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Abstract
AAA is a sound and complete ABox abduction solver based on the Reiter’s MHS algorithm and the Pellet reasoner. It sup-
ports DL expressivity up to SROIQ (i.e., OWL 2). It supports multiple observations, and allows to specify abducibles.
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1 Introduction

Abduction is a specific type of reasoning which explains 
why some observation does not follow from the informa-
tion that we already have, i.e., from our knowledge base 
(KB). This problem of abduction was originally introduced 
by Peirce [19] in 1878. However studying abduction in the 
context of ontologies—and hence description logics (DL)—
is relatively new [7]. Applications of abduction in this area 
include e.g., ontology debugging [26], system malfunction 
diagnosis [14], multimedia interpretation [20], and medical 
diagnosis [21].

A number of works studied ABox abduction and focused 
on algorithms for computing explanations [1, 3, 4, 6, 8, 9, 
11, 12, 16–18, 22, 23].

Notably, multiple works adopted Reiter’s Minimal Hitting 
Set (MHS) algorithm [25] exploiting a DL reasoner for sat-
isfiability checking. This was proposed by Halland and Britz 
[11, 12], and later extended by Pukancová and Homola [22, 
23] and Mrózek et al. [18] who have developed a black box 
approach and its proof-of-concept implementation dubbed 
the AAA solver1 (AAA  stands for ABox Abduction Algo-
rithm) that we describe in this paper.

2  ABox Abduction in Description Logics

Formally speaking, an abduction problem [7] is a pair (K,O) 
where K is an ontology (i.e., a DL knowledge base) and 
O is a set of axioms called observations. A solution of an 
abduction problem is another set of axioms E (also called 
explanation) s.t. K ∪ E ⊧ O.

If O and E are assumed to be TBox axioms, we are talk-
ing about TBox abduction. On the other hand, if O and E are 
supposed to be ABox assertions, then we deal with ABox 
abduction [7].

Our work focuses entirely on ABox abduction, and we 
distinguish ABox assertions of several types. Concept asser-
tions are of the form � ∶ � , where � is an individual and � is 
a concept name or possibly a complex concept description. 
Role assertions are of the form �, � ∶ � , and negated role 
assertions of the form �, � ∶ ¬� , where �, � are individuals 
and � is a role name. Reflexive role assertions of the forms 
�, � ∶ � and �, � ∶ ¬� are called loops.

Given the monotonicity of DLs, the number of possible 
explanations is generally too high and must be limited some-
how to make the whole task meaningful. Therefore most 
works focus only on (syntactically) minimal explanations, 
i.e., such E that there is no other explanation E′ ⊊ E.

This may still yield some undesirable explanations hence 
the desired explanations are often further constrained. The 
constraints that we assume in our work are that all explana-
tions should be: 

1. Consistent: i.e., K ∪ E is consistent;
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2. Relevant: i.e., E ̸⊧ O;
3. Explanatory: i.e., K ̸⊧ O.

3  The AAA Solver

Building on ideas of Halland and Britz [11, 12], we have 
developed an ABox abduction solver AAA [22, 23] based on 
Reiter’s MHS algorithm [25].

Let us first assume an observation O = {O} consisting of a 
single ABox assertion. Reiter showed that in order to find an 
explanation E s.t. K ∪ E ⊧ {O} it suffices to find a hitting set of 
the set of all models of K ∪ {¬O} . The MHS algorithm, which 
he also proposed, does this by constructing a so called HS-tree 
in which explanations are found as paths from the root to the 
leaves. It is often desired to find all (meaningful) explanations 
and shorter explanations are preferred, the HS-tree is therefore 
constructed using breadth-first search.

The solver takes an advantage of this and allows the search 
to be depth-bound, thus allowing to find all explanations up 
to a given cardinality. The rest of the HS-tree is cut off. Our 
algorithm is complete up to any given depth [23].

As we need to compute the models of K ∪ {¬O} , auxiliary 
calls to a DL reasoner are used. The DL reasoner is called 
as a black-box, and it is called on-the-fly during the HS-tree 
construction. AAA also exploits optimization techniques sug-
gested by Reiter such as model reuse and pruning.

AAA also handles observations O = {O1,… ,O
n
} con-

sisting of a set of ABox assertions. For this case we have 
developed two approaches. The first one, so called splitting 
approach, computes the explanations for each O

i
∈ O sepa-

rately, which are then combined. The other one, so called 
reduction approach, reduces the set of ABox assertions O into 
one ABox assertion O′ in such a way, that all the explanations 
of O are preserved.

AAA thus supports observations in form of any set of 
ABox assertions (including complex concept assertions and 
negated role assertions). It supports explanations in form of 
sets consisting of atomic and negated atomic concept and 
role assertions. The supported DL expressivity for both the 
input ontology and the observations is up to SROIQ [13], 
i.e., OWL 2 [2].

Since version 0.9 the solver also allows to specify abduci-
bles, i.e., individuals, concept names, and role names to which 
the search for explanations is limited. If the user knows before-
hand in which part of the search space they are looking for 
explanations, this can greatly reduce the HS-tree size and thus 
the overall computation time.

4  Running AAA 

Let us consider the following ontology (given in Manchester 
syntax) describing family relations, as our input knowledge 
base K : 

The goal for AAA is to compute explanations for the 
observation “Jane is a mother”, i.e., for the observation 
O = {���� ∶ ������} . To run the solver, the input file (the 
ontology) and the output file must be stated (-i and -out 
switches), and the observation is given on the command line 
using the -obs switch. There are some additional optional 
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switches which will be explained below. The example com-
mand line is as follows:

After running the command, AAA computes the explana-
tions and writes the output in the output file. Except some 
statistic information, such as computation times for the spe-
cific levels of the run, all the explanations are listed in the 
end of the file. An excerpt2 from the output file:

We can see that the solver has found six explanations in 
this case.

4.1  Restricting MHS Depth

The switch -d (already used in the example above) allows 
to limit the search to specific depth of the HS-tree, i.e., to 
search for explanations only up to a given cardinality.

The main reason why the user may want to use this 
restriction is because with greater depth, exploring each 
consecutive level of the HS-tree becomes exponentially3 
more time consuming (as apparent from the time statistics in 
the example above). Also, while our algorithm only returns 
minimal explanations, even among these, smaller explana-
tions (in terms of cardinality) are often more preferred.

For example, from the six explanations in the listing 
above, only the explanations of the size 1 (containing only 
one assertion) may be desired. In such a case we modify the 
command as follows:

In this case only one explanation is found:

4.2  Avoiding Loops

There are some unintuitive explanations amongst the six 
found in the first example run above. Depending on the 
domain and the application it may not be desirable to explain 
the observed phenomenon by reflexive relations of the form 
�, � ∶ � or �, � ∶ ¬� . For instance, in our example we do not 
want to explain the observation that Jane is mother by the 
explanation that she is a child of herself.

The switch -l enables loops (i.e., reflexive role asser-
tions) which are disallowed by default under the assumption 
that users would only rarely look for such explanations. The 
following example demonstrates the run of AAA without 
loops.

2 All output file excerpts have been modified for readability: prefix 
part of IRIs were omitted and syntax of role assertions was rewrit-
ten to match this paper, some of the TIME DETAILS section have 
been cut off, and some outputs such as ontology statistics and other 
less relevant information has been removed. The shortcuts in TIME 
DETAILS are as follows: time—total time in seconds, n—number 
of nodes, ta—number of DL reasoner calls, r—reused models, p—
pruned nodes.

3 The MHS problem is NP-complete. Therefore for expressive DLs 
the combined worst-case complexity of the solver is “inherited” from 
the input ontology. For ALC ontologies it is ExpTime [5], for OWL 2 
(i.e., SROIQ ) ontologies it is N2ExpTime) [15].
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AAA now disregards loops, hence out of the six original 
explanations of the observation O = {���� ∶ ������} , only 
four remain:

If loops are undesired they should always be omitted 
from the computation as this also reduces the search space 
and hence decreases the computation time. This can be also 
observed in our example runs above.

4.3  Introducing Abducibles

Another meaningful restriction on the search space is to 
restrict the individuals, concepts, and roles that are included 
in the explanations only to a certain set, called abducibles. 
Especially in bigger ontologies, the user may be specifically 
interested only in explanations involving specific entities.

Abducibles can be specified using the switch -abd as 
an enumeration of symbols allowed in the explanations. In 
the example below, the abducibles are restricted to the indi-
vidual ���� and the concepts ����� , ��� , ������ , and 
�����������:

When AAA is run on this input, it returns the follow-
ing output:

As apparent from the example, providing a reasonable 
set of abducibles reduces the search space greatly, which 
is now limited to all possible (atomic and negated) ABox 
assertions that can be constructed from the provided sets 
of individuals, concept, and role names. This can signifi-
cantly reduce the computation time—however, the user 
must have some prior assumptions as for where to look 
for the explanations.

4.4  Multiple Observations

The AAA solver notably allows for observation-sets con-
sisting of multiple assertions. For example, we may want 
to find explanations that explain both ���� ∶ ������ 
and ������ ∶ ����� . We may do so, using the following 
command:
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Note that in order to avoid nonsensical explanations 
with loops (8 in this case), we chose to disable loops. We 
obtain the following output:

As mentioned above, AAA supports two different 
approaches to enable multiple observations. This run was 
obtained by the so called splitting approach (default) in 
which the algorithm is run separately for each element 
of the observation set, and then the results are combined. 
We can see in TIME DETAILS that the solver has indeed 
constructed two HS-trees.

Using the switch -r we can enable the so called reduc-
tion approach, which reduces the observation set into a 
single ABox assertion and runs the MHS algorithm only 
once, on the reduced input. The output for this approach 
is as follows: 

As we can see, in this case the reduction approach is more 
efficient than splitting, but it is not always the case.

5  Implementation Details

The AAA solver is implemented in Java (version 1.8). It 
has two main components, the implementation of the MHS 
algorithm and a DL reasoner (Pellet [28]) which is being 
called by the MHS component for consistency checks and 
for model retrieval. The Pellet reasoner calls are tightly 
integrated at the source-code level. Pellet is an open source 
OWL DL reasoner implemented in Java. We have used Pellet 
2.3.1 which is the latest open-source version.

The advantage of using the DL reasoner as a black box, is 
that AAA consequently supports the same DL expressivity 
as is supported by the DL reasoner. Pellet features full OWL 
2 support which means that any OWL 2 ontology may be 
used with our algorithm.

In the unrestricted case (when no abducibles are speci-
fied) the solver is able to process a single observation w.r.t. 
to the LUBM ontology [10] within seconds (up to depth 
2), within minutes (up to depth 3) and within hours (up to 
depth 4) [24].

AAA is available for download at: http://dai.fmph.uniba 
.sk/~pukan cova/aaa/.

6  Conclusions and Future Work

We have provided an overview of AAA, an ABox abduction 
solver for description logics. AAA is sound and complete 
up to SROIQ DL (i.e., OWL 2). It is implemented in Java, 
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it is based on Reiter’s Minimal Hitting Set algorithm, and 
it uses an external DL reasoner (Pellet) which is called as 
a black box.

AAA integrates Pellet directly at the source-code level; 
however experimental versions exploiting OWL API were 
also explored [9, 18]. We would like to explore this line also 
in the future and to provide a stable version based on OWL 
API that would enable the user to pick different DL reason-
ers. We also plan to implement different abduction strategies 
that could serve as an alternative to MHS, even some which 
are incomplete (but very fast) such as MergeXplain [9, 27].
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