
Vol.:(0123456789)1 3

KI - Künstliche Intelligenz (2020) 34:517–522
https://doi.org/10.1007/s13218-020-00685-4

SYSTEMS DESCRIPTION

The AAA ABox Abduction Solver

System Description

Júlia Pukancová1 · Martin Homola1

Received: 29 February 2020 / Accepted: 17 July 2020 / Published online: 25 July 2020
© Gesellschaft für Informatik e.V. and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
AAA is a sound and complete ABox abduction solver based on the Reiter’s MHS algorithm and the Pellet reasoner. It sup-
ports DL expressivity up to SROIQ (i.e., OWL 2). It supports multiple observations, and allows to specify abducibles.

Keywords Description logics · Abduction · Implementation

1 Introduction

Abduction is a specific type of reasoning which explains
why some observation does not follow from the informa-
tion that we already have, i.e., from our knowledge base
(KB). This problem of abduction was originally introduced
by Peirce [19] in 1878. However studying abduction in the
context of ontologies—and hence description logics (DL)—
is relatively new [7]. Applications of abduction in this area
include e.g., ontology debugging [26], system malfunction
diagnosis [14], multimedia interpretation [20], and medical
diagnosis [21].

A number of works studied ABox abduction and focused
on algorithms for computing explanations [1, 3, 4, 6, 8, 9,
11, 12, 16–18, 22, 23].

Notably, multiple works adopted Reiter’s Minimal Hitting
Set (MHS) algorithm [25] exploiting a DL reasoner for sat-
isfiability checking. This was proposed by Halland and Britz
[11, 12], and later extended by Pukancová and Homola [22,
23] and Mrózek et al. [18] who have developed a black box
approach and its proof-of-concept implementation dubbed
the AAA solver1 (AAA stands for ABox Abduction Algo-
rithm) that we describe in this paper.

2 ABox Abduction in Description Logics

Formally speaking, an abduction problem [7] is a pair (K,O)
where K is an ontology (i.e., a DL knowledge base) and
O is a set of axioms called observations. A solution of an
abduction problem is another set of axioms E (also called
explanation) s.t. K ∪ E ⊧ O.

If O and E are assumed to be TBox axioms, we are talk-
ing about TBox abduction. On the other hand, if O and E are
supposed to be ABox assertions, then we deal with ABox
abduction [7].

Our work focuses entirely on ABox abduction, and we
distinguish ABox assertions of several types. Concept asser-
tions are of the form � ∶ � , where � is an individual and � is
a concept name or possibly a complex concept description.
Role assertions are of the form �, � ∶ � , and negated role
assertions of the form �, � ∶ ¬� , where �, � are individuals
and � is a role name. Reflexive role assertions of the forms
�, � ∶ � and �, � ∶ ¬� are called loops.

Given the monotonicity of DLs, the number of possible
explanations is generally too high and must be limited some-
how to make the whole task meaningful. Therefore most
works focus only on (syntactically) minimal explanations,
i.e., such E that there is no other explanation E′ ⊊ E.

This may still yield some undesirable explanations hence
the desired explanations are often further constrained. The
constraints that we assume in our work are that all explana-
tions should be:

1. Consistent: i.e., K ∪ E is consistent;

 * Martin Homola
 homola@fmph.uniba.com

 Júlia Pukancová
 pukancova@fmph.uniba.com

1 Comenius University in Bratislava, Mlynská dolina,
84248 Bratislava, Slovakia 1 http://dai.fmph.uniba .sk/~pukan cova/aaa/.

http://orcid.org/0000-0001-6384-9771
http://crossmark.crossref.org/dialog/?doi=10.1007/s13218-020-00685-4&domain=pdf
http://dai.fmph.uniba.sk/%7epukancova/aaa/

518 KI - Künstliche Intelligenz (2020) 34:517–522

1 3

2. Relevant: i.e., E ̸⊧ O;
3. Explanatory: i.e., K ̸⊧ O.

3 The AAA Solver

Building on ideas of Halland and Britz [11, 12], we have
developed an ABox abduction solver AAA [22, 23] based on
Reiter’s MHS algorithm [25].

Let us first assume an observation O = {O} consisting of a
single ABox assertion. Reiter showed that in order to find an
explanation E s.t. K ∪ E ⊧ {O} it suffices to find a hitting set of
the set of all models of K ∪ {¬O} . The MHS algorithm, which
he also proposed, does this by constructing a so called HS-tree
in which explanations are found as paths from the root to the
leaves. It is often desired to find all (meaningful) explanations
and shorter explanations are preferred, the HS-tree is therefore
constructed using breadth-first search.

The solver takes an advantage of this and allows the search
to be depth-bound, thus allowing to find all explanations up
to a given cardinality. The rest of the HS-tree is cut off. Our
algorithm is complete up to any given depth [23].

As we need to compute the models of K ∪ {¬O} , auxiliary
calls to a DL reasoner are used. The DL reasoner is called
as a black-box, and it is called on-the-fly during the HS-tree
construction. AAA also exploits optimization techniques sug-
gested by Reiter such as model reuse and pruning.

AAA also handles observations O = {O1,… ,O
n
} con-

sisting of a set of ABox assertions. For this case we have
developed two approaches. The first one, so called splitting
approach, computes the explanations for each O

i
∈ O sepa-

rately, which are then combined. The other one, so called
reduction approach, reduces the set of ABox assertions O into
one ABox assertion O′ in such a way, that all the explanations
of O are preserved.

AAA thus supports observations in form of any set of
ABox assertions (including complex concept assertions and
negated role assertions). It supports explanations in form of
sets consisting of atomic and negated atomic concept and
role assertions. The supported DL expressivity for both the
input ontology and the observations is up to SROIQ [13],
i.e., OWL 2 [2].

Since version 0.9 the solver also allows to specify abduci-
bles, i.e., individuals, concept names, and role names to which
the search for explanations is limited. If the user knows before-
hand in which part of the search space they are looking for
explanations, this can greatly reduce the HS-tree size and thus
the overall computation time.

4 Running AAA

Let us consider the following ontology (given in Manchester
syntax) describing family relations, as our input knowledge
base K :

The goal for AAA is to compute explanations for the
observation “Jane is a mother”, i.e., for the observation
O = {���� ∶ ������} . To run the solver, the input file (the
ontology) and the output file must be stated (-i and -out
switches), and the observation is given on the command line
using the -obs switch. There are some additional optional

519KI - Künstliche Intelligenz (2020) 34:517–522

1 3

switches which will be explained below. The example com-
mand line is as follows:

After running the command, AAA computes the explana-
tions and writes the output in the output file. Except some
statistic information, such as computation times for the spe-
cific levels of the run, all the explanations are listed in the
end of the file. An excerpt2 from the output file:

We can see that the solver has found six explanations in
this case.

4.1 Restricting MHS Depth

The switch -d (already used in the example above) allows
to limit the search to specific depth of the HS-tree, i.e., to
search for explanations only up to a given cardinality.

The main reason why the user may want to use this
restriction is because with greater depth, exploring each
consecutive level of the HS-tree becomes exponentially3
more time consuming (as apparent from the time statistics in
the example above). Also, while our algorithm only returns
minimal explanations, even among these, smaller explana-
tions (in terms of cardinality) are often more preferred.

For example, from the six explanations in the listing
above, only the explanations of the size 1 (containing only
one assertion) may be desired. In such a case we modify the
command as follows:

In this case only one explanation is found:

4.2 Avoiding Loops

There are some unintuitive explanations amongst the six
found in the first example run above. Depending on the
domain and the application it may not be desirable to explain
the observed phenomenon by reflexive relations of the form
�, � ∶ � or �, � ∶ ¬� . For instance, in our example we do not
want to explain the observation that Jane is mother by the
explanation that she is a child of herself.

The switch -l enables loops (i.e., reflexive role asser-
tions) which are disallowed by default under the assumption
that users would only rarely look for such explanations. The
following example demonstrates the run of AAA without
loops.

2 All output file excerpts have been modified for readability: prefix
part of IRIs were omitted and syntax of role assertions was rewrit-
ten to match this paper, some of the TIME DETAILS section have
been cut off, and some outputs such as ontology statistics and other
less relevant information has been removed. The shortcuts in TIME
DETAILS are as follows: time—total time in seconds, n—number
of nodes, ta—number of DL reasoner calls, r—reused models, p—
pruned nodes.

3 The MHS problem is NP-complete. Therefore for expressive DLs
the combined worst-case complexity of the solver is “inherited” from
the input ontology. For ALC ontologies it is ExpTime [5], for OWL 2
(i.e., SROIQ) ontologies it is N2ExpTime) [15].

520 KI - Künstliche Intelligenz (2020) 34:517–522

1 3

AAA now disregards loops, hence out of the six original
explanations of the observation O = {���� ∶ ������} , only
four remain:

If loops are undesired they should always be omitted
from the computation as this also reduces the search space
and hence decreases the computation time. This can be also
observed in our example runs above.

4.3 Introducing Abducibles

Another meaningful restriction on the search space is to
restrict the individuals, concepts, and roles that are included
in the explanations only to a certain set, called abducibles.
Especially in bigger ontologies, the user may be specifically
interested only in explanations involving specific entities.

Abducibles can be specified using the switch -abd as
an enumeration of symbols allowed in the explanations. In
the example below, the abducibles are restricted to the indi-
vidual ���� and the concepts ����� , ��� , ������ , and
�����������:

When AAA is run on this input, it returns the follow-
ing output:

As apparent from the example, providing a reasonable
set of abducibles reduces the search space greatly, which
is now limited to all possible (atomic and negated) ABox
assertions that can be constructed from the provided sets
of individuals, concept, and role names. This can signifi-
cantly reduce the computation time—however, the user
must have some prior assumptions as for where to look
for the explanations.

4.4 Multiple Observations

The AAA solver notably allows for observation-sets con-
sisting of multiple assertions. For example, we may want
to find explanations that explain both ���� ∶ ������
and ������ ∶ ����� . We may do so, using the following
command:

521KI - Künstliche Intelligenz (2020) 34:517–522

1 3

Note that in order to avoid nonsensical explanations
with loops (8 in this case), we chose to disable loops. We
obtain the following output:

As mentioned above, AAA supports two different
approaches to enable multiple observations. This run was
obtained by the so called splitting approach (default) in
which the algorithm is run separately for each element
of the observation set, and then the results are combined.
We can see in TIME DETAILS that the solver has indeed
constructed two HS-trees.

Using the switch -r we can enable the so called reduc-
tion approach, which reduces the observation set into a
single ABox assertion and runs the MHS algorithm only
once, on the reduced input. The output for this approach
is as follows:

As we can see, in this case the reduction approach is more
efficient than splitting, but it is not always the case.

5 Implementation Details

The AAA solver is implemented in Java (version 1.8). It
has two main components, the implementation of the MHS
algorithm and a DL reasoner (Pellet [28]) which is being
called by the MHS component for consistency checks and
for model retrieval. The Pellet reasoner calls are tightly
integrated at the source-code level. Pellet is an open source
OWL DL reasoner implemented in Java. We have used Pellet
2.3.1 which is the latest open-source version.

The advantage of using the DL reasoner as a black box, is
that AAA consequently supports the same DL expressivity
as is supported by the DL reasoner. Pellet features full OWL
2 support which means that any OWL 2 ontology may be
used with our algorithm.

In the unrestricted case (when no abducibles are speci-
fied) the solver is able to process a single observation w.r.t.
to the LUBM ontology [10] within seconds (up to depth
2), within minutes (up to depth 3) and within hours (up to
depth 4) [24].

AAA is available for download at: http://dai.fmph.uniba
.sk/~pukan cova/aaa/.

6 Conclusions and Future Work

We have provided an overview of AAA, an ABox abduction
solver for description logics. AAA is sound and complete
up to SROIQ DL (i.e., OWL 2). It is implemented in Java,

http://dai.fmph.uniba.sk/%7epukancova/aaa/
http://dai.fmph.uniba.sk/%7epukancova/aaa/

522 KI - Künstliche Intelligenz (2020) 34:517–522

1 3

it is based on Reiter’s Minimal Hitting Set algorithm, and
it uses an external DL reasoner (Pellet) which is called as
a black box.

AAA integrates Pellet directly at the source-code level;
however experimental versions exploiting OWL API were
also explored [9, 18]. We would like to explore this line also
in the future and to provide a stable version based on OWL
API that would enable the user to pick different DL reason-
ers. We also plan to implement different abduction strategies
that could serve as an alternative to MHS, even some which
are incomplete (but very fast) such as MergeXplain [9, 27].

Acknowledgements The authors wish to thank to Katarína Fabianová,
Júlia Gablíková, and Drahomír Mrózek whose Master’s projects were
affiliated with the AAA solver.

Funding This work was supported from national projects VEGA
1/1333/12, VEGA 1/0778/18, and APVV-19-0220. Júlia Pukancová
was also supported by the Comenius University Grants UK/426/2015
and UK/266/2018.

References

 1. Castano S, Espinosa Peraldí IS, Ferrara A, Karkaletsis V, Kaya
A, Möller R, Montanelli S, Petasis G, Wessel M (2009) Multime-
dia interpretation for dynamic ontology evolution. J Log Comput
19(5):859–897

 2. Cuenca Grau B, Horrocks I, Motik B, Parsia B, Patel-Schneider
P, Sattler U (2008) OWL 2: the next step for OWL. J Web Semant
6(4):309–322

 3. Del-Pinto W, Schmidt RA (2017) Forgetting-based abduction in
ALC . In: Proceedings of the workshop on second-order quantifier
elimination and related topics (SOQE 2017), Dresden, Germany,
CEUR-WS, vol 2013, pp 27–35

 4. Del-Pinto W, Schmidt RA (2019) Abox abduction via forget-
ting in ALC. In: The Thirty-Third AAAI conference on artificial
intelligence, AAAI 2019, the thirty-first innovative applications
of artificial intelligence conference, IAAI 2019, the ninth AAAI
symposium on educational advances in artificial intelligence,
EAAI 2019, Honolulu, Hawaii, USA, January 27–February 1,
AAAI Press, 2019, pp 2768–2775

 5. Donini FM, Massacci F (2000) Exptime tableaux for ALC .
Artif Intell 124(1):87–138. https ://doi.org/10.1016/S0004
-3702(00)00070 -9

 6. Du J, Qi G, Shen Y, Pan JZ (2012) Towards practical ABox abduc-
tion in large description logic ontologies. Int J Semant Web Inf
Syst 8(2):1–33

 7. Elsenbroich C, Kutz O, Sattler U (2006) A case for abductive
reasoning over ontologies. In: Proceedings of the OWLED*06
workshop on OWL: experiences and directions, Athens, GA, US,
CEUR-WS, vol 216

 8. Espinosa Peraldí IS, Kaya A, Möller R (2009) Formalizing mul-
timedia interpretation based on abduction over description logic
ABoxes. In: Proceedings of the 22nd international workshop on
description logics (DL 2009), Oxford, UK, CEUR-WS, vol 477

 9. Fabianová K, Pukancová J, Homola M (2019) Comparing ABox
abduction based on minimal hitting set and MergeXplain. In: Pro-
ceedings of the 32nd international workshop on description logics,
vol 2373, Oslo, Norway, June 18–21, 2019, CEUR-WS

 10. Guo Y, Pan Z, Heflin J (2005) LUBM: a benchmark for OWL
knowledge base systems. J Web Semant 3(2–3):158–182

 11. Halland K, Britz K (2012) Abox abduction in ALC using a DL
tableau. In: 2012 South African Institute of computer scientists
and information technologists conference, SAICSIT ’12, Pretoria,
South Africa, pp 51–58

 12. Halland K, Britz K (2012) Naïve ABox abduction in ALC using a
DL tableau. In: Proceedings of the 2012 international workshop
on description logics, vol 846, DL 2012, Rome, Italy, CEUR-WS

 13. Horrocks I, Kutz O, Sattler U (2006) The even more irresistible
SROIQ . In: Proceedings, tenth international conference on prin-
ciples of knowledge representation and reasoning, Lake District
of the United Kingdom, AAAI, pp 57–67

 14. Hubauer T, Lamparter S, Pirker M (2011) Relaxed abduction:
Robust information interpretation for incomplete models. In: Pro-
ceedings of the 24th iternational workshop on description logics
(DL 2011), Barcelona, Spain, July 13–16, 2011

 15. Kazakov Y (2008) RIQ and SROIQ are harder than SHOIQ. In:
Brewka G, Lang J (eds) Principles of Knowledge Representation
and Reasoning: proceedings of the eleventh international confer-
ence. AAAI Press, Sydney, pp 274–284

 16. Klarman S, Endriss U, Schlobach S (2011) ABox abduction in the
description logic ALC . J Autom Reason 46(1):43–80

 17. Ma Y, Gu T, Xu B, Chang L (2012) An ABox abduction algorithm
for the description logic ALCI . In: Intelligent information pro-
cessing VI—7th IFIP TC 12 international conference, IIP 2012,
Guilin, China. Proceedings, IFIP AICT, Springer, vol 385, pp
125–130

 18. Mrózek D, Pukancová J, Homola M (2018) ABox abduction solver
exploiting multiple DL reasoners. In: Proceedings of the 31st
international workshop on description logics, Tempe, Arizona,
US, CEUR-WS, vol 2211

 19. Peirce CS (1878) Deduction, induction, and hypothesis. Pop Sci
Mon 13:470–482

 20. Petasis G, Möller R, Karkaletsis V (2013) BOEMIE: reasoning-
based information extraction. In: Proceedings of the 1st work-
shop on natural language processing and automated reasoning
co-located with 12th international conference on logic program-
ming and nonmonotonic reasoning (LPNMR 2013), A Corunna,
Spain, September 15th, 2013, pp 60–75

 21. Pukancová J, Homola M (2015) Abductive reasoning with
description logics: Use case in medical diagnosis. In: Proceed-
ings of the 28th international workshop on description logics (DL
2015), Athens, Greece, CEUR-WS, vol 1350

 22. Pukancová J, Homola M (2017) Tableau-based ABox abduction
for the ALCHO description logic. In: Proceedings of the 30th
international workshop on description logics, Montpellier, France,
CEUR-WS, vol 1879

 23. Pukancová J, Homola M (2018) ABox abduction for description
logics: the case of multiple observations. In: Proceedings of the
31st international workshop on description logics, Tempe, Ari-
zona, US, CEUR-WS, vol 2211

 24. Pukancovái J (2018) Direct approach to ABox abduction in
description logics. Ph.D. thesis, Comenius University in Bratislava

 25. Reiter R (1987) A theory of diagnosis from first principles. Artif
Intell 32(1):57–95

 26. Schekotihin K, Rodler P, Schmid W (2018) Ontodebug: interactive
ontology debugging plug-in for protégé. In: Foundations of infor-
mation and knowledge systems—10th international symposium,
FoIKS 2018, Budapest, Hungary, May 14–18, 2018, Proceedings,
LNCS, Springer, vol 10833, pp 340–359

 27. Shchekotykhin KM, Jannach D, Schmitz T (2015) MergeXplain:
fast computation of multiple conflicts for diagnosis. In: Pro-
ceedings of the twenty-fourth international joint conference on
artificial intelligence, IJCAI 2015, AAAI Press, Buenos Aires,
Argentina

 28. Sirin E, Parsia B, Cuenca Grau B, Kalyanpur A, Katz Y (2007)
Pellet: a practical OWL-DL reasoner. J Web Semant 5(2):51–53

https://doi.org/10.1016/S0004-3702(00)00070-9
https://doi.org/10.1016/S0004-3702(00)00070-9

	The AAA ABox Abduction Solver
	Abstract
	1 Introduction
	2 ABox Abduction in Description Logics
	3 The AAA Solver
	4 Running AAA
	4.1 Restricting MHS Depth
	4.2 Avoiding Loops
	4.3 Introducing Abducibles
	4.4 Multiple Observations

	5 Implementation Details
	6 Conclusions and Future Work
	Acknowledgements
	References

