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Abstract
Strong AI—artificial intelligence that is in all respects at least as intelligent as humans—is still out of reach. Current AI 
lacks common sense, that is, it is not able to infer, understand, or explain the hidden processes, forces, and causes behind 
data. Main stream machine learning research on deep artificial neural networks (ANNs) may even be characterized as being 
behavioristic. In contrast, various sources of evidence from cognitive science suggest that human brains engage in the active 
development of compositional generative predictive models (CGPMs) from their self-generated sensorimotor experiences. 
Guided by evolutionarily-shaped inductive learning and information processing biases, they exhibit the tendency to organ-
ize the gathered experiences into event-predictive encodings. Meanwhile, they infer and optimize behavior and attention by 
means of both epistemic- and homeostasis-oriented drives. I argue that AI research should set a stronger focus on learning 
CGPMs of the hidden causes that lead to the registered observations. Endowed with suitable information-processing biases, 
AI may develop that will be able to explain the reality it is confronted with, reason about it, and find adaptive solutions, 
making it Strong AI. Seeing that such Strong AI can be equipped with a mental capacity and computational resources that 
exceed those of humans, the resulting system may have the potential to guide our knowledge, technology, and policies into 
sustainable directions. Clearly, though, Strong AI may also be used to manipulate us even more. Thus, it will be on us to put 
good, far-reaching and long-term, homeostasis-oriented purpose into these machines.

Keywords  Generative predictive models · Compositionality · machine learning · Artificial neural networks · Behaviorism · 
Inductive learning biases · Event-predictive cognition · Causality · Homeostasis · Curiosity

1 � Prolog

Another AI wave is rushing through. An event we have 
seen before in so many disciplines. Starting conditions are 
marked by surprising and partially ground-breaking suc-
cesses, which are pushed by skilled protagonists. The wave 
is fueled by investments and hope for further revenues. Pro-
tagonists and influential companies, having built up their 
infrastructure, team size, and social networks, focus on both 
optimizing the available techniques and selling the currently 
best system approaches. As a result, a large part of the 

available intellectual power narrows down on one subject. 
Meanwhile, this narrowing hinders (often unintentionally) 
deeper innovative progress. Peer reviewing, for example, 
inevitably generates this side-effect.

We have seen and experienced the ceasing power of such 
wave-like events. The endings are typically marked by the 
accumulating evidence that the gained insights—the abilities 
of the system, the method, or the scientific approach—are 
not as deep and profound as originally thought. That is, the 
successful approach has its limits. In the AI community, 
the subsequent time period has been termed ‘AI Winter’, 
namely the event that is characterized by low investments, 
general skepticism, and a focus on other potent computa-
tional approaches. Are we heading in this direction again, 
seeing that the limits of the currently favored end-to-end 
deep learning approaches become acknowledged? Or is there 
potential for a sustainable, AI-supported future?
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2 � Past Reflections

With this discussion article I do not want to downscale the 
great recent achievements of deep learning. Nonetheless, 
it needs to be acknowledged that the exponential growth 
in computational capacity—combined with partially even 
faster exponential growth in data storage volume and net-
work traffic—has enabled much of the recent success. 
Essentially, exponential growth has enabled us to gener-
ate more productive research on deep learning and related 
ANNs [93] because much more experimentation and eval-
uation is now possible with significantly larger networks.

The initial ground-breaker and impulse of the current 
ML wave was generated by Alex Krizhevsky together 
with Ilya Sutskever and senior AI and particularly ANN 
genius Geoffrey Hinton. The network, which is now simply 
referred to as AlexNet, busted the ImageNet competition 
in 2012, yielding a top-5 test error rate of 15.3% , compared 
to 26.3% achieved by the second-best entry. This second-
best entry was still a ‘traditional’ approach, which used a 
weighted sum of scores from various types of pre-defined, 
feature-based classifiers. Over the next few years, the error 
dropped further, now reaching human-competitive or even 
superior top-5 test errors around 2% [86].

Several big bangs followed. Partially human-competi-
tive performance was achieved in Atari games [73] with 
deep networks that develop game-critical feature encod-
ings and consequent state-action mappings solely from 
reward feedback (i.e. the game score). Deep machine 
translation networks started to be applied by Google and 
others, partially outperforming traditional approaches 
and generating reasonable translations—even between 
language pairs that they had not been trained on at all 
[1, 116]. Finally, AlphaZero [101] has learned to play Go 
from scratch simply by playing against itself. It is pro-
vided with the model of the game and learns to identify 
game-critical, substructural patterns, which it uses to 
evaluate likely future game states. AlphaZero may now 
be considered nearly unbeatable by a human player. Even 
StarCraft—a real-time multi agent strategy game that hosts 
championships, whose games are partially broadcasted live 
on national TV in, for example, South Korea—was mas-
tered by AlphaStar [113].

These results are without doubt highly impressive and 
should be considered great achievements in designing 
and training deep neural network architectures end-to-
end. Success is generated by suitably designed network 
architectures, but without any pretraining or modular sys-
tem recombination, and without explicit feature design or 
elaborate data preprocessing. During end-to-end training, 
a predefined loss signal is propagated inversely through 
the feed-forward processing network architecture. Direct 

supervised loss or reward difference signals propagate gra-
dients back onto action outputs and further back towards 
the provided data input, modifying the network’s weight 
parameters along the way. In the tasks in which planning is 
inevitably required, the ML algorithms are endowed with a 
model of the game and the ability to both anticipate future 
game states and to explore those states in a probabilistic, 
goal-oriented manner by means of rapidly exploring ran-
dom tree search [36].

3 � Behaviorstic Machine Learning (BML)

It is possible to draw an analogy between current AI devel-
opments and historical (but partially still ongoing) devel-
opments in psychology: the ‘hype’ of behaviorism. The 
behavioristic movement mainly succeeded because pure 
stimulus-response behavior was scrutinized and psychol-
ogy was established as its own scientific discipline [43]. As 
a result, behaviorism [114] was born and it dominated psy-
chological research in the 20th century [102].

This development may be considered somewhat sur-
prising, seeing that many great psychologists of the time, 
even including William James [53], had assessed that inner 
states in our minds must be responsible for our goal-directed 
actions. Other cognitivists and linguists generated empirical 
evidence and argued accordingly. For example, empirical 
observations of adaptive behavior in rats indicated the latent 
learning of cognitive maps [110]. Later, language learning 
was suggested to proceed much faster than explainable with 
behavioristic theories [21]. Nonetheless, probably due to 
the fact that measurable results were generated easier with 
behavioristic paradigms—such as the infamous Skinner 
Box—than with cognitivist theories, behaviorism main-
tained its dominance over most of the twienth century.

Now entering the third decade of the twenty-first century, 
it seems that deep learning research is partially falling into 
the same trap by focusing their efforts on a paradigm, which 
may be called behavioristic machine learning (BML). When 
comparing these algorithms to approaches and theories in 
computational cognitive science and cognitive psychology 
(cf., e.g. [13, 14, 18, 32, 49, 54, 55]), it soon becomes appar-
ent that current deep learning adheres to reactive, behavior-
istic approaches (cf., e.g. [6, 18, 62, 68]). Inputs are mapped 
onto target outputs, such as classifications, words of a trans-
lated sentence, or actions and reward values, optimizing 
the involved model parameters (i.e. weights in an ANN) to 
maximize target prediction accuracy. As a result, the systems 
act in an either fully reactive or purely reward-oriented man-
ner, that is, they are behavioristic.

BML detects and exploits data regularities. It identifies 
the main tendencies and practices in the status quo, which is 
contained in the available data. Even when designed to solve 
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well-defined games, such as Go, where the ML system does 
look ahead, it only plans within the known data space (i.e. 
the game states and rules) and focuses on one static reward 
function [60]. Thus, even in situations when forward plan-
ning is applied, the ML algorithm only optimizes the best 
possible strategy within the status quo. As recommender 
systems, BML fosters trends and pushes towards main 
stream (including extremist) opinions. It focuses on identi-
fying main data regularities, which may reflect social media 
trends, legislative decision making tendencies, or even cor-
respondences in linguistic expressions. Thus, BML is data 
reflective rather than prospective.

The reflectively identified data regularities are very pow-
erful, nonetheless. As detailed above, BML has shown to tre-
mendously improve, for example, image classification accu-
racy, behavioral decision making in well-defined domains, 
and language translation systems, generating significant 
profit. Additionally, BML is effectively stimulating the 
market, particularly also via personalized advertisements, 
yielding even higher profit. The Zeitgeist seems to suggest: 
let us mine and exploit the data as best as we can, reap the 
profits, and see where this leads us. It is my strong hope that 
we can do better than that.

4 � Strong AI

Related criticism about current deep learning has been raised 
numerous times before (cf., e.g. [6, 23, 60, 68]), albeit not 
directly in relation to behaviorism. Gary Marcus [68] charac-
terized deep learning as overly data hungry with hardly any 
potential for transfer learning or the formation of composi-
tional hierarchical structures. It seems unable to complete 
or infer hidden information, which are elsewhere referred 
to as ‘dark’ causes, that is, the causes that are not directly 
detectable by static visual image analysis [119]. Moreover, 
Marcus emphasizes that deep learning is not sufficiently 
transparent; it is unable to explain its decisions—in fact, it 
does not tend to develop explanatory decisions and is inher-
ently not designed to discern causation from mere correla-
tion. Furthermore, despite the best efforts over the last years, 
deep learning is still easily fooled [74], that is, it remains 
very hard to make any guarantees about how the system will 
behave given data that departs from the training set statistics. 
Finally, because deep learning does not learn causality—or 
generative models of hidden causes—it remains reactive, 
bound by the data it was given to explore [68].

In contrast, brains act proactively and are partially driven 
by endogenous curiosity, that is, an internal, epistemic, 
consistency- and knowledge-gain-oriented drive [7, 78, 
91]. They develop and actively optimize predictive models, 
which attempt to infer the hidden causes that generate the 
accumulating sensorimotor experiences [33, 49, 82]. On an 

intuitive level, it appears that our brains attempt to predic-
tively encode and conceptualize what is going on around us. 
We learn from our actively gathered sensorimotor experi-
ences and form conceptual, loosely hierarchically structured, 
compositional generative predictive models, which I will 
refer to as CGPMs in the remainder of this work. Further 
details on CGPMs can be found in Sect. 4.2, where I scruti-
nize their fundamental functional and computational prop-
erties in the light of the available literature. Importantly, 
CGPMs allow us to reflect on, reason about, anticipate, 
or simply imagine scenes, situations, and developments 
within in a highly flexible, compositional, that is, semanti-
cally meaningful manner.1 As a result, CGPMs enable us 
to actively infer highly flexible and adaptive goal-directed 
behavior under varying circumstances.

Seeing that we are not behavioristic automata, but 
humans, who reason with the help of CGPMs, I would like 
to suggest that AI-oriented research resources should be 
distributed more heterogeneously, instead of focusing them 
on BMLs. Ideally, AI-oriented research programs should 
encourage the development of techniques that promise to 
foster AI that learns to understand structures and interactions 
in our world in a conceptual, compositional manner. Such 
AI could issue, suggest, or recommend flexible and adap-
tive goal-directed actions, which, ideally, should be targeted 
towards a sustainable future. Due to the involved CGPMs, 
this AI should even be able to explain its reasoning behind 
its proposed recommendations. For the sake of brevity, I 
will refer to this kind of AI as Strong AI in the remainder 
of this article.

Strong AI has been used as a term in various disciplines 
and with various foci. In philosophy, John Searl has con-
trasted Strong AI from Weak AI, where the latter is closely 
related to BML [98]. The Chinese Room argument attempts 
to illustrate the main point: even if a machine will pass some-
thing like the Turing Test [111], it may be far from actually 
exhibiting a human like mind including human conscious-
ness [99]. Particularly the qualitative experience of such a 
machine’s ‘life’ will remain that of a symbol-manipulating 
machine. Albeit I am not addressing consciousness or qualia 
in this article, I put forward that the cognitive abilities of a 
Strong AI need to go beyond symbol manipulations.

More recently, Strong AI has been partially used as a 
synonym for high-level machine intelligence, human-level 
AI, or general AI [8, 42]. Partially this goes as far as the 
creation of a machine that is able to perform all imaginable 

1  Please note that I use the term compositional in a sensorimotor-
grounded sense much along the lines of perceptual symbol systems 
[5]. As a consequence, the compositional principles that I am refer-
ring to go beyond syntactic, rule-based, or formal set-based operative 
compositionality [108] because they inherently integrate conceptual 
world knowledge.
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human jobs, including all physical and all mental ones. 
Seeing that I am less concerned with robotics, or particular 
benchmark tests, here, the closest relation to Strong AI, as 
I use the term, may be drawn to Cognitive AI [119]—AI 
that can develop common sense reasoning abilities [23, 
62, 64, 70, 72].

I propose that, in order to develop such Strong AI, 
we need systems that are able to learn CGPMs of their 
encountered environment. With the help of CGPMs and 
suitable inference processes, Strong AI will be able to 
reason about its environment. It will exhibit common 
sense, because it will be able to identify, reason about, 
and explicate causal relations. Moreover, it will be able 
to act upon—or propose actions within—its encountered 
environment in a goal- and value-oriented manner, pursu-
ing both knowledge gain and homeostasis. Clearly, numer-
ous questions on how to create such Strong AI remain 
wide open:

–	 Learning conceptual structures: How may the conceptu-
alizations in CGPMs be learned?

–	 Discerning causality: How can the critical hidden causal 
aspects of the processes and forces behind our observa-
tions be learned?

–	 World-knowledge-grounded compositionality: How can 
learned conceptualizations be combined in seemingly 
infinite compositionally meaningful manners?

–	 Compositional reasoning and decision making: How 
can compositional knowledge structures be used to plan 
ahead in a highly adaptive and flexible goal- or value-
oriented manner?

Before I address these questions in the next section, one pos-
sible concern should be addressed: we humans tend to make 
mistakes, we sometimes develop false beliefs and supersti-
tions, and we often do not succeed in taking all relevant 
factors into account when making decisions (or when opti-
mizing behavior, more generally speaking). Some of these 
failures can be explained by our tendency to develop heuris-
tics and habits, many of which have actually been shown to 
be relatively effective [39, 40]. Other types of failures can-
not be directly related to heuristics-based reasoning. Rather, 
these deficits can be explained by resource limitations in 
our brains, as suggested by the success of resource-rational 
cognitive modeling approaches [65]. This also implies that 
more resources may enable deeper rationality, diminishing 
the present human deficits. Thus, the types of CGPMs that 
we humans are able to learn, as well as the reasoning mecha-
nisms that we use to exploit CGPMs to make good deci-
sions, appear to be very much worth pursuing when aiming 
at developing Strong AI; particularly when this Strong AI is 
equipped with a sufficiently large amount of computational 
resources.

5 � Inductive Learning and Processing Biases

The development of truly intelligent, Strong AI seems to 
be only possible if we employ the right inductive process-
ing and learning biases to enable the learning of CGPMs 
[6, 14, 15, 62]. When considering brain development 
and cognition, it has become obvious that evolution has 
equipped us with numerous such inductive biases to max-
imize our chances of survival on an evolutionary scale 
[24]. Simply put, it appears that evolution has discovered 
that CGPMs enable the pursuance of more social, adap-
tive, versatile, and anticipatory goal-directed behavior 
[16]. From a more cognitive perspective it may be said 
that CGPMs enable us to reason and ask questions in an 
interventional, prospective as well as in a counterfactual, 
memorizing, and consolidating, retrospective manner 
[79, 80]. Furthermore, effective compositionality allows 
us to do so in an analogical, innovative manner, enabling 
zero-shot learning, that is, to act effectively under circum-
stances that are only loosely related to previous situations.

In line with these cognitive science-based suggestions, 
the current deep learning successes essentially also show 
that hard-coded features are typically not as effective as a 
rather open-ended feature processing architecture. Genera-
tive models are extremely hard to pre-structure in a hard-
coded manner. Our world is simply too complex. Instead, 
as Rich Sutton has put it in his thoughts on “The Bitter 
Lesson”: “[...] we should build in only the meta-methods 
that can find and capture this arbitrary complexity. [That 
is,] We want AI agents that can discover like we can, not 
which contain what we have discovered.” [105, p.1]. A 
similar argument can be put forward from a pure opti-
mization perspective: the No-Free-Lunch theorem clearly 
implies that some biases are needed to optimize learning 
in environments that adhere to particular principles, like 
space, time, energy, or matter [12, 115].

Accordingly, I argue that we need to equip our ML sys-
tems with suitable inductive learning and processing biases 
to foster the active construction of CGPMs. More particu-
larly, I will put forward that one important type of inductive 
learning bias may lie in the tendency to construct event-
predictive encodings and abstractions thereof. Moreover, 
the learning systems should be open-ended. Thus, reason-
ing, planning, and behavioral control should incorporate an 
inductive processing bias that maintains a healthy balance 
between epistemic, that is, knowledge gain-oriented, and 
homeostasis-oriented behavior. As a result, experience-
grounded CGPMs will be effectively learned and exploited, 
while exploring and manipulating the encountered environ-
ment. This environment may be our actual world, which may 
be explored with a robot [37, 67] or an agentive system, 
which could also interact with a simulated reality.
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5.1 � Generative Predictive Models

Generative predictive models (GPMs), as characterized in 
this section, are fundamentally different from BML because 
they do not learn conditional classifications or behavioral 
patterns, given data. Rather, they develop joint probabilities, 
generally speaking. Moreover, they should be temporally 
predictive, in that they are attempting to learn the processes 
and forces behind the causes that generated the observable 
data. GPMs should not be confused with Generative Adver-
sarial Networks (GANs). GANs combine an encoder net-
work, the predictor or classifier, with a decoder network, 
which generates data. Although any decoder network may be 
considered to be ‘generative’, GANs are designed to gener-
ate data patterns that challenge the encoder.

GPMs are closely related to predictive coding [83], the 
predictive brain [10, 22], and generative perception [44, 
95, 96]. They are most generally formulated in Karl Fris-
ton’s Free Energy principle [31–33]. In short, the formal-
ism implies that brains attempt to minimize anticipated 
uncertainty about both future sensory impressions and inner 
states, where the latter should not diverge from homeosta-
sis2. More specifically, it implies that brains attempt to (i) 
know what is going on, (ii) learn from experience, and (iii) 
pursue epistemic and homeostasis-oriented behavior: Retro-
spective, rather fast updating of generative model activities 
yields latent state hypotheses about the current—but also 
hypothetical other—states of affairs. Slower adaptive pro-
cesses, which selectively integrate more experience, learn 
and consolidate knowledge by adapting the parameters of 
the developing generative model. Finally, active, prospec-
tive inference triggers motor activities that are believed to 
minimize anticipated future surprises, yielding epistemic, 
goal-oriented behavior [34]. These computational cognitive 
modeling principles also imply that they can be implemented 
in deep ANN architectures [17, 51, 76, 77].

5.2 � Compositional Generative Predictive Models

While GPMs are certainly useful, they are even more power-
ful when they can be learned fast, use little energy-related 
resources, and are maximally suited to generate adaptive 
behavior. Compositional GPMs (i.e., CGPMs), as I refer 
to them here, encode conceptual, hierarchical, causal mod-
els, which enable the recombination of GPM components 
in semantically meaningful, world knowledge-grounded 

manners. Various researchers have emphasized the impor-
tance of compositionality, which is essentially hardly if at 
all developing within current deep learning approaches [6, 
14, 62, 68].

One important ingredient for developing compositional 
structures is a solution to the binding problem [18, 94], that 
is, the problem to flexibly bind features—of whatever kind 
generally speaking—into coherent wholes. This solution 
must be realized by some form of neural dynamics that are 
able to selectively integrate multiple features into a con-
sistent, overall structure. Given that features are encoded 
predictively, the activation of features inherently activates 
predictions of the activities of other features, besides pre-
dictions about actual sensory impressions. As a result, 
coherence in the active structure may be measured by the 
resulting mutual prediction error. Gregor Schöner’s dynamic 
neural field theory mimics such a mechanism: neural com-
petitive dynamics fall into integrative, distributed neural 
attractors, where the activities in the involved modularized 
feature spaces condition each other in a predictive manner 
[88, 97]. In my own group, Fabian Schrodt has shown that 
an effective combination of autoencoder-based GPMs and 
redundant, distributed, population-based feature encodings 
enables Gestalt inference [89, 95]. In this case, the internal 
perspective is adjusted while biological motion features are 
flexibly bound into Gestalt percepts, given that known pat-
terns can be detected.

The compositionality-oriented challenge to generate 
dynamic trajectories, to, for example, learn to both recognize 
and draw letters and other symbols has been considered [61]. 
Seeing that humans are very fast in learning new symbols—
essentially in a one-shot manner—compositional recombina-
tions of dynamic sub-trajectories appear to be at hand [29, 
59, 60]. We have recently shown that a suitably-structured 
recurrent ANN architecture can yield similar compositional 
structures, that is, a sensorimotor-grounded CGPM [28]. All 
of these approaches are essentially able to flexibly bind and 
recombine sub-trajectories, thus enabling one-shot learning 
and innovative, compositional recombinations of, in this 
case, letter sub-trajectories.

For cognition in general, though, more complex com-
ponents need to be compositionally bindable. These 
components may be related to causality, physics, func-
tionality, intentionality, and utility, which have been iden-
tified as five key domains for a Cognitive AI elsewhere 
[119]. Albeit an approximate causal understanding of our 
world lies at the core of cognition, causal learning [11] 
is particularly challenging because it is very difficult to 
distinguish mere correlations from actual causal interac-
tions. Intuitive physics (cf., e.g. [62]) and a functional-
ity-oriented perception (in the sense of affordances [38]) 
characterize entities and potential interactions with and 
between them. When perceiving actual agents, intuitive 

2  Particularly the latter case prevents the system from preferring to 
live in a dark room, where it will inevitably starve at some point. But 
also the former notion generates an epistemic drive toward increasing 
certainty of the state estimates of the (relevant) surrounding environ-
ment.
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psychology comes into play as well. Intentionality needs 
to be inferred to make sense of the behavior of others—a 
concept that is closely related to inverse planning and 
inverse reinforcement learning [3, 47, 87]. Finally, the 
concept of utility needs to be integrated, including moti-
vations of other agents, efforts involved, as well as other 
negative rewards, such as when (potentially) getting 
hurt. All five core domains are termed ‘dark’ [119] in 
the sense that they are not directly observable. Humans 
clearly have a rather good grasp on them and are indeed 
able to combine them in a compositional manner: We 
are able to flexibly bind interacting entities and infer the 
involved hidden causes and forces that determine the enti-
ties’ behaviors. We are even able to infer the knowledge 
and utility-originating intentions of the involved agents 
from a rather young age onwards [2, 41].

Learning CGPMs, which essentially need to be able 
to both develop such conceptual and compositionally 
recombinable components and bind the components in 
goal-directed or value-oriented manners, remains a hard 
nut to crack. To succeed, inductive learning biases appear 
necessary [6, 14] to guide CGPM development. Moreo-
ver, active hypothesis testing, that is, epistemic behavior 
seems necessary to be able to identify actual causality. In 
the remainder of this section, I suggest particular induc-
tive learning and processing biases, which may be very 
useful for developing CGPMs.

5.3 � Critical Inductive Learning and Processing 
Biases

Inductive biases help to bootstrap learning, guiding it in 
the right direction. Evolution clearly has encoded many 
such biases into our genes. Our bodies grow in a very sys-
tematic, predetermined manner. Concurrently, our brain 
grows, forming and continuously consolidating computa-
tional modules in a highly systematic but plastic manner. 
This suggests that developmental ML systems should also 
be endowed with general, inductive learning biases, that 
is, meta-methods, which suitably guide the learning pro-
cess under useful structural assumptions [6, 15].

Accumulating research in cognitive science and related 
disciplines suggests the presence of at least two funda-
mental inductive biases. First, event-predictive inductive 
learning biases foster the development of loosely hierar-
chically structured, event-predictive models [4, 14–16, 
30, 81, 84, 100]. Second, a motivational system maintains 
a healthy but complex balance between epistemic- and 
homeostasis-oriented inductive processing biases [19, 25, 
69, 78, 90, 92].

5.3.1 � Event‑Predictive Inductive Learning Bias

Various strands of research in cognitive science empha-
size that we perceive and act upon our world in the form 
of events [4, 14, 16, 58]. Given our CGPM perspective, 
event-predictive cognition emphasizes that events are flex-
ibly constructed in a compositional manner. Events charac-
terize a static or dynamic situation, in which interactions 
unfold systematically and predictably. They can be typically 
marked by a beginning, and associated constraining condi-
tions, which enable the commencement of an event. They 
are furthermore characterized by typical final conditions, 
which often coincide with a goal and which mark the end of 
an event. A simple example is to grasp a glass and to drink 
out of it. This overall event can be partitioned into a reach, 
a grasp, a suitable transport to the mouth, actually drinking, 
and typically transporting the glass back and releasing it.

While event transitions may be more fluid in many other 
circumstances, it appears that our brain has a strong ten-
dency, that is, an inductive learning bias, to segment and 
compress the continuous stream of sensorimotor experiences 
into event-predictive encodings [16]. Such event encodings 
have been characterized as common codes of actions and 
their effects (Theory of Event Coding, [50]). Moreover, 
they have been characterized as higher-level codes, which 
we utilize to segment and interpret our perceptions, but also 
to guide our actions and thoughts [81, 84, 103, 117, 118]. 
During communication, speakers encode events in utter-
ances. Peter Gärdenfors [35] went as far as explicitly stating 
that “sentences express events” (p. 107), including stative 
events and dynamic events. Events may thus be described 
by a sentence, but they certainly exist independent of the 
particular sentence used to describe them in a conceptual, 
compositional, world-knowledge-grounded format [26, 27, 
52, 56, 57, 71, 112].

I have previously proposed that events consist of spa-
tial-relational encodings of entities and the forces that are 
played out by them and between them over the duration of 
the considered event [14, 15]. The development of such 
predictive encodings can be bootstrapped from our own 
sensorimotor experiences, as suggested by the mirror neu-
ron system [85]. During development, motor commands 
need to be abstracted into conceptual encodings, which 
predict the effects of forces onto our environment. While 
observing the environment then, these encodings enable 
the inference of both the forces and the natural or agentive 
causes, which induced the forces in the first place. In the 
case of agentive causes, additionally, preferences, inten-
tions, and even the knowledge state of the observed agent 
can be inferred [2, 41]. Moreover, the concept of forces 
can generalize away from actual physical ones enabling 
analogical thinking [5, 63]. ‘Social pressure’ or ‘political 
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influence’ are good examples. Meanwhile, the involved 
entities and forces may be characterized and individual-
ized further.

A particular event in our brain is thus imagined by the 
active subset of all available predictive encodings in our 
CGPM. This subset characterizes the event’s properties—
possibly with rather many details about a concrete scene 
or scenario, but in other circumstances possibly also in a 
rather abstract form. Critically, though, the subset needs to 
form a predictive attractor, where the involved—partially 
mutually—predictive encodings form a local free energy 
minimum (that is, simplistically speaking, a local mutual 
prediction error minimum). As a result, the involved 
CGPM components are temporally bound together into a 
dynamic, relational code. For example, when grasping a 
glass in order to drink from it, hand, mouth, glass, their 
(approximate) spatial relation, grasp motions, sensory 
feedback anticipations, fluid expectations, etc. are inte-
grated into such a predictive attractor. Event-predictive 
encodings may thus be viewed as attractors in an interac-
tive network of dependencies.

In order to develop such event-predictive encodings by 
continuously analyzing the sensorimotor stream of envi-
ronmental interactions, I propose that the key inductive 
learning bias is the expectation of temporally stable attrac-
tors, which encode events. Temporal instabilities mark 
transitions between attractors and are harder to predict (cf. 
the early model of Jeff Zacks [117] and related proposi-
tions elsewhere [4, 14, 16, 58, 100]). Measures of surprise 
have been proposed and implemented to quickly identify 
transitions between events, segmenting the stream of infor-
mation and consolidating event codes [20, 45, 117]. Devel-
oping latent codes characterize individual events, predic-
tively encoding typical activities and activity dynamics 
[45, 100] in a semantically-meaningful, compositionally 
recombinable manner. Vector spaces have been recently 
proposed to be well-suited for such encodings [30]. How-
ever, we also find potential in suitably modularized neural 
networks that are endowed with retrospectively inferable 
latent states [17, 51, 104]. Over time, event-predictive 
encodings develop, which predict the characteristic tem-
porally stable dynamics that typically unfold during the 
event as well as conditions for the event to commence, to 
continue to apply, and to end.

Applied at different levels of abstraction and with dif-
ferent sensitivity rates, loosely hierarchically structured 
CGPMs can develop [46]. Note the close relation to the 
options framework in hierarchical reinforcement learning—a 
key aspect of RL that still is somewhat under-appreciated [9, 
106, 107]. I thus propose that event-oriented segmentations 
and retrospective optimizations and consolidations very 
likely offer the inductive learning biases needed to develop 
loosely hierarchically-structured CGPMs.

5.3.2 � Epistemic‑ and Homeostasis‑Oriented Processing

The free energy-based active inference mechanism detailed 
by Karl Friston et al. [34] includes two optimization sum-
mands, which essentially constitute the loss function for 
inferring goal-directed behavior. One of them focuses on 
minimizing expected entropy, that is, uncertainty in the 
anticipated future. The other one aims at pursuing internal 
homeostasis. As a result, behavior is a blend between epis-
temic- and homeostasis-oriented processes, which activate 
actions and action routines in an inverse manner. A good 
balance between the two processes and the maintenance of 
this balance over time is part of this overall inductive pro-
cessing bias towards knowledge gain and homeostasis [34, 
109]. Interactions between the two measures due to expected 
uncertainties seem to be important and clearly observable 
in human behavior, including epistemic top-down attention 
[4, 48, 66].

The hierarchical structures that develop from event-
predictive inductive learning biases enable us to progres-
sively consider and optimize behavior further into the future. 
The epistemic bias will lead to hypothesis testing, that is, 
the focused generation of experiences. Playing in children 
is essentially acted out curiosity in imaginary scenes and 
events. The consequent active development of CGPMs ena-
bles the direct disambiguation of causal influences from 
mere correlative sensory signals. And this curiosity-driven 
process seems to be played-out not only during own experi-
mentation, but also while watching and interacting with oth-
ers. Meanwhile, the homeostasis-driven influences direct 
our attention and behavior to those aspects that are deemed 
relevant, because they are experienced as rewarding. For 
example, social interaction rewards play an important role 
in developing our social competence. As a result, driven 
by epistemic- and homeostasis-driven processing biases, 
CGPMs will emerge that approximate causality and focus 
on the aspects that are deemed relevant for one’s own self.

6 � Final Discussion

In this paper, I have argued that the current AI hype may be 
termed a Behavioristic Machine Learning (BML) wave. It 
is the involved blind, reactive development that I consider 
as unsustainable, even if short-term rewards are generated. 
I have suggested that research efforts should be increased to 
develop Strong AI, that is, artificial systems that are able to 
learn about the processes, forces, and causes underlying the 
perceived data, becoming able to understand and explain 
them. As a precursor, the field should target the develop-
ment of world-knowledge-grounded compositional, genera-
tive predictive models (CGPMs). The development of this 
type of compositionality will be possible if machine learning 
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algorithms are enriched with suitable learning and process-
ing biases. Event-predictive inductive learning as well as 
epistemic- and homeostasis-oriented inductive processing 
may constitute two of these biases.

CGPMs will be immensely important for the develop-
ment of explainable AI, because explanations are about how 
things work in the world, that is, explanations are about cau-
sality. Moreover, CGPMs will be extremely useful to reason 
and plan in a more versatile and adaptive manner. Generally, 
GPMs enable retrospective consolidation, counterfactual and 
hypothetical reasoning and imagination, and prospective, 
interventional thinking [80]. On top of that, a compositional 
GPM structure will enable the application of the gathered 
knowledge under different circumstances, promising to solve 
hard challenges, such as zero-shot learning tasks as well as 
related analogical reasoning and problem solving tasks.

In conclusion, I have put forward that the development 
of CGPMs by means of suitable inductive learning and 
processing biases may pave the way for the development 
of Strong AI. Progress towards Strong AI is currently hin-
dered by a lack of data (about processes and systems), by 
limitations in the available simulation platforms, by hard-
ware constraints in robotics, and by the current BML focus. 
These obstacles will be circumvented earlier if we manage 
to broaden our ML and AI research efforts. Eventually, we 
will witness artificial systems that can reason about their 
actions or action propositions and explain them. Equipped 
with sufficient processing resources, this Strong AI will 
have extremely high potential. On the negative side, it may 
be used in a profit- or power-oriented manner to control 
and manipulate us far beyond current applications [75]—a 
development, which clearly must be avoided. On the positive 
side, it may support and guide us in creating an environment 
that is enjoyable, that satisfies our human as well as other 
species’ needs, and that can be sustained for centuries to 
come. To make this happen, it will be on us to put good, 
far-reaching and long-term, homeostasis-oriented purpose 
into these Strong AI machines [87].
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