
Vol.:(0123456789)1 3

KI - Künstliche Intelligenz (2020) 34:291–301 
https://doi.org/10.1007/s13218-020-00651-0

TECHNICAL CONTRIBUTION

Role‑Value Maps and General Concept Inclusions in the Minimal 
Description Logic with Value Restrictions or Revisiting Old Skeletons 
in the DL Cupboard

Franz Baader1 · Clément Théron2

Received: 31 October 2019 / Accepted: 6 March 2020 / Published online: 14 March 2020 
© The Author(s) 2020

Abstract
We investigate the impact that general concept inclusions and role-value maps have on the complexity and decidability of 
reasoning in the description logic FL

0
 . On the one hand, we give a more direct proof for ExpTime-hardness of subsumption 

w.r.t. general concept inclusions in FL
0
 . On the other hand, we determine restrictions on role-value maps that ensure decid-

ability of subsumption, but we also show undecidability for the cases where these restrictions are not satisfied.

Keywords  Description logic · Value restrictions · Role-value maps · FL0 · Decidability and complexity

1  Introduction

Description logics (DLs) [6] are a well-investigated family 
of logic-based knowledge representation formalisms, which 
are used to define ontologies in applications domains such 
as the semantic web [9, 19] and in biology and medicine 
[20]. DLs are descended from semantic networks [28, 29] 
and frames [26] via the knowledge representation system 
KL-ONE [17]. The design goal of KL-ONE was, on the one 
hand, to provide its users with a knowledge representation 
(KR) language that is equipped with a well-defined syntax 
and a formal, unambiguous semantics, which was not always 
true for early KR approaches such as semantic networks and 
frames. On the other hand, reasoning over knowledge bases 
written in this language was supposed to be tractable (i.e., 
realizable by polynomial-time inference procedures) [15]. 
Thus, it came as a considerable shock to the community 
when it was shown that the second requirement is not satis-
fied by the language employed by KL-ONE for two inde-
pendent reasons.

On the one hand, KL-ONE provided its users with the 
concept constructor role-value maps (RVMs), which can be 
employed to link role successor sets. For example, the con-
cept described by the RVM

collects all individuals that know all the friends of 
their children. The general form of such an RVM is 
(r1◦⋯◦rm ⊆ s1◦⋯◦sn) , where r1,… , sn are roles (i.e., 
binary predicates). It was shown in [30] that the presence 
of RVMs actually makes reasoning in KL-ONE undecid-
able. As a consequence, general RVMs were removed from 
KL-ONE-based KR languages, and are not available in any 
of the DLs employed by today’s DL systems. One possi-
bility for avoiding the undecidability caused by RVMs is 
to restrict the roles occurring in them to being functional. 
This approach was employed by the CLASSIC system [14], 
where the corresponding constructor is called the same-as 
constructor. However, using same-as in place of RVMs only 
overcomes the undecidability problem if no general concept 
inclusions (GCIs) are available in the terminological formal-
ism [5].

An alternative approach for restricting RVMs with the 
goal of achieving decidability is to consider global role-
value maps in which role composition on the right-hand side 
is disallowed. In contrast to the local RVMs used in the KL-
ONE system, a global RVM is not a concept constructor, but 
a terminological axiom, which states that the inclusion must 
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 *	 Franz Baader 
	 franz.baader@tu‑dresden.de

	 Clément Théron 
	 clement.theron@ens‑paris‑saclay.fr

1	 TU Dresden, Dresden, Germany
2	 ENS Paris-Saclay, Cachan, France

http://crossmark.crossref.org/dialog/?doi=10.1007/s13218-020-00651-0&domain=pdf


292	 KI - Künstliche Intelligenz (2020) 34:291–301

1 3

hold for all individuals in the interpretation domain. For 
example, while (�����◦������ ⊆ �����) is a concept that is 
interpreted as the set of individuals that know all the friends 
of their children, the global RVM

states that all individuals in the interpretation domain know 
all the friends of their children.1 Global RVMs may still 
cause undecidability [3, 8] unless one imposes additional 
restrictions. For the inexpressive DL EL [4, 10], adding 
global RVMs of the form (r1◦⋯◦rm ⊑ s) leaves reasoning 
not only decidable, but also tractable even in the presence 
of GCIs [3, 4]. For more expressive DLs, additional restric-
tions on such RVMs need to be imposed to keep reasoning 
decidable [22, 24].

On the other hand, KL-ONE provided its users with the 
concept constructors conjunction ( ⊓ ) and value restriction 
( ∀r.C ). For example, using these constructors one can build 
the concept

which describes the persons all of whose children have only 
nice friends. It was shown in [27] that the subsumption prob-
lem in the DL FL0 , which has only these two constructors, 
is coNP-hard in the presence of the simplest terminological 
formalism, which are so-called acyclic TBoxes. For cyclic 
TBoxes, the complexity increases to PSpace [1, 25], and for 
general TBoxes consisting of GCIs even to ExpTime [4, 21]. 
Thus, w.r.t. general TBoxes, subsumption reasoning in FL0 
is as hard as in ALC , its closure under negation.

In the present paper, we first reconsider this ExpTime-
hardness result. The proof in [4] leads to a rather long chain 
of reductions, which makes it hard to understand the reasons 
for ExpTime-hardness and to reuse the proof ideas for other 
DLs. The proof of ExpTime-hardness given in [21] is by 
a reduction from deciding the winner in pushdown games 
[31], but the argument used for showing the correctness of 
this reduction is based on a non-trivial proof-theoretic char-
acterization of subsumption in FL0 w.r.t. general TBoxes. 
In Sect. 3, we provide a new reduction from the problem of 
deciding the winner in countdown games [23], for which we 
must show, among other things, that we can express (binary 
representations) of natural numbers and subtraction of such 
numbers in FL0 . ExpTime-hardness for pushdown games 
and for countdown games was respectively shown in [23, 
31] by direct reductions from the problem of the acceptance 
of a word by a linearly space-bounded alternating Turing 
machine.

(�����◦������ ⊑ �����)

������ ⊓ ∀����� ⋅ ∀������ ⋅ ����,

In the second part of the paper (Sects. 4, 5), we inves-
tigate the effect that adding RVMs has on the decidabil-
ity of subsumption in FL0 . On the one hand, we introduce 
two classes of global RVMs that leave subsumption with-
out GCIs decidable. A simple example of a class of RVMs 
that satisfy both restrictions are length-preserving RVMs. 
On the other hand, we show that the restrictions made to 
achieve decidability are really needed: (1) in the presence 
of GCIs, even adding a single length-preserving RVM can 
cause undecidability; (2) for unrestricted RVMs, we give a 
simpler proof of the result first shown in [30] that undecid-
ability even holds without GCIs. The results (1) and (2) are 
independent of whether global or local RVMs are used.

Some of the more technical proofs of these results are not 
given in detail here. They can be found in [12].

2 � The Description Logic FL
0

In Description Logic, concept constructors are used to build 
complex concepts out of concept names (unary predicates) 
and role names (binary predicates). A particular DL is deter-
mined by the available constructors. Starting with mutually 
disjoint countably infinite sets NC and NR of concept and role 
names, respectively, the set of FL0 concepts is inductively 
defined as follows:

•	 ⊤ (top concept) and every concept name A ∈ NC is an 
FL0 concept,

•	 if C, D are FL0 concepts and r ∈ NR is a role name, then 
C ⊓ D (conjunction) and ∀r.C (value restriction) are FL0 
concepts.

The semantics of FL0 concepts is defined using first-order 
interpretations I = (ΔI, ⋅I) consisting of a non-empty 
domain ΔI and an interpretation function ⋅I that assigns a 
set AI ⊆ ΔI to each concept name A, and a binary relation 
rI ⊆ ΔI × ΔI to each role name r. This function is extended 
to FL0 concepts as follows:

A (general) FL0 TBox T  is a finite set of general concept 
inclusions (GCIs), which are expressions of the form C ⊑ D 
for FL0 concepts C, D. The interpretation I  is a model of 
T  if it satisfies all the GCIs in T  , i.e. CI ⊆ DI  holds for 
all GCIs C ⊑ D in T  . Given an FL0 TBox T  and two FL0 
concepts C, D, we say that C is subsumed by D (denoted 
as C ⊑T D ) if CI ⊆ DI  for all models I  of T  . These two 
concepts are equivalent (denoted as C ≡T D ) if C ⊑T D and 
D ⊑T C . If the TBox is empty, we write C ⊑ D and C ≡ D 
instead of C ⊑∅ D and C ≡∅ D.

⊤I = ΔI and (C ⊓ D)I = CI ∩ DI,

(∀r.C)I = {x ∈ ΔI ∣ ∀y ∈ ΔI∶ (x, y) ∈ rI ⇒ y ∈ CI}.

1  Following the syntax introduced in [2], we distinguish between 
local and global RVMs by using ⊆ in the syntax of the former and ⊑ 
in the syntax of the latter.
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For FL0 , the subsumption problem w.r.t. general TBoxes 
is ExpTime-complete: the upper bound follows from the 
well-known ExpTime upper bound for ALC [8], which con-
tains FL0 as a sublogic. Previous proofs of the lower bound 
can be found in [4, 21]. In the next section, we will provide 
a new proof of this hardness result.

Without TBox, subsumption and equivalence in FL0 can 
be characterized using inclusion of formal languages. This 
characterization relies on transforming FL0 concepts into 
an appropriate normal form as follows. First, the semantics 
given to the concept constructors in FL0 implies that value 
restrictions distribute over conjunction, i.e., for all FL0 con-
cepts C, D and roles r it holds that ∀r.(C ⊓ D) ≡ ∀r.C ⊓ ∀r.D . 
Using this equivalence as a rewrite rule from left to right, 
every FL0 concept can be transformed into an equivalent 
one that is either ⊤ or a conjunction of concepts of the form 
∀r1 ⋯∀rn.A , where r1,… , rn are role names and A is a con-
cept name. Such a concept can be abbreviated as ∀w.A , 
where w = r1 … rn is a word over the alphabet NR . Note 
that n = 0 means that w is the empty word � , and thus ∀�.A 
corresponds to A. Furthermore, a conjunction of the form 
∀w1.A ⊓⋯ ⊓ ∀wm.A can be written as ∀L.A where L ⊆ N∗

R
 is 

the finite language {w1,… ,wm} . We use the convention that 
∀�.A corresponds to the top concept ⊤ . Thus, any two FL0 
concepts C, D containing only the concept names A1,… ,A

�
 

can be represented as

where K1, L1,… ,K
�
, L

�
 are finite languages over the alpha-

bet of role names NR . We call this representation the lan-
guage normal form (LNF) of C, D.

If C, D have the LNFs shown above, then C ⊑ D holds 
iff L1 ⊆ K1,… , L

�
⊆ K

�
 [11]. A similar characterization of 

subsumption can actually also be given in the presence of a 
TBox, but then K1,… , L

�
 are regular languages represented 

by automata of size exponential in the size of T  [7].

3 � ExpTime‑Hardness of FL
0
 with GCIs

We give a new proof of the fact that subsumption in FL0 
w.r.t. a general TBox is ExpTime-hard. This proof is by 
reduction from the problem of deciding the winner in 
countdown games, which are two-player games for which 
deciding which player has a winning strategy is known to 
be ExpTime-complete [23].

As defined in [23], a countdown game is given by a 
weighted graph (S, T), where S is the finite set of states 
and T ⊆ S × (ℕ ⧵ {0}) × S is the finite transition relation. 
If t = (s, d, s�) ∈ T  , then we say that the duration of the 
transition t is d. A configuration of a countdown game is 

(1)
C ≡ ∀K1.A1 ⊓⋯ ⊓ ∀K

𝓁
.A

𝓁
,

D ≡ ∀L1.A1 ⊓⋯ ⊓ ∀L
𝓁
.A

𝓁
,

a pair (s, c), where s ∈ S is a state and c ∈ ℕ . A move of a 
countdown game from a configuration (s, c) is performed 
in the following way: first Player 1 chooses a number d 
such that 0 < d ≤ c and there is s� ∈ S with (s, d, s�) ∈ T  ; 
then Player 2 chooses a transition (s, d, s�) ∈ T  of duration 
d; the new configuration resulting from this move is then 
(s�, c − d) . There are two types of terminal configurations, 
i.e., configurations (s, c) in which no more moves are avail-
able. If c = 0 then the configuration (s, c) is terminal and is 
a winning configuration for Player 1. If for all transitions 
(s, d, s�) ∈ T  from the state s we have that d > c , then the 
configuration (s, c) is terminal and it is a winning configu-
ration for Player 2. The algorithmic problem of deciding 
the winner in countdown games is the following problem: 
given a weighted graph (S, T) and a configuration (s0, c0) , 
where all the durations of transitions and the number c0 are 
assumed to be represented in binary, to determine whether 
Player 1 has a winning strategy from the configuration 
(s0, c0) . Formally, a winning strategy can be described 
by a tree whose nodes are labeled with configurations. 
The root is labeled with the initial configuration, and the 
leaves are labeled with terminal configurations that are 
winning configurations for Player 1. A node labeled with 
a non-terminal configuration (s, c) has successor nodes 
that correspond to one choice of Player 1 followed by all 
possible choices of Player 2, i.e., to obtain the successors 
of this node, one chooses one number d that corresponds 
to an eligible choice of Player 1, and then adds successors 
nodes for all possible choices that Player 2 has: for each 
transition (s, d, s�) ∈ T  a node with label (s�, c − d) is added. 
Theorem 2 in Section 4.2 of [23] shows that the problem 
of deciding whether such a winning strategy exists for a 
given countdown game and initial configuration is Exp-
Time-complete by a reduction from the word problem for 
linearly space-bounded alternating Turing machine.

When describing such games in a logic, one must, on 
the one hand, be able to express the alternation of choices 
between the players. In the presence of both existential and 
universal quantifiers, this is usually easy to achieve, but it is 
less clear how to do this in FL0 , which has only universal 
quantification at its disposal. We will discuss at the end of 
this section how this is achieved in our reduction. In [21], 
this point is somewhat hidden in the proof-theoretic argu-
ment. On the other hand, one must be able to describe the 
moves and the winning conditions, which for countdown 
games means that one must be able to represent subtraction 
and a zero test. Again, it is quite surprising that this is pos-
sible in a logic like FL0 , which has conjunction as its only 
Boolean operation. In [21], this part appears to be easier 
since configurations in pushdown games are words over 
a finite alphabet, which can directly be represented using 
sequences of value restrictions.
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Proposition 1  Deciding the winner in a countdown game 
(S, T) with initial configuration (s0, c0) can be reduced in 
polynomial time to non-subsumption in FL0 w.r.t. a general 
TBox.

Proof  (sketch2) Let � be the maximum between the number 
of bits needed to represent c0 and the number of bits needed 
to represent any of the numbers occurring in T in binary.

We assume without loss of generality that

Note that the number of concept and role names contained 
in these sets is polynomial in the size of the input since � is 
bounded by the size of the binary representation of the larg-
est number occurring in the input.

The idea is that each element of an interpretation I  is 
labeled by one (or several3) number(s) written in binary: 
�i = 0 means that the ith bit of this number is equal to 0, 
and �i = 1 that it is equal to 1. In addition, if (x, y) ∈ iI , the 
number labeling y should be the same as the one labeling 
x minus 2i.

The subsumption relationship we want to test is

S ⊎ {F} ⊎

�⋃

i= 0

{�i = 0, �i = 1} ⊆NC, and

{s̄ ∣ s ∈ S} ⊎ {i ∣ 0 ≤ i ≤ �} ⊆NR.

where ĉ0 stands for the conjunction of all �i = ki , where ki 
is the value of the ith bit in the binary representation of c0 . 
The concept F stands for “fail”, i.e., a configuration where 
Player 1 has no winning strategy.

The goal is to define the TBox T  such that any model 
of T  that does not satisfy the subsumption corresponds 
to a winning strategy for Player 1. To do this, we use the 
fact that, if Player 1 has a winning strategy in configura-
tion (s0, c0) whose first step chooses duration d, then for all 
(s0, d, s

�) ∈ T  , Player 1 must also have a winning strategy 
in configuration (s�, c0 − d) . Thus, if s1,… , sp are the states 
such that (s0, d, si) ∈ T  , then we can construct inductively 
the structures corresponding to the winning strategies on 
(si, c0 − d) , as shown in Fig. 1 (where Ii is the interpreta-
tion corresponding to a winning strategy in configuration 
(si, c0 − d)).

Given a duration d occurring in T, we write ∀d̃ as an 
abbreviation for ∀i1i2 … ik , where i1, i2,… , ik are the bits 
equal to 1 in the binary representation of d, written in 
decreasing order.4

The TBox T  consists of the following GCIs: 

1.	 s ⊑ ∀d̃s̄.s� for all (s, d, s�) ∈ T ,

s0 ⊓ ĉ0 ⊑T F,

s0 � ĉ0 ̂c0 − 2i1 c0 − 2i1 − 2i2
∧

ĉ0 − d

s1 � ĉ0 − d

sp � ĉ0 − d

. . .
.
.
.

i1 i2 i3 ik s̄0

. . .

. . .

d̃1s̄1

d̃ps̄p

I1

Ip

Fig. 1   The interpretation corresponding to a winning strategy of Player 1

2  A more detailed proof of this result can be found in [12].
3  The absence of negation prevents us from enforcing a single num-
ber per element.

4  The only condition needed is that the same number must always be 
represented in the same order, and using decreasing order is an easy 
way to achieve this.
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2.	 s ⊓ �i = 1 ⊓ ⊓d∈Es
∀d̃s̄.F ⊑ F  for all s ∈ S  and all 

i, 1 ≤ i ≤ � , where Es = {d ∣ ∃s� s.t. (s, d, s�) ∈ T},
3.	 �i = x ⊑ ∀k.�i = x for all 0 ≤ i < k ≤ � and x ∈ {0, 1},
4.	 �i = 1 ⊓ �j=x ⊑ ∀k.�j=x for all k ≤ i < j and x ∈ {0, 1},
5.	 ⊓i−1

j=k
�j=0 ⊓ �i = 1 ⊑ ∀k.(⊓i−1

j=k
�j=1 ⊓ �i = 0) for all k ≤ i,

6.	 �i = x ⊑ ∀s̄.�i = x for all s ∈ S , 1 ≤ i ≤ � , and x ∈ {0, 1},
7.	 ⊓�

j=i
�j=0 ⊑ ∀i.F for all i, 1 ≤ i ≤ �,

8.	 F ⊑ ∀i.F for all i, 1 ≤ i ≤ �,
9.	 F ⊑ ∀s̄.F for all s ∈ S.

The intuition underlying these GCIs is the following:

•	 The GCIs in 1. say that, if we choose the duration d, then 
we must consider every state accessible this way.

	   The GCIs in 2. reflect the fact that, if at least one of the 
configurations in which we could end up this way does 
not have a winning strategy, then choosing d does not 
yield a winning strategy either, unless the number of the 
configuration is already 0.

•	 The GCIs in 3., 4., 5., and 6. are there to ensure that 
subtraction is performed properly.

•	 The GCIs in 7. say that, if we choose a duration greater 
than the number in the current configuration (which is 
checked by verifying that the subtraction would return a 
negative number), then this leads to a failure for Player 1. 
The GCIs in 8. and 9. propagate this information forward 
to the next element corresponding to a configuration (so 
that it can then be propagated backwards using the GCIs 
in 2.).

Given this intuition, it is easy to see that a winning strat-
egy for Player 1 can be used to construct a model of T  of 
the form shown in Fig. 1, in which F is interpreted as the 
empty set. This yields a counterexample to the subsump-
tion. Conversely, we can show that a counterexample to the 
subsumption can be used to extract a winning strategy for 
Player 1, but proving this is a bit more involved (see [12] for 
details). 	� ◻

Given the ExpTime-hardness result for deciding the 
winner in countdown games shown in [23], this proposition 
yields the following hardness result for FL0.

Theorem 1  Subsumption in FL0 w.r.t. general TBoxes is 
ExpTime-hard.

Before closing this section, let us analyze how our reduc-
tion has addressed the two main requirements for such a 
reduction mentioned above Proposition 1. First, consider 
the alternation of choices between the players. The fact 
that it is sufficient that one choice of Player 1 is success-
ful is expressed by the GCI 2. In fact, if one considers the 

contraposition of this GCI, then it becomes clear that is says: 
if Player 1 does not fail, then it already has reached a win-
ning configuration or there is a successor configuration in 
which it does not fail. The universal quantification over the 
moves of Player 2 is expressed using the GCI 1. Regarding 
the representation of numbers in binary, one should note 
that we cannot enforce that every individual is associated 
with only one number. In fact, since FL0 cannot express dis-
jointness of concepts, we cannot prevent an individual from 
belonging to both �i = 0 and �i = 1 . This is not a problem 
for the following reasons. Of course, when constructing an 
interpretation from a winning strategy, one can just build a 
counter-interpretation to the subsumption where every ele-
ment has a unique associated number, which is given by the 
strategy tree. Conversely, having more numbers in a counter-
interpretation can only make satisfying the conditions for a 
winning strategy formulated by the GCIs harder to achieve. 
By removing superfluous elements and numbers, one can 
modify the given interpretation to one that looks like the one 
depicted in Fig. 1 and still satisfies all GCIs. From this, the 
winning strategy can then be extracted.

4 � Decidable Role‑Value Maps in FL
0

As already mentioned in the introduction, role-value maps 
come in two variants [8]: local RVMs as originally intro-
duced in KL-ONE are concept constructors whereas global 
RVMs are axioms that constrain the interpretation of roles. 
To be more precise,

•	 a local role-value map is a concept constructor with 
syntax (r1◦⋯◦rm ⊆ s1◦⋯◦sn) where r1,… , sn are role 
names. To define its semantics, let 

 for role names t1,… , tk , where “ ◦ ” on the right-
hand side is composition of binary relations. Then, 
(r

1
◦⋯◦r

m
⊆ s

1
◦⋯◦s

n
)I = {d ∈ ΔI ∣ (r

1
◦⋯◦r

m
)I(d)

⊆ (s
1
◦⋯◦s

n
)I(d)}.

•	 a  global  role-value maps  has  the  syntax 
(r1◦⋯◦rm ⊑ s1◦⋯◦sn) , and is viewed to be an 
axiom. An interpretation I  is a model of this axiom if 
(r1◦⋯◦rm)

I(d) ⊆ (s1◦⋯◦sn)
I(d) holds for all d ∈ ΔI.

In the presence of GCIs, local RVMs can express global ones 
since the global RVM (r1◦⋯◦rm ⊑ s1◦⋯◦sn) has the same 
models as the GCI ⊤ ⊑ (r1◦⋯◦rm ⊆ s1◦⋯◦sn).

In the present section we consider only global RVMs with-
out GCIs.

(t1◦⋯◦tk)
I(d) = {e ∣ (d, e) ∈ t1

I
◦⋯◦tk

I},
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To simplify notation, we write t1 … tk in place of 
t1◦⋯◦tk , and again view this expression as a word over the 
alphabet of role names. Thus, a set T  of global RVMs can be 
written as T = {u1 ⊑ v1,… , uk ⊑ vk} where u1,… , vk ∈ N∗

R
 . 

Such a set induces the following string-rewriting relation 
[13] between words over NR:

As usual, we denote the reflexive, transitive closure of →T  
as 

∗
−→

T

 . Given a formal language L over NR , i.e., a subset of 
N∗
R
 , we now define the languages

which can be used to characterize subsumption w.r.t. T  as 
follows.

Theorem 2  Let T  be a finite set of global RVMs, and C, D 
be FL0 concepts with LNFs as in (1). Then the following 
are equivalent:

1.	 C ⊑T D , i.e., CI ⊆ DI for all models of T ;
2.	 Li ⊆ K

↓T
i

 for all i, 1 ≤ i ≤ �;
3.	 {w}↑T ∩ Ki ≠ � for all i, 1 ≤ i ≤ � and w ∈ Li.

Regarding the proof of this theorem, first note that 2. and 
3. are easily seen to be equivalent. In fact, given a word 
w ∈ Li , we have w ∈ K

↓T
i

 iff ∃y ∈ Ki with y
∗
−→

T

w iff 
∃y ∈ Ki with y ∈ {w}↑T  iff {w}↑T ∩ Ki ≠ �.

Our proof of 2. ⇒ 1. uses the following proposition, 
which is an easy consequence of the semantics of global 
RVMs and value restrictions, and our definition of →T .

Proposition 2  If x
∗
−→

T

y , then ∀x.A ⊑T ∀y.A holds for all 

A ∈ NC.

This proposition yields that C ⊑T ∀w.Ai holds for all 
w ∈ K

↓T
i

 and all i, 1 ≤ i ≤ � . If Li ⊆ K
↓T
i

 , then this implies 
that C ⊑T ∀Li.Ai for all i, 1 ≤ i ≤ � , and thus we have C ⊑T D

.
We show 1. ⇒ 2. by contraposition. Thus, assume that 

there is an i and a word w = t1 … tp such that w ∈ Li⧵K
↓T
i

 . 
We use w and i to build a counterexample to the subsump-
tion C ⊑T D , i.e., a model Iw,i of T  in which CI ⊈ DI  . 
To construct Iw,i , we start with a sequence of individuals 
d0,… , dp and connect them with the roles in w, i.e., we set 
(d0, d1) ∈ t

Iw,i

1
,… , (dp−1, dp) ∈ t

Iw,i
p  . Then we extend Iw,i with 

v →T u iff there are x, y ∈ N∗
R
and 1 ≤ i ≤ n

such that v = xviy and u = xuiy.

L↓T ={x ∈ N∗
R
∣ ∃y ∈ L with y

∗
−→

T

x},

L↑T ={x ∈ N∗
R
∣ ∃y ∈ L with x

∗
−→

T

y},

additional individuals in order to add the role paths required 
by the RVMs in T  . Assume that r1 … rm ⊑ s1 … sn is a RVM 
in T  , and there are two individuals d, e in the domain of Iw,i 
such that e ∈ (r1◦⋯◦rm)

Iw,i(d) , but e ∉ (s1◦⋯◦sn)
Iw,i(d) . 

Then we add new individuals f1,… , fn−1 to the domain of 
Iw,i and connect them via the roles s1,… , sn as follows: 
(d, f1) ∈ s

Iw,i

1
, (f1, f2) ∈ s

Iw,i

2
,… , (fn−1, e) ∈ s

Iw,i
n  . In general, 

this process needs to be iterated infinitely, and the result-
ing interpretation Iw,i is the limit obtained by this infinite 
process. To ensure that this interpretation indeed satisfies 
all RVMs in T  , the extension process needs to be organized 
in a fair way, i.e., for every pair of individuals d, e and RVM 
r1 … rm ⊑ s1 … sn violated by this pair (as described above), 
we must eventually apply an extension step that removes 
this violation. This is, however, not hard to achieve (e.g., 
by labeling such violations with the iteration step in which 
they were introduced, and then always choosing one of the 
oldest violations). Finally, we interpret concept names in Iw,i 
as follows: all individuals except for dp belong to all concept 
names, whereas dp belongs to all concept names except for 
Ai . The following proposition is now easy to show.

Proposition 3  The interpretation Iw,i satisfies all the RVMs 
in T  , and for all words u we have that (d0, dp) ∈ uIw,i implies 
u

∗
−→

T

w.

Since Iw,i is a model of T  , it is sufficient to show that 
d0 ∈ CIw,i ⧵ DIw,i . First, suppose that d0 ∈ CIw,i does not hold. 
By our definition of the interpretation of concept names in 
Iw,i , this can only be the case if there is a word u ∈ Ki such 
that (d0, dp) ∈ uIw,i . The above proposition yields u

∗
−→

T

w , 
and thus w ∈ K

↓T
i

 , contradicting our choice of w. Conse-
quently, we must have d0 ∈ CIw,i . Finally, we have d0 ∉ DIw,i 
since w ∈ Li , (d0, dp) ∈ wIw,i , and dp ∉ A

Iw,i

i
 . This completes 

the proof of Theorem 2.
In order to derive decidability results for subsumption 

w.r.t. RVMs in FL0 from this theorem, we need to find 
restrictions under which the condition 2. or 3. is decidable. 
We say that the finite set of RVMs T  is downward (upward) 
admissible if for every finite language L we can effectively 
compute a representation of L↓T  ( L↑T  ) for which the word 
problem is decidable. We say that T  is admissible if it is 
downward admissible or upward admissible.

Corollary 1  The following problem is decidable:

Given:	� A finite, admissible set of global RVMs T  and 
FL0 concepts C, D.

Question:	� Does C ⊑T D hold or not?
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Proof  If T  is downward admissible, then we can use condi-
tion 2 in Theorem 2 to decide subsumption: to test whether 
Li ⊆ K

↓T
i

 , we must decide for each of the finitely many words 
u ∈ Li whether u ∈ K

↓T
i

 , which is possible since the word 
problem for K↓T

i
 is decidable.

If T  is upward admissible, then we can use condition 
3 in Theorem 2: to check whether{w}↑T ∩ Ki ≠ � it is suf-
ficient to decide, for the finitely many words u ∈ Ki whether 
u ∈ {w}↑T  . 	�  ◻

To the best of our knowledge, this is the first decidability 
result for RVMs where role composition is allowed on the 
right-hand side. On the one hand, one can use our result 
to find syntactic restrictions on global RVMs that ensure 
decidability.

For example, if all RVMs ui ⊑ vi in T  satisfy |ui| ≤ |vi| , 
then L↓T  is also finite (and thus trivially has a decidable word 
problem) and can effectively be computed. Thus, such a set 
of RVMs is downward admissible. Symmetrically |ui| ≥ |vi| 
for all RVMs ui ⊑ vi in T  implies that T  is upward admis-
sible. On the other hand, one can also have downward 
(upward) admissible sets of RVMs where the languages L↓T  
( L↑T  ) are not necessarily finite, but one can compute a finite 
automaton or a pushdown automaton accepting them.

Example 1  Consider  the set  of  global  RVMs 
T = {rr ⊑ r, s ⊑ ss} . Given a finite language L over the 
alphabet {r, s} , the languages L↓T  and L↑T  need not be finite. 
But it is easy to see that they are both regular, and thus 
have a decidable word problem, which shows that T  is both 
upward and downward admissible. For example, given a 
word of the form w = rm1sn1 … rmksnk with mi, ni ≥ 1 , we 
have {w}↓T = {rm

�
1sn

�
1 … rm

�
k sn

�
k ∣ m�

i
≥ mi, 1 ≤ n�

i
≤ ni}, which 

is obviously regular.

In general, one needs to analyze the specific set of RVMs 
T  to find out whether a finite or pushdown automaton exists 
for the upward or downward languages. This is akin to the 
approach used in [22, 24] to deal with RVMs without com-
position of roles on the right-hand side, but for expressive 
DLs. There, the set of RVMs needs to satisfy a regularity 
restriction in order to obtain decidability.

5 � Undecidable Role‑Value Maps in FL
0

The decidability results proved in the previous section 
depend, on the one hand, on the absence of GCIs. On the 
other hand, they require the string-rewriting system induced 

by the role-value maps to be well-behaved (see the definition 
of admissible above).

First, we show that, even without GCIs, RVMs can cause 
undecidability in FL0 . This result was first proved in [30] for 
an extension of FL0

5 with local role value maps of the form 
(r1◦⋯◦rm = s1◦⋯◦sn) , which in our notation can be writ-
ten as (r1◦⋯◦rm ⊆ s1◦⋯◦sn) ⊓ (s1◦⋯◦sn ⊆ r1◦⋯◦rm) . 
Below, we will first show undecidability for global RVMS, 
and then extend this result to the case of local RVMs without 
TBox, using an approach first employed in [30]. We will say 
more about the connection between our proofs and the one 
in [30] after having presented our proofs.

Theorem 3  There exists a fixed finite set of global role-value 
maps T  such that subsumption of FL0 concepts w.r.t. T  is 
undecidable.

Proof  We prove this theorem by reduction from the word 
problem for string-rewriting systems. As shown in [13] 
(Theorem 2.5.9), there is a fixed finite string-rewriting sys-
tem R such that its word problem (i.e., given two words u, v, 
decide whether u

∗
↔R v holds or not) is undecidable. Here 

∗
↔R denotes the reflexive, transitive, and symmetric closure 
of the rewrite relation

where � is the finite alphabet over which the strings in R 
are built.

Let R = {(ui, vi) ∣ 1 ≤ i ≤ n} be such a string-rewrit-
ing system over the alphabet � . We set NR = � and 
define the set of global RVMs corresponding to R as 
TR = {u1 ⊑ v1,… , un ⊑ vn, v1 ⊑ u1,… , vn ⊑ un}.

It is easy to see that the relations 
∗
↔R and 

∗
−→

TR

 coincide.

Now, assume that, given words u, v over � , we want to 
test whether u

∗
↔R v holds. We claim that this is the case iff 

∀u.A ⊑TR
∀v.A holds.

In fact, by Theorem 2 we know that ∀u.A ⊑TR
∀v.A holds 

iff {v} ⊆ {u}↓TR . The latter is obviously equivalent to 
u

∗
−→

TR

v , which in turn is equivalent to u
∗
↔R v . 	�  ◻

Using a trick originally introduced in [30], we can eas-
ily transfer this undecidability result from global RVMs to 
local ones.

→R = {(xuiy, xviy) ∣ (ui, vi) ∈ R and x, y ∈ �∗},

5  In [30], the logic that is extended with RVMs is actually called 
AL , which later on was used in the DL literature [18] to denote the 
extension of FL

0
 by atomic negation ( ¬A ) and unqualified existential 

restriction ( ∃r.⊤ ). However, in addition to the RVMs only the con-
cept constructors conjunction and value restriction are used in [30] to 
show undecidability.
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Corollary 2  Subsumption in FL0 extended with local role-
value maps is undecidable even without a TBox.

Proof  Given a set of global RVMs T  for which subsump-
tion of FL0 concepts w.r.t. T  is undecidable and two FL0 
concepts C, D, we build an FL0 concept with local RVMs E 
such that C ⊑T D holds iff C ⊓ E ⊑ D.

Let � be the set of all role names occurring in C, D, and 
T  , and let s be a new role name not contained in � . We 
define the concept E as follows:

The local RVMs in the second line ensure that, for any ele-
ment d of E, the role s can be used to access all elements 
reachable via a role chain from d, and thus the first line 
enforces that d and all these reachable elements satisfy the 
RVMs in T  . Given this intuition, it is then easy to see that 
the statements C ⊑T D and C ⊓ E ⊑ D are indeed equiva-
lent. 	�  ◻

Regarding the comparison with the proof in [30], first 
note that global RVMs are not considered there, but one 
could easily adapt the approach in [30] to show undecid-
ability also for global RVMs. Second, as mentioned above, 
the RVMs considered in [30] use equality rather than 
inclusion, which appears to be less expressive, and thus 
makes the undecidability result stronger. However, consid-
ering our reduction in the proof of Theorem 3, we see that 
we actually have the RVMs in both directions, and thus 
can replace them by ones using equality only. This is not 
the case for Corollary 2 since there the local RVMs (r ⊆ s) 
and (sr ⊆ s) are used only in one direction. In the general 
setting considered in that corollary, adding the RVMs in 
the other direction would not work. Basically, this is the 
reason why the proof in [30] uses a reduction from the 
word problem for finitely presented groups, rather than the 
word problem for finitely presented semigroups (which is 
the same as the word problem for string-rewriting systems 
employed in our proof). On a quite technical level, this is 
explained in [30] in a remark below the proof of Theo-
rem 3.5. The main difference between the two proofs is, 
however, that we obtain our result as a simple consequence 
of the elegant characterization of subsumption in FL0 with 
RVMs given in Theorem 2, whereas the proof of correct-
ness of the reduction in [30] is rather technical.

Next, we show that, in the presence of GCIs, undecid-
ability can also be caused by global RVMs that satisfy 
the admissibility condition introduced in the previous sec-
tion. In fact, we will see that a single global RVM of the 
form tr ⊑ rt is sufficient to obtain undecidability. Since 

E = ⊓u⊑v∈T (u ⊆ v) ⊓ ∀s.
(
⊓u⊑v∈T(u ⊆ v)

)

⊓r∈𝛴 (r ⊆ s) ⊓ ⊓r∈𝛴(sr ⊆ s).

this RVM is length-preserving, it is both downward and 
upward admissible.

Theorem  4  Subsumption C ⊑T D of FL0 concepts C,  D 
w.r.t.TBoxes T  consisting of FL0 GCIs and global role-value 
maps is undecidable. This is the case even if T  contains only 
GCIs and a single global RVM of the form tr ⊑ rt.

Readers that are familiar with the undecidability proof 
for subsumption in ALC with global RVMs given in [8], 
which is by reduction from the tiling problem, may think 
that the proof of the above theorem should be an easy 
adaptation of the proof in [8]. A closer look at that proof 
reveals, however, that it makes extensive use of concept 
constructors not available in FL0 (such as negation, 
disjunction, and existential restrictions). In addition, it 
requires not only the RVM tr ⊑ rt , but also its backward 
direction rt ⊑ tr . The undecidability proof in [30] uses the 
concept constructors of FL0 and local role-value maps. In 
addition to being local instead of global, the RVMs used 
there are not admissible since they contain the defining 
relations of a finitely presented group with undecidable 
word problem.

The main new contribution of the proof sketched below 
is thus to show that one can obtain the undecidability results 
for a single global RVM of the form tr ⊑ rt also with the 
seriously restricted expressive power of FL0.

We prove Theorem 4 by a reduction from the halting 
problem for deterministic Turing machines (DTMs). With-
out loss of generality, we consider DTMs that have a one-
side infinite tape, where the left-most tape cell is marked 
using the special symbol $. Whenever the machine moves 
to the left onto this cell, in the next step it immediately goes 
to the right again and leaves the symbol $ and the state 
unchanged. We also assume that the machine can only go 
left or right (i.e., it cannot stay in place).

The machine starts with an “empty” tape, i.e., a tape 
where the left-most cell contains $ and all other cells con-
tain the blank symbol B. The blank symbol and $ cannot be 
written by the machine. It halts when a special halting state 
halt is reached. For all other states, there is a transition for 
every possible tape symbol. Clearly, the question whether 
such a DTM halts when started with the initial state q0 on 
the empty tape is undecidable.

Let M = (Q,�, �, q0) be such a DTM. In order to encode 
the halting problem for M into a subsumption problem, we 
assume without loss of generality that {r, t} ⊆ NR (for “right” 
and “then”) and Q ∪ 𝛴 ∪ {H,N} ⊆ NC (the latter two for 
“halt” and “not-head”).

The idea is to construct a set of GCIs that encodes the 
transition function � of M such that a model should be a 
structure like the one shown in Fig. 2, which corresponds to 
the unique run of the machine started with the initial state q0 
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on the empty tape (where xi,j is the letter at position j at step 
i of the run, and qi,j is either N, if the head is not at position 
j at step i, or the state of the machine at step i otherwise).

More formally, the TBox TM consists of the global RVM 
tr ⊑ rt together with the following GCIs, whose rôle will 
be explained later: 

	 1.	 ∀t.H ⊑ H

	 2.	 ∀r.H ⊑ H

	 3.	 B ⊑ ∀r.(B ⊓ N)

	 4.	 N ⊓ a ⊑ ∀t.a for all a ∈ 𝛴

	 5.	 N ⊓ ∀rr.N ⊑ ∀tr.N

	 6.	 $ ⊓ ∀r.N ⊑ ∀t.N

	 7.	 ∀r.(q ⊓ a) ⊑ ∀t.(N ⊓ ∀r.(b ⊓ ∀r.q�))

		    if �(q, a) = (q�, b,→)

	 8.	 ∀r.(q ⊓ a) ⊑ ∀t.(q� ⊓ ∀r.(b ⊓ ∀r.N))

		    if �(q, a) = (q�, b,←)

	 9.	 (q ⊓ a) ⊑ H if 𝛿(q, a) = halt

	10.	 (q ⊓ $) ⊑ ∀t.($ ⊓ ∀r.q)

Intuitively, these GCIs have the following meaning:

•	 The first two GCIs propagate the information that 
the machine has reached the halting state backwards 
through time and space (see Fig. 2).

•	 The third GCI reflects the fact that, if there is a B on a 
cell, then the machine never went in a position further 
than the one of this cell (since the machine never writes 
B). Thus, the letter of any cell to the right of a B should 
be B too, and the head of the machine cannot be there.

•	 The fourth GCI reflects the fact that, if the head is not 
on a cell at step n, then the letter on this cell should be 
the same at step n + 1.

•	 The fifth GCI reflects the fact that the head of the tape 
can only move one cell at a time, so if the head is not 
directly to the left or to the right of a cell at step n, it 
cannot be on this cell at step n + 1.

•	 The sixth GCI reflects the same kind of idea: if the head 
is not directly to the right of the leftmost cell at step n, 
then it cannot be on this cell at step n + 1.

•	 The seventh GCI describe the behavior of the machine 
when it makes a transition that moves to the right. Note 
that the left-hand side of this GCI applies to a tape 
position j − 1 that is immediately to the left of the posi-
tion j where the head is. It checks whether the state is 
q and the letter at position j is a, and then ensures the 
changes required by the transition �(q, a) = (q�, b,→) 
are realized for the next time point t + 1 , i.e., the head 
is not at the current position j − 1 , at the position j we 
now have the symbol b, the head is two positions to the 
right (i.e., at position j + 1 ) with state q′ . Note that the 
fifth GCI ensures that the head cannot be at position j 
at time point t + 1.

•	 The working of the eighth GCI can be explained simi-
larly.

•	 The ninth GCI recognizes the fact that the machine 
halts. This information is then propagate backwards by 
the first two GCIs.

•	 The tenth GCI describes the fact that, when the head is 
on the $ symbol, the machine has to go right and stay 
in the same state.

The following lemma shows the correctness of the reduc-
tion, and thus yields the undecidability result stated in 
Theorem 4.

Lemma 1  The DTM M halts when started with the initial 
state q0 on the empty tape iff

Proof  (Sketch) “ ⇐ ” If M does not halt then one can use 
its run to create a model of TM that looks like the structure 
depicted in Fig. 2, and where the element in the upper left 
corner belongs to the left-hand side $ ⊓ ∀r.(B ⊓ q0) of the 
subsumption statement. Since the machine does not halt, 
one can interpret H as the empty set without violating the 
GCIs (1), (2), and (9). In fact, if H is empty then ∀t.H is 
also empty since every element has a t-successor, and thus 
cannot satisfy this value restriction. This shows that GCI 
(1) is satisfied. The same argument applies to GCI (2). GCI 
(9) is satisfied since the machine does not reach the halting 
state by assumption. Thus, we have a counterexample to the 
subsumption.

“⇒ ” The converse direction is a bit trickier. Basically, 
we show that a counterexample (x, I) to the subsumption 

$ ⊓ ∀r.(B ⊓ q0) ⊑TM
H.

. . .
.
.
.

.
.
.

.
.
.

r r r

r r r

t t t

t t t

space

time

x0,0 � q0,0 x0,1 � q0,1 x0,2 � q0,2 . . .

x1,0 � q1,0 x1,1 � q1,1 x1,2 � q1,2

Fig. 2   A model of T
M

 corresponding to the unique run of M 
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contains the structure induced by the run of M and depicted 
in Fig. 2 as a kind of substructure. To be more precise, we 
can show by induction on n that, for all i, if (x, y) ∈ (tnri)I , 
then

•	 y ∈ aI where a is the letter on the i-th cell at the n-th step 
of the run,

•	 y ∈ NI if the head of the machine is not on the i-th cell 
at the n-th step, and

•	 y ∈ qI if the head is on the i-th cell and the state of the 
machine is q at the n-th step.

Note that the implications in the other direction need not 
hold, i.e., it can well be that y also belongs to other states q′ 
or letters a′ in I  , and that y may also belong to N if the head 
is actually there.

Nevertheless, we can then argue that, since the right-hand 
side H of the subsumption does not contain the individual 
x, the run must be a non-halting run. Otherwise, an element 
y ∈ HI reachable from x via the roles r and t would be forced 
to exist due to GCI (9), and H would then be propagated 
back to x due to the first two GCIs. 	� ◻

Using the fact that GCIs and local RVMs can express 
global RVMs, or the trick employed in the proof of Corol-
lary 2, we can transfer the undecidability result stated in 
Theorem 4 also to local RVMs and TBoxes of a restricted 
form.

Corollary 3  Subsumption C ⊑T D in FL0 extended with local 
role-value maps is undecidable even if

1.	 C, D are FL0 concepts and T  contains GCIs between 
FL0 concepts and a single GCI of the form ⊤ ⊑ (tr ⊆ rt) 
involving a local RVM, or

2.	 D is an FL0 concept, T  contains only GCIs between FL0 
concepts, and C = C� ⊓ E for an FL0 concept C′ and a 
fixed concept E of FL0 extended with local role-value 
maps.

6 � Conclusion

In this paper we have, on the one hand, given a more direct 
proof of the known fact that subsumption in FL0 w.r.t. GCIs 
is ExpTime-hard. We believe that the ideas underlying the 
reduction employed in this proof may turn out to be help-
ful for showing ExpTime-hardness for other inexpressive 
DLs. On the other hand, we have determined decidable and 
undecidable cases for FL0 extended with role-value maps. 
For the case without a TBox, we have shown that admissible 

global RVMs leave the subsumption problem decidable. 
What remains open is the question whether the same is true 
for admissible local RVMs. For the decidable cases, it would 
also be interesting to investigate the complexity of the sub-
sumption problem, depending on the form of the available 
RVMs.
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