satisfies the goal of 
opening the safe. This can be shown by proof-by-cases on 
the disjunctive formula and applying the appropriate modus 
ponens for each case.

6.1  The Use of Defeasible Reasoning

A challenge arises for our STRIPS-inspired model when we 
want to swap the valuation of an unknown formula � . More 
formally, suppose at a state space Γt that � is unknown; i.e. 
Γt ⊬ 𝜙 and Γt ⊬ ¬𝜙 . Let’s consider that � holds for some 
states s within Γt and denote this set as Γ+

t
 . The parallel, 

assume, holds for the negated case; the set here is Γ−
t
 . Now 

assume that after we execute some applicable action, we 
want ¬� to hold in the next state space for all states in Γ+

t
 , 

and � to hold in the next state space for all states in Γ−
t
 . 

How exactly can we model this? To make the formal chal-
lenge more concrete, consider an alternative to the safe 
problem from before. Three lockers A, B, C appear before 
the agent with a button to toggle whether locker A is locked 
or not. At the initial configuration there are two possibili-
ties, either Γ0,0 = locked(A) ∧ locked(B) ∧ ¬locked(C) or 
Γ0,1 = ¬locked(A) ∧ locked(B) ∧ locked(C) . Therefore, the 
initial state space Γ0 = {Γ0,0 ∨ Γ0,1} . Note from the initial 
state that the agent does not know whether the locker A is 
locked.

Note that in “real life” such epistemic indeterminacy with 
regard to binary conditions of devices and systems is far 
from uncommon. That is, humans are often forced to be 
rationally agnostic belief-wise when faced with wanting to 
know whether or not some system s has property R (i.e., a 
human sometimes must rationally believe neither R(s) nor 
¬R(s) ), while at the same time having the ability to per-
form an action that will cause either R(s) or ¬R(s) to obtain. 
For example, when leaving his home in a rush for a crucial 
engagement, Smith activates the alarm system for it at an 
interior keypad. When he returns home he does not remem-
ber whether he activated the alarm or not. As in our safe 
scenario, his combination applied to an external keypad tog-
gles the system on if off, and off if on, and he doesn’t recall 
what the indicator lights indicate on this external keypad. He 
must remain noncommittal after tapping in the combination, 
and resort to other approaches to relieve his agnosticism.

One approach to tackling the toggle action in the sim-
pler safe challenge, which is better for technical expo-
sition, is to use FOL to have the following effects added 
to the state space: (1) locked(A) → ¬locked(A) and (2) 
¬locked(A) → locked(A) . However, both of these effects 
together yield a contradiction by simple deduction.

To address the problem, we can use defeasible rea-
soning.6 Consider a defeasible logic such as IDCEC 
[9, 17]. The schema in  the   IDCEC Belief Propaga-
tion box shows that beliefs are propagated forward 
in time as long as doing so doesn’t contradict any 
newer beliefs. At the initial state ( t = 0 ), we can rep-
resent the state space as Γ0 = {B(a, 0,Γ0,0 ∨ Γ0,1)} . 
Then for the toggle action we can set the effects to: 
(1) B(a, t, locked(A)) → B(a, t + 1,¬locked(A)) and (2) 
B(a, t,¬locked(A)) → B(a, t + 1, locked(A)) . These formulae 
are no longer contradictory and suitably capture the toggle 
action as the following noncommittal belief is entailed at 
the next time step:

IDCEC Belief Propagation

B (a, t1, φ) Γ B (a, t2, φ) t1 < t2

B (a, t2, φ)
IlPROP

7  Discussion and Conclusion

The extension from states with predicates to state spaces 
with arbitrary formulae catalyzes several challenges. The 
first is that the problem modeler must take care not to intro-
duce any contradictions in the PwF problem. This is an 
issue conveniently absent from the STRIPS model, as the 

B(a, 1, (¬locked(A) ∧ locked(B) ∧ locked(C))∨

(locked(A) ∧ locked(B) ∧ locked(C)))

Fig. 2  Action with Conditional Effect in Spectra

6 We have already indicated that such logics are known also as non-
monotonic logics. As a reminder given for fuller context, deduction is 
monotonic; i.e., if Φ ⊢ 𝜙 (which is to say that � can be proved deduc-
tively from Φ ), then for any formula � , Φ ∪ {𝜓} ⊢ 𝜙 holds. In stark 
contrast, non-monotonic logics, long created and implemented in AI 
(e.g. originally by Reiter and McCarthy [29, 40], with more expres-
sive such logics more recently presented in [9, 37]) are such that new 
declarative information can invalidate what was earlier a valid infer-
ence. It may e.g. be rational to infer from Mr. Smith’s telling you that 
it’s raining that you should believe that it is, and you thus may believe 
it is; but if you then find out that Smith is a pathological liar under 
treatment for his condition, you will now ceteris paribus not believe 
that it’s raining.
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user does not specify any negated predicates (as those are 
assumed via CWA). If contradictions do exist in the PwF 
model, then for many logics, the goal would be satisfied for 
any arbitrary contradictory state space. This is due to explo-
sion, from falsum, anything follows. The second challenge 
is that the computational properties of Spectra are heavily 
reliant on the underlying automated reasoner. For example, 
if the underlying automated reasoner is undecidable for 
entailment and question-answering for a given logic, then 
Spectra will be incomplete. Such undecidability, in human-
level planning, which presumably is a level that must ulti-
mately be reached (or exceeded), is common and irrepress-
ible. Even undergraduate students are routinely required 
to find proofs of formulae in not only first-order logic and 
other more expressive extensional logics (e.g. second-order 
logic), but in quantified modal logics as well. When they are 
tasked with performing actions that reach these goals, they 
are embodying the daunting challenge that, in our planning 
paradigm, Spectra faces.

Of course, this situation gives rise to the question as to 
how, with undecidability having to be part of what our engi-
neering must factor in, performance is assessed/measured. 
In our current implementation, we rely on pragmatic time 
bounds for calls to the automated reasoner. A result returned 
under the bound for a timer is clear success, because that 
bound is set for applications at hand. No result before the 
expiration of the timer is failure, and something else must 
be tried. This approach is none other than what AI founder 
and nobelist Herbert Simon famously introduced under the 
banner “satisficing” as an approach to both human and AI 
planning and deciding (e.g. see [44]).7

Importantly, undecidability does not in any way stop engi-
neering designed to mitigate it. Accordingly, when using 
Spectra with a monotonic logic, we for instance include opti-
mizations to reduce the number of calls to the automated 
reasoner. For example, if we have cached that Γ1 ⊢ 𝜙 , then 
we assume for an arbitrary Γ2 that Γ1 ∪ Γ2 ⊢ 𝜙 . Also, con-
sider we have cached that Γ1 ⊬ 𝜙 . Then for Γ2 ⊆ Γ1 , we 
assume that Γ2 ⊬ 𝜙 . Of course, in addition, predictably, our 
engineering in service of reasoner-based planning in the face 
of undecidability includes making use, whenever possible, 
of automated reasoners for decidable fragments of both first-
order logic and propositional modal logics; details here are 
beyond present scope, but see [19].

Formulae in Spectra are treated strictly syntactically 
when updating state spaces. This is because in general con-
sistency and redundancy checks are (again) undecidable for 
an arbitrary logic. Future work includes adding an additional 
layer which is able to perform quick (potentially incomplete) 

consistency and redundancy checks for a wide range of log-
ics. For example, when deleting A ∧ B , this layer can addi-
tionally check for B ∧ A and delete this. While this may not 
hold for logics in general, a wide class of logics share first-
order semantics, which we can provide a default layering 
over. Additionally, in work described herein, we presented 
an uninformed heuristic h(Γ) = 0 for all state spaces Γ . 
Future work includes investigating heuristics that can hold 
for a wide range of logics.

To briefly recap, we presented Spectra, a logic-agnostic 
AI planner based on automated reasoning. We discussed 
how the extension from states with predicates to state spaces 
with arbitrary formulae enables high-expressivity processing 
and captures uncertainty in the PwF problem. We addition-
ally discussed how using non-classical, intensional reasoners 
such as ShadowProver over DCC allows Spectra to create 
complex cognitive plans, such as ones with epistemic goals. 
Lastly, we discussed how defeasible logics in conjunction 
with Spectra can be used to solve a larger class of conform-
ant planning problems. Future work also includes incorpo-
rating a perception model into Spectra. And the authors are 
particularly interested in using inductive reasoning to cap-
ture the adjudication of competing arguments an agent might 
need to face, as a way to carry out sophisticated defeasible 
reasoning in service of planning.
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