
Vol.:(0123456789)1 3

KI - Künstliche Intelligenz (2020) 34:291–301
https://doi.org/10.1007/s13218-020-00651-0

TECHNICAL CONTRIBUTION

Role‑Value Maps and General Concept Inclusions in the Minimal
Description Logic with Value Restrictions or Revisiting Old Skeletons
in the DL Cupboard

Franz Baader1 · Clément Théron2

Received: 31 October 2019 / Accepted: 6 March 2020 / Published online: 14 March 2020
© The Author(s) 2020

Abstract
We investigate the impact that general concept inclusions and role-value maps have on the complexity and decidability of
reasoning in the description logic FL

0
 . On the one hand, we give a more direct proof for ExpTime-hardness of subsumption

w.r.t. general concept inclusions in FL
0
 . On the other hand, we determine restrictions on role-value maps that ensure decid-

ability of subsumption, but we also show undecidability for the cases where these restrictions are not satisfied.

Keywords  Description logic · Value restrictions · Role-value maps · FL0 · Decidability and complexity

1  Introduction

Description logics (DLs) [6] are a well-investigated family
of logic-based knowledge representation formalisms, which
are used to define ontologies in applications domains such
as the semantic web [9, 19] and in biology and medicine
[20]. DLs are descended from semantic networks [28, 29]
and frames [26] via the knowledge representation system
KL-ONE [17]. The design goal of KL-ONE was, on the one
hand, to provide its users with a knowledge representation
(KR) language that is equipped with a well-defined syntax
and a formal, unambiguous semantics, which was not always
true for early KR approaches such as semantic networks and
frames. On the other hand, reasoning over knowledge bases
written in this language was supposed to be tractable (i.e.,
realizable by polynomial-time inference procedures) [15].
Thus, it came as a considerable shock to the community
when it was shown that the second requirement is not satis-
fied by the language employed by KL-ONE for two inde-
pendent reasons.

On the one hand, KL-ONE provided its users with the
concept constructor role-value maps (RVMs), which can be
employed to link role successor sets. For example, the con-
cept described by the RVM

collects all individuals that know all the friends of
their children. The general form of such an RVM is
(r1◦⋯◦rm ⊆ s1◦⋯◦sn) , where r1,… , sn are roles (i.e.,
binary predicates). It was shown in [30] that the presence
of RVMs actually makes reasoning in KL-ONE undecid-
able. As a consequence, general RVMs were removed from
KL-ONE-based KR languages, and are not available in any
of the DLs employed by today’s DL systems. One possi-
bility for avoiding the undecidability caused by RVMs is
to restrict the roles occurring in them to being functional.
This approach was employed by the CLASSIC system [14],
where the corresponding constructor is called the same-as
constructor. However, using same-as in place of RVMs only
overcomes the undecidability problem if no general concept
inclusions (GCIs) are available in the terminological formal-
ism [5].

An alternative approach for restricting RVMs with the
goal of achieving decidability is to consider global role-
value maps in which role composition on the right-hand side
is disallowed. In contrast to the local RVMs used in the KL-
ONE system, a global RVM is not a concept constructor, but
a terminological axiom, which states that the inclusion must

(�����◦������ ⊆ �����)

 *	 Franz Baader
	 franz.baader@tu‑dresden.de

	 Clément Théron
	 clement.theron@ens‑paris‑saclay.fr

1	 TU Dresden, Dresden, Germany
2	 ENS Paris-Saclay, Cachan, France

http://crossmark.crossref.org/dialog/?doi=10.1007/s13218-020-00651-0&domain=pdf

292	 KI - Künstliche Intelligenz (2020) 34:291–301

1 3

hold for all individuals in the interpretation domain. For
example, while (�����◦������ ⊆ �����) is a concept that is
interpreted as the set of individuals that know all the friends
of their children, the global RVM

states that all individuals in the interpretation domain know
all the friends of their children.1 Global RVMs may still
cause undecidability [3, 8] unless one imposes additional
restrictions. For the inexpressive DL EL [4, 10], adding
global RVMs of the form (r1◦⋯◦rm ⊑ s) leaves reasoning
not only decidable, but also tractable even in the presence
of GCIs [3, 4]. For more expressive DLs, additional restric-
tions on such RVMs need to be imposed to keep reasoning
decidable [22, 24].

On the other hand, KL-ONE provided its users with the
concept constructors conjunction ( ⊓ ) and value restriction
( ∀r.C ). For example, using these constructors one can build
the concept

which describes the persons all of whose children have only
nice friends. It was shown in [27] that the subsumption prob-
lem in the DL FL0 , which has only these two constructors,
is coNP-hard in the presence of the simplest terminological
formalism, which are so-called acyclic TBoxes. For cyclic
TBoxes, the complexity increases to PSpace [1, 25], and for
general TBoxes consisting of GCIs even to ExpTime [4, 21].
Thus, w.r.t. general TBoxes, subsumption reasoning in FL0
is as hard as in ALC , its closure under negation.

In the present paper, we first reconsider this ExpTime-
hardness result. The proof in [4] leads to a rather long chain
of reductions, which makes it hard to understand the reasons
for ExpTime-hardness and to reuse the proof ideas for other
DLs. The proof of ExpTime-hardness given in [21] is by
a reduction from deciding the winner in pushdown games
[31], but the argument used for showing the correctness of
this reduction is based on a non-trivial proof-theoretic char-
acterization of subsumption in FL0 w.r.t. general TBoxes.
In Sect. 3, we provide a new reduction from the problem of
deciding the winner in countdown games [23], for which we
must show, among other things, that we can express (binary
representations) of natural numbers and subtraction of such
numbers in FL0 . ExpTime-hardness for pushdown games
and for countdown games was respectively shown in [23,
31] by direct reductions from the problem of the acceptance
of a word by a linearly space-bounded alternating Turing
machine.

(�����◦������ ⊑ �����)

������ ⊓ ∀����� ⋅ ∀������ ⋅ ����,

In the second part of the paper (Sects. 4, 5), we inves-
tigate the effect that adding RVMs has on the decidabil-
ity of subsumption in FL0 . On the one hand, we introduce
two classes of global RVMs that leave subsumption with-
out GCIs decidable. A simple example of a class of RVMs
that satisfy both restrictions are length-preserving RVMs.
On the other hand, we show that the restrictions made to
achieve decidability are really needed: (1) in the presence
of GCIs, even adding a single length-preserving RVM can
cause undecidability; (2) for unrestricted RVMs, we give a
simpler proof of the result first shown in [30] that undecid-
ability even holds without GCIs. The results (1) and (2) are
independent of whether global or local RVMs are used.

Some of the more technical proofs of these results are not
given in detail here. They can be found in [12].

2 � The Description Logic FL
0

In Description Logic, concept constructors are used to build
complex concepts out of concept names (unary predicates)
and role names (binary predicates). A particular DL is deter-
mined by the available constructors. Starting with mutually
disjoint countably infinite sets NC and NR of concept and role
names, respectively, the set of FL0 concepts is inductively
defined as follows:

•	 ⊤ (top concept) and every concept name A ∈ NC is an
FL0 concept,

•	 if C, D are FL0 concepts and r ∈ NR is a role name, then
C ⊓ D (conjunction) and ∀r.C (value restriction) are FL0
concepts.

The semantics of FL0 concepts is defined using first-order
interpretations I = (ΔI, ⋅I) consisting of a non-empty
domain ΔI and an interpretation function ⋅I that assigns a
set AI ⊆ ΔI to each concept name A, and a binary relation
rI ⊆ ΔI × ΔI to each role name r. This function is extended
to FL0 concepts as follows:

A (general) FL0 TBox T is a finite set of general concept
inclusions (GCIs), which are expressions of the form C ⊑ D
for FL0 concepts C, D. The interpretation I is a model of
T if it satisfies all the GCIs in T  , i.e. CI ⊆ DI holds for
all GCIs C ⊑ D in T  . Given an FL0 TBox T and two FL0
concepts C, D, we say that C is subsumed by D (denoted
as C ⊑T D ) if CI ⊆ DI for all models I of T  . These two
concepts are equivalent (denoted as C ≡T D ) if C ⊑T D and
D ⊑T C . If the TBox is empty, we write C ⊑ D and C ≡ D
instead of C ⊑∅ D and C ≡∅ D.

⊤I = ΔI and (C ⊓ D)I = CI ∩ DI,

(∀r.C)I = {x ∈ ΔI ∣ ∀y ∈ ΔI∶ (x, y) ∈ rI ⇒ y ∈ CI}.

1  Following the syntax introduced in [2], we distinguish between
local and global RVMs by using ⊆ in the syntax of the former and ⊑
in the syntax of the latter.

293KI - Künstliche Intelligenz (2020) 34:291–301	

1 3

For FL0 , the subsumption problem w.r.t. general TBoxes
is ExpTime-complete: the upper bound follows from the
well-known ExpTime upper bound for ALC [8], which con-
tains FL0 as a sublogic. Previous proofs of the lower bound
can be found in [4, 21]. In the next section, we will provide
a new proof of this hardness result.

Without TBox, subsumption and equivalence in FL0 can
be characterized using inclusion of formal languages. This
characterization relies on transforming FL0 concepts into
an appropriate normal form as follows. First, the semantics
given to the concept constructors in FL0 implies that value
restrictions distribute over conjunction, i.e., for all FL0 con-
cepts C, D and roles r it holds that ∀r.(C ⊓ D) ≡ ∀r.C ⊓ ∀r.D .
Using this equivalence as a rewrite rule from left to right,
every FL0 concept can be transformed into an equivalent
one that is either ⊤ or a conjunction of concepts of the form
∀r1 ⋯∀rn.A , where r1,… , rn are role names and A is a con-
cept name. Such a concept can be abbreviated as ∀w.A ,
where w = r1 … rn is a word over the alphabet NR . Note
that n = 0 means that w is the empty word � , and thus ∀�.A
corresponds to A. Furthermore, a conjunction of the form
∀w1.A ⊓⋯ ⊓ ∀wm.A can be written as ∀L.A where L ⊆ N∗

R
 is

the finite language {w1,… ,wm} . We use the convention that
∀�.A corresponds to the top concept ⊤ . Thus, any two FL0
concepts C, D containing only the concept names A1,… ,A

�

can be represented as

where K1, L1,… ,K
�
, L

�
 are finite languages over the alpha-

bet of role names NR . We call this representation the lan-
guage normal form (LNF) of C, D.

If C, D have the LNFs shown above, then C ⊑ D holds
iff L1 ⊆ K1,… , L

�
⊆ K

�
 [11]. A similar characterization of

subsumption can actually also be given in the presence of a
TBox, but then K1,… , L

�
 are regular languages represented

by automata of size exponential in the size of T [7].

3 � ExpTime‑Hardness of FL
0
 with GCIs

We give a new proof of the fact that subsumption in FL0
w.r.t. a general TBox is ExpTime-hard. This proof is by
reduction from the problem of deciding the winner in
countdown games, which are two-player games for which
deciding which player has a winning strategy is known to
be ExpTime-complete [23].

As defined in [23], a countdown game is given by a
weighted graph (S, T), where S is the finite set of states
and T ⊆ S × (ℕ ⧵ {0}) × S is the finite transition relation.
If t = (s, d, s�) ∈ T  , then we say that the duration of the
transition t is d. A configuration of a countdown game is

(1)
C ≡ ∀K1.A1 ⊓⋯ ⊓ ∀K

𝓁
.A

𝓁
,

D ≡ ∀L1.A1 ⊓⋯ ⊓ ∀L
𝓁
.A

𝓁
,

a pair (s, c), where s ∈ S is a state and c ∈ ℕ . A move of a
countdown game from a configuration (s, c) is performed
in the following way: first Player 1 chooses a number d
such that 0 < d ≤ c and there is s� ∈ S with (s, d, s�) ∈ T  ;
then Player 2 chooses a transition (s, d, s�) ∈ T of duration
d; the new configuration resulting from this move is then
(s�, c − d) . There are two types of terminal configurations,
i.e., configurations (s, c) in which no more moves are avail-
able. If c = 0 then the configuration (s, c) is terminal and is
a winning configuration for Player 1. If for all transitions
(s, d, s�) ∈ T from the state s we have that d > c , then the
configuration (s, c) is terminal and it is a winning configu-
ration for Player 2. The algorithmic problem of deciding
the winner in countdown games is the following problem:
given a weighted graph (S, T) and a configuration (s0, c0) ,
where all the durations of transitions and the number c0 are
assumed to be represented in binary, to determine whether
Player 1 has a winning strategy from the configuration
(s0, c0) . Formally, a winning strategy can be described
by a tree whose nodes are labeled with configurations.
The root is labeled with the initial configuration, and the
leaves are labeled with terminal configurations that are
winning configurations for Player 1. A node labeled with
a non-terminal configuration (s, c) has successor nodes
that correspond to one choice of Player 1 followed by all
possible choices of Player 2, i.e., to obtain the successors
of this node, one chooses one number d that corresponds
to an eligible choice of Player 1, and then adds successors
nodes for all possible choices that Player 2 has: for each
transition (s, d, s�) ∈ T a node with label (s�, c − d) is added.
Theorem 2 in Section 4.2 of [23] shows that the problem
of deciding whether such a winning strategy exists for a
given countdown game and initial configuration is Exp-
Time-complete by a reduction from the word problem for
linearly space-bounded alternating Turing machine.

When describing such games in a logic, one must, on
the one hand, be able to express the alternation of choices
between the players. In the presence of both existential and
universal quantifiers, this is usually easy to achieve, but it is
less clear how to do this in FL0 , which has only universal
quantification at its disposal. We will discuss at the end of
this section how this is achieved in our reduction. In [21],
this point is somewhat hidden in the proof-theoretic argu-
ment. On the other hand, one must be able to describe the
moves and the winning conditions, which for countdown
games means that one must be able to represent subtraction
and a zero test. Again, it is quite surprising that this is pos-
sible in a logic like FL0 , which has conjunction as its only
Boolean operation. In [21], this part appears to be easier
since configurations in pushdown games are words over
a finite alphabet, which can directly be represented using
sequences of value restrictions.

294	 KI - Künstliche Intelligenz (2020) 34:291–301

1 3

Proposition 1  Deciding the winner in a countdown game
(S, T) with initial configuration (s0, c0) can be reduced in
polynomial time to non-subsumption in FL0 w.r.t. a general
TBox.

Proof  (sketch2) Let � be the maximum between the number
of bits needed to represent c0 and the number of bits needed
to represent any of the numbers occurring in T in binary.

We assume without loss of generality that

Note that the number of concept and role names contained
in these sets is polynomial in the size of the input since � is
bounded by the size of the binary representation of the larg-
est number occurring in the input.

The idea is that each element of an interpretation I is
labeled by one (or several3) number(s) written in binary:
�i = 0 means that the ith bit of this number is equal to 0,
and �i = 1 that it is equal to 1. In addition, if (x, y) ∈ iI , the
number labeling y should be the same as the one labeling
x minus 2i.

The subsumption relationship we want to test is

S ⊎ {F} ⊎

�⋃

i= 0

{�i = 0, �i = 1} ⊆NC, and

{s̄ ∣ s ∈ S} ⊎ {i ∣ 0 ≤ i ≤ �} ⊆NR.

where ĉ0 stands for the conjunction of all �i = ki , where ki
is the value of the ith bit in the binary representation of c0 .
The concept F stands for “fail”, i.e., a configuration where
Player 1 has no winning strategy.

The goal is to define the TBox T such that any model
of T that does not satisfy the subsumption corresponds
to a winning strategy for Player 1. To do this, we use the
fact that, if Player 1 has a winning strategy in configura-
tion (s0, c0) whose first step chooses duration d, then for all
(s0, d, s

�) ∈ T  , Player 1 must also have a winning strategy
in configuration (s�, c0 − d) . Thus, if s1,… , sp are the states
such that (s0, d, si) ∈ T  , then we can construct inductively
the structures corresponding to the winning strategies on
(si, c0 − d) , as shown in Fig. 1 (where Ii is the interpreta-
tion corresponding to a winning strategy in configuration
(si, c0 − d)).

Given a duration d occurring in T, we write ∀d̃ as an
abbreviation for ∀i1i2 … ik , where i1, i2,… , ik are the bits
equal to 1 in the binary representation of d, written in
decreasing order.4

The TBox T consists of the following GCIs:

1.	 s ⊑ ∀d̃s̄.s� for all (s, d, s�) ∈ T ,

s0 ⊓ ĉ0 ⊑T F,

s0 � ĉ0 ̂c0 − 2i1 c0 − 2i1 − 2i2
∧

ĉ0 − d

s1 � ĉ0 − d

sp � ĉ0 − d

. . .
.
.
.

i1 i2 i3 ik s̄0

. . .

. . .

d̃1s̄1

d̃ps̄p

I1

Ip

Fig. 1   The interpretation corresponding to a winning strategy of Player 1

2  A more detailed proof of this result can be found in [12].
3  The absence of negation prevents us from enforcing a single num-
ber per element.

4  The only condition needed is that the same number must always be
represented in the same order, and using decreasing order is an easy
way to achieve this.

295KI - Künstliche Intelligenz (2020) 34:291–301	

1 3

2.	 s ⊓ �i = 1 ⊓ ⊓d∈Es
∀d̃s̄.F ⊑ F for all s ∈ S and all

i, 1 ≤ i ≤ � , where Es = {d ∣ ∃s� s.t. (s, d, s�) ∈ T},
3.	 �i = x ⊑ ∀k.�i = x for all 0 ≤ i < k ≤ � and x ∈ {0, 1},
4.	 �i = 1 ⊓ �j=x ⊑ ∀k.�j=x for all k ≤ i < j and x ∈ {0, 1},
5.	 ⊓i−1

j=k
�j=0 ⊓ �i = 1 ⊑ ∀k.(⊓i−1

j=k
�j=1 ⊓ �i = 0) for all k ≤ i,

6.	 �i = x ⊑ ∀s̄.�i = x for all s ∈ S , 1 ≤ i ≤ � , and x ∈ {0, 1},
7.	 ⊓�

j=i
�j=0 ⊑ ∀i.F for all i, 1 ≤ i ≤ �,

8.	 F ⊑ ∀i.F for all i, 1 ≤ i ≤ �,
9.	 F ⊑ ∀s̄.F for all s ∈ S.

The intuition underlying these GCIs is the following:

•	 The GCIs in 1. say that, if we choose the duration d, then
we must consider every state accessible this way.

	  The GCIs in 2. reflect the fact that, if at least one of the
configurations in which we could end up this way does
not have a winning strategy, then choosing d does not
yield a winning strategy either, unless the number of the
configuration is already 0.

•	 The GCIs in 3., 4., 5., and 6. are there to ensure that
subtraction is performed properly.

•	 The GCIs in 7. say that, if we choose a duration greater
than the number in the current configuration (which is
checked by verifying that the subtraction would return a
negative number), then this leads to a failure for Player 1.
The GCIs in 8. and 9. propagate this information forward
to the next element corresponding to a configuration (so
that it can then be propagated backwards using the GCIs
in 2.).

Given this intuition, it is easy to see that a winning strat-
egy for Player 1 can be used to construct a model of T of
the form shown in Fig. 1, in which F is interpreted as the
empty set. This yields a counterexample to the subsump-
tion. Conversely, we can show that a counterexample to the
subsumption can be used to extract a winning strategy for
Player 1, but proving this is a bit more involved (see [12] for
details). 	� ◻

Given the ExpTime-hardness result for deciding the
winner in countdown games shown in [23], this proposition
yields the following hardness result for FL0.

Theorem 1  Subsumption in FL0 w.r.t. general TBoxes is
ExpTime-hard.

Before closing this section, let us analyze how our reduc-
tion has addressed the two main requirements for such a
reduction mentioned above Proposition 1. First, consider
the alternation of choices between the players. The fact
that it is sufficient that one choice of Player 1 is success-
ful is expressed by the GCI 2. In fact, if one considers the

contraposition of this GCI, then it becomes clear that is says:
if Player 1 does not fail, then it already has reached a win-
ning configuration or there is a successor configuration in
which it does not fail. The universal quantification over the
moves of Player 2 is expressed using the GCI 1. Regarding
the representation of numbers in binary, one should note
that we cannot enforce that every individual is associated
with only one number. In fact, since FL0 cannot express dis-
jointness of concepts, we cannot prevent an individual from
belonging to both �i = 0 and �i = 1 . This is not a problem
for the following reasons. Of course, when constructing an
interpretation from a winning strategy, one can just build a
counter-interpretation to the subsumption where every ele-
ment has a unique associated number, which is given by the
strategy tree. Conversely, having more numbers in a counter-
interpretation can only make satisfying the conditions for a
winning strategy formulated by the GCIs harder to achieve.
By removing superfluous elements and numbers, one can
modify the given interpretation to one that looks like the one
depicted in Fig. 1 and still satisfies all GCIs. From this, the
winning strategy can then be extracted.

4 � Decidable Role‑Value Maps in FL
0

As already mentioned in the introduction, role-value maps
come in two variants [8]: local RVMs as originally intro-
duced in KL-ONE are concept constructors whereas global
RVMs are axioms that constrain the interpretation of roles.
To be more precise,

•	 a local role-value map is a concept constructor with
syntax (r1◦⋯◦rm ⊆ s1◦⋯◦sn) where r1,… , sn are role
names. To define its semantics, let

 for role names t1,… , tk , where “ ◦ ” on the right-
hand side is composition of binary relations. Then,
(r

1
◦⋯◦r

m
⊆ s

1
◦⋯◦s

n
)I = {d ∈ ΔI ∣ (r

1
◦⋯◦r

m
)I(d)

⊆ (s
1
◦⋯◦s

n
)I(d)}.

•	 a global role-value maps has the syntax
(r1◦⋯◦rm ⊑ s1◦⋯◦sn) , and is viewed to be an
axiom. An interpretation I is a model of this axiom if
(r1◦⋯◦rm)

I(d) ⊆ (s1◦⋯◦sn)
I(d) holds for all d ∈ ΔI.

In the presence of GCIs, local RVMs can express global ones
since the global RVM (r1◦⋯◦rm ⊑ s1◦⋯◦sn) has the same
models as the GCI ⊤ ⊑ (r1◦⋯◦rm ⊆ s1◦⋯◦sn).

In the present section we consider only global RVMs with-
out GCIs.

(t1◦⋯◦tk)
I(d) = {e ∣ (d, e) ∈ t1

I
◦⋯◦tk

I},

296	 KI - Künstliche Intelligenz (2020) 34:291–301

1 3

To simplify notation, we write t1 … tk in place of
t1◦⋯◦tk , and again view this expression as a word over the
alphabet of role names. Thus, a set T of global RVMs can be
written as T = {u1 ⊑ v1,… , uk ⊑ vk} where u1,… , vk ∈ N∗

R
 .

Such a set induces the following string-rewriting relation
[13] between words over NR:

As usual, we denote the reflexive, transitive closure of →T
as

∗
−→

T

 . Given a formal language L over NR , i.e., a subset of
N∗
R
 , we now define the languages

which can be used to characterize subsumption w.r.t. T as
follows.

Theorem 2  Let T be a finite set of global RVMs, and C, D
be FL0 concepts with LNFs as in (1). Then the following
are equivalent:

1.	 C ⊑T D , i.e., CI ⊆ DI for all models of T ;
2.	 Li ⊆ K

↓T
i

 for all i, 1 ≤ i ≤ �;
3.	 {w}↑T ∩ Ki ≠ � for all i, 1 ≤ i ≤ � and w ∈ Li.

Regarding the proof of this theorem, first note that 2. and
3. are easily seen to be equivalent. In fact, given a word
w ∈ Li , we have w ∈ K

↓T
i

 iff ∃y ∈ Ki with y
∗
−→

T

w iff
∃y ∈ Ki with y ∈ {w}↑T iff {w}↑T ∩ Ki ≠ �.

Our proof of 2. ⇒ 1. uses the following proposition,
which is an easy consequence of the semantics of global
RVMs and value restrictions, and our definition of →T .

Proposition 2  If x
∗
−→

T

y , then ∀x.A ⊑T ∀y.A holds for all

A ∈ NC.

This proposition yields that C ⊑T ∀w.Ai holds for all
w ∈ K

↓T
i

 and all i, 1 ≤ i ≤ � . If Li ⊆ K
↓T
i

 , then this implies
that C ⊑T ∀Li.Ai for all i, 1 ≤ i ≤ � , and thus we have C ⊑T D

.
We show 1. ⇒ 2. by contraposition. Thus, assume that

there is an i and a word w = t1 … tp such that w ∈ Li⧵K
↓T
i

 .
We use w and i to build a counterexample to the subsump-
tion C ⊑T D , i.e., a model Iw,i of T in which CI ⊈ DI  .
To construct Iw,i , we start with a sequence of individuals
d0,… , dp and connect them with the roles in w, i.e., we set
(d0, d1) ∈ t

Iw,i

1
,… , (dp−1, dp) ∈ t

Iw,i
p  . Then we extend Iw,i with

v →T u iff there are x, y ∈ N∗
R
and 1 ≤ i ≤ n

such that v = xviy and u = xuiy.

L↓T ={x ∈ N∗
R
∣ ∃y ∈ L with y

∗
−→

T

x},

L↑T ={x ∈ N∗
R
∣ ∃y ∈ L with x

∗
−→

T

y},

additional individuals in order to add the role paths required
by the RVMs in T  . Assume that r1 … rm ⊑ s1 … sn is a RVM
in T  , and there are two individuals d, e in the domain of Iw,i
such that e ∈ (r1◦⋯◦rm)

Iw,i(d) , but e ∉ (s1◦⋯◦sn)
Iw,i(d) .

Then we add new individuals f1,… , fn−1 to the domain of
Iw,i and connect them via the roles s1,… , sn as follows:
(d, f1) ∈ s

Iw,i

1
, (f1, f2) ∈ s

Iw,i

2
,… , (fn−1, e) ∈ s

Iw,i
n  . In general,

this process needs to be iterated infinitely, and the result-
ing interpretation Iw,i is the limit obtained by this infinite
process. To ensure that this interpretation indeed satisfies
all RVMs in T  , the extension process needs to be organized
in a fair way, i.e., for every pair of individuals d, e and RVM
r1 … rm ⊑ s1 … sn violated by this pair (as described above),
we must eventually apply an extension step that removes
this violation. This is, however, not hard to achieve (e.g.,
by labeling such violations with the iteration step in which
they were introduced, and then always choosing one of the
oldest violations). Finally, we interpret concept names in Iw,i
as follows: all individuals except for dp belong to all concept
names, whereas dp belongs to all concept names except for
Ai . The following proposition is now easy to show.

Proposition 3  The interpretation Iw,i satisfies all the RVMs
in T  , and for all words u we have that (d0, dp) ∈ uIw,i implies
u

∗
−→

T

w.

Since Iw,i is a model of T  , it is sufficient to show that
d0 ∈ CIw,i ⧵ DIw,i . First, suppose that d0 ∈ CIw,i does not hold.
By our definition of the interpretation of concept names in
Iw,i , this can only be the case if there is a word u ∈ Ki such
that (d0, dp) ∈ uIw,i . The above proposition yields u

∗
−→

T

w ,
and thus w ∈ K

↓T
i

 , contradicting our choice of w. Conse-
quently, we must have d0 ∈ CIw,i . Finally, we have d0 ∉ DIw,i
since w ∈ Li , (d0, dp) ∈ wIw,i , and dp ∉ A

Iw,i

i
 . This completes

the proof of Theorem 2.
In order to derive decidability results for subsumption

w.r.t. RVMs in FL0 from this theorem, we need to find
restrictions under which the condition 2. or 3. is decidable.
We say that the finite set of RVMs T is downward (upward)
admissible if for every finite language L we can effectively
compute a representation of L↓T ( L↑T  ) for which the word
problem is decidable. We say that T is admissible if it is
downward admissible or upward admissible.

Corollary 1  The following problem is decidable:

Given:	� A finite, admissible set of global RVMs T and
FL0 concepts C, D.

Question:	� Does C ⊑T D hold or not?

297KI - Künstliche Intelligenz (2020) 34:291–301	

1 3

Proof  If T is downward admissible, then we can use condi-
tion 2 in Theorem 2 to decide subsumption: to test whether
Li ⊆ K

↓T
i

 , we must decide for each of the finitely many words
u ∈ Li whether u ∈ K

↓T
i

 , which is possible since the word
problem for K↓T

i
 is decidable.

If T is upward admissible, then we can use condition
3 in Theorem 2: to check whether{w}↑T ∩ Ki ≠ � it is suf-
ficient to decide, for the finitely many words u ∈ Ki whether
u ∈ {w}↑T  . 	� ◻

To the best of our knowledge, this is the first decidability
result for RVMs where role composition is allowed on the
right-hand side. On the one hand, one can use our result
to find syntactic restrictions on global RVMs that ensure
decidability.

For example, if all RVMs ui ⊑ vi in T satisfy |ui| ≤ |vi| ,
then L↓T is also finite (and thus trivially has a decidable word
problem) and can effectively be computed. Thus, such a set
of RVMs is downward admissible. Symmetrically |ui| ≥ |vi|
for all RVMs ui ⊑ vi in T implies that T is upward admis-
sible. On the other hand, one can also have downward
(upward) admissible sets of RVMs where the languages L↓T
( L↑T  ) are not necessarily finite, but one can compute a finite
automaton or a pushdown automaton accepting them.

Example 1  Consider the set of global RVMs
T = {rr ⊑ r, s ⊑ ss} . Given a finite language L over the
alphabet {r, s} , the languages L↓T and L↑T need not be finite.
But it is easy to see that they are both regular, and thus
have a decidable word problem, which shows that T is both
upward and downward admissible. For example, given a
word of the form w = rm1sn1 … rmksnk with mi, ni ≥ 1 , we
have {w}↓T = {rm

�
1sn

�
1 … rm

�
k sn

�
k ∣ m�

i
≥ mi, 1 ≤ n�

i
≤ ni}, which

is obviously regular.

In general, one needs to analyze the specific set of RVMs
T to find out whether a finite or pushdown automaton exists
for the upward or downward languages. This is akin to the
approach used in [22, 24] to deal with RVMs without com-
position of roles on the right-hand side, but for expressive
DLs. There, the set of RVMs needs to satisfy a regularity
restriction in order to obtain decidability.

5 � Undecidable Role‑Value Maps in FL
0

The decidability results proved in the previous section
depend, on the one hand, on the absence of GCIs. On the
other hand, they require the string-rewriting system induced

by the role-value maps to be well-behaved (see the definition
of admissible above).

First, we show that, even without GCIs, RVMs can cause
undecidability in FL0 . This result was first proved in [30] for
an extension of FL0

5 with local role value maps of the form
(r1◦⋯◦rm = s1◦⋯◦sn) , which in our notation can be writ-
ten as (r1◦⋯◦rm ⊆ s1◦⋯◦sn) ⊓ (s1◦⋯◦sn ⊆ r1◦⋯◦rm) .
Below, we will first show undecidability for global RVMS,
and then extend this result to the case of local RVMs without
TBox, using an approach first employed in [30]. We will say
more about the connection between our proofs and the one
in [30] after having presented our proofs.

Theorem 3  There exists a fixed finite set of global role-value
maps T such that subsumption of FL0 concepts w.r.t. T is
undecidable.

Proof  We prove this theorem by reduction from the word
problem for string-rewriting systems. As shown in [13]
(Theorem 2.5.9), there is a fixed finite string-rewriting sys-
tem R such that its word problem (i.e., given two words u, v,
decide whether u

∗
↔R v holds or not) is undecidable. Here

∗
↔R denotes the reflexive, transitive, and symmetric closure
of the rewrite relation

where � is the finite alphabet over which the strings in R
are built.

Let R = {(ui, vi) ∣ 1 ≤ i ≤ n} be such a string-rewrit-
ing system over the alphabet � . We set NR = � and
define the set of global RVMs corresponding to R as
TR = {u1 ⊑ v1,… , un ⊑ vn, v1 ⊑ u1,… , vn ⊑ un}.

It is easy to see that the relations
∗
↔R and

∗
−→

TR

 coincide.

Now, assume that, given words u, v over � , we want to
test whether u

∗
↔R v holds. We claim that this is the case iff

∀u.A ⊑TR
∀v.A holds.

In fact, by Theorem 2 we know that ∀u.A ⊑TR
∀v.A holds

iff {v} ⊆ {u}↓TR . The latter is obviously equivalent to
u

∗
−→

TR

v , which in turn is equivalent to u
∗
↔R v . 	� ◻

Using a trick originally introduced in [30], we can eas-
ily transfer this undecidability result from global RVMs to
local ones.

→R = {(xuiy, xviy) ∣ (ui, vi) ∈ R and x, y ∈ �∗},

5  In [30], the logic that is extended with RVMs is actually called
AL , which later on was used in the DL literature [18] to denote the
extension of FL

0
 by atomic negation ( ¬A ) and unqualified existential

restriction ( ∃r.⊤ ). However, in addition to the RVMs only the con-
cept constructors conjunction and value restriction are used in [30] to
show undecidability.

298	 KI - Künstliche Intelligenz (2020) 34:291–301

1 3

Corollary 2  Subsumption in FL0 extended with local role-
value maps is undecidable even without a TBox.

Proof  Given a set of global RVMs T for which subsump-
tion of FL0 concepts w.r.t. T is undecidable and two FL0
concepts C, D, we build an FL0 concept with local RVMs E
such that C ⊑T D holds iff C ⊓ E ⊑ D.

Let � be the set of all role names occurring in C, D, and
T  , and let s be a new role name not contained in � . We
define the concept E as follows:

The local RVMs in the second line ensure that, for any ele-
ment d of E, the role s can be used to access all elements
reachable via a role chain from d, and thus the first line
enforces that d and all these reachable elements satisfy the
RVMs in T  . Given this intuition, it is then easy to see that
the statements C ⊑T D and C ⊓ E ⊑ D are indeed equiva-
lent. 	� ◻

Regarding the comparison with the proof in [30], first
note that global RVMs are not considered there, but one
could easily adapt the approach in [30] to show undecid-
ability also for global RVMs. Second, as mentioned above,
the RVMs considered in [30] use equality rather than
inclusion, which appears to be less expressive, and thus
makes the undecidability result stronger. However, consid-
ering our reduction in the proof of Theorem 3, we see that
we actually have the RVMs in both directions, and thus
can replace them by ones using equality only. This is not
the case for Corollary 2 since there the local RVMs (r ⊆ s)
and (sr ⊆ s) are used only in one direction. In the general
setting considered in that corollary, adding the RVMs in
the other direction would not work. Basically, this is the
reason why the proof in [30] uses a reduction from the
word problem for finitely presented groups, rather than the
word problem for finitely presented semigroups (which is
the same as the word problem for string-rewriting systems
employed in our proof). On a quite technical level, this is
explained in [30] in a remark below the proof of Theo-
rem 3.5. The main difference between the two proofs is,
however, that we obtain our result as a simple consequence
of the elegant characterization of subsumption in FL0 with
RVMs given in Theorem 2, whereas the proof of correct-
ness of the reduction in [30] is rather technical.

Next, we show that, in the presence of GCIs, undecid-
ability can also be caused by global RVMs that satisfy
the admissibility condition introduced in the previous sec-
tion. In fact, we will see that a single global RVM of the
form tr ⊑ rt is sufficient to obtain undecidability. Since

E = ⊓u⊑v∈T (u ⊆ v) ⊓ ∀s.
(
⊓u⊑v∈T(u ⊆ v)

)

⊓r∈𝛴 (r ⊆ s) ⊓ ⊓r∈𝛴(sr ⊆ s).

this RVM is length-preserving, it is both downward and
upward admissible.

Theorem 4  Subsumption C ⊑T D of FL0 concepts C, D
w.r.t.TBoxes T consisting of FL0 GCIs and global role-value
maps is undecidable. This is the case even if T contains only
GCIs and a single global RVM of the form tr ⊑ rt.

Readers that are familiar with the undecidability proof
for subsumption in ALC with global RVMs given in [8],
which is by reduction from the tiling problem, may think
that the proof of the above theorem should be an easy
adaptation of the proof in [8]. A closer look at that proof
reveals, however, that it makes extensive use of concept
constructors not available in FL0 (such as negation,
disjunction, and existential restrictions). In addition, it
requires not only the RVM tr ⊑ rt , but also its backward
direction rt ⊑ tr . The undecidability proof in [30] uses the
concept constructors of FL0 and local role-value maps. In
addition to being local instead of global, the RVMs used
there are not admissible since they contain the defining
relations of a finitely presented group with undecidable
word problem.

The main new contribution of the proof sketched below
is thus to show that one can obtain the undecidability results
for a single global RVM of the form tr ⊑ rt also with the
seriously restricted expressive power of FL0.

We prove Theorem 4 by a reduction from the halting
problem for deterministic Turing machines (DTMs). With-
out loss of generality, we consider DTMs that have a one-
side infinite tape, where the left-most tape cell is marked
using the special symbol $. Whenever the machine moves
to the left onto this cell, in the next step it immediately goes
to the right again and leaves the symbol $ and the state
unchanged. We also assume that the machine can only go
left or right (i.e., it cannot stay in place).

The machine starts with an “empty” tape, i.e., a tape
where the left-most cell contains $ and all other cells con-
tain the blank symbol B. The blank symbol and $ cannot be
written by the machine. It halts when a special halting state
halt is reached. For all other states, there is a transition for
every possible tape symbol. Clearly, the question whether
such a DTM halts when started with the initial state q0 on
the empty tape is undecidable.

Let M = (Q,�, �, q0) be such a DTM. In order to encode
the halting problem for M into a subsumption problem, we
assume without loss of generality that {r, t} ⊆ NR (for “right”
and “then”) and Q ∪ 𝛴 ∪ {H,N} ⊆ NC (the latter two for
“halt” and “not-head”).

The idea is to construct a set of GCIs that encodes the
transition function � of M such that a model should be a
structure like the one shown in Fig. 2, which corresponds to
the unique run of the machine started with the initial state q0

299KI - Künstliche Intelligenz (2020) 34:291–301	

1 3

on the empty tape (where xi,j is the letter at position j at step
i of the run, and qi,j is either N, if the head is not at position
j at step i, or the state of the machine at step i otherwise).

More formally, the TBox TM consists of the global RVM
tr ⊑ rt together with the following GCIs, whose rôle will
be explained later:

	 1.	 ∀t.H ⊑ H

	 2.	 ∀r.H ⊑ H

	 3.	 B ⊑ ∀r.(B ⊓ N)

	 4.	 N ⊓ a ⊑ ∀t.a for all a ∈ 𝛴

	 5.	 N ⊓ ∀rr.N ⊑ ∀tr.N

	 6.	 $ ⊓ ∀r.N ⊑ ∀t.N

	 7.	 ∀r.(q ⊓ a) ⊑ ∀t.(N ⊓ ∀r.(b ⊓ ∀r.q�))

		  if �(q, a) = (q�, b,→)

	 8.	 ∀r.(q ⊓ a) ⊑ ∀t.(q� ⊓ ∀r.(b ⊓ ∀r.N))

		  if �(q, a) = (q�, b,←)

	 9.	 (q ⊓ a) ⊑ H if 𝛿(q, a) = halt

	10.	 (q ⊓ $) ⊑ ∀t.($ ⊓ ∀r.q)

Intuitively, these GCIs have the following meaning:

•	 The first two GCIs propagate the information that
the machine has reached the halting state backwards
through time and space (see Fig. 2).

•	 The third GCI reflects the fact that, if there is a B on a
cell, then the machine never went in a position further
than the one of this cell (since the machine never writes
B). Thus, the letter of any cell to the right of a B should
be B too, and the head of the machine cannot be there.

•	 The fourth GCI reflects the fact that, if the head is not
on a cell at step n, then the letter on this cell should be
the same at step n + 1.

•	 The fifth GCI reflects the fact that the head of the tape
can only move one cell at a time, so if the head is not
directly to the left or to the right of a cell at step n, it
cannot be on this cell at step n + 1.

•	 The sixth GCI reflects the same kind of idea: if the head
is not directly to the right of the leftmost cell at step n,
then it cannot be on this cell at step n + 1.

•	 The seventh GCI describe the behavior of the machine
when it makes a transition that moves to the right. Note
that the left-hand side of this GCI applies to a tape
position j − 1 that is immediately to the left of the posi-
tion j where the head is. It checks whether the state is
q and the letter at position j is a, and then ensures the
changes required by the transition �(q, a) = (q�, b,→)
are realized for the next time point t + 1 , i.e., the head
is not at the current position j − 1 , at the position j we
now have the symbol b, the head is two positions to the
right (i.e., at position j + 1 ) with state q′ . Note that the
fifth GCI ensures that the head cannot be at position j
at time point t + 1.

•	 The working of the eighth GCI can be explained simi-
larly.

•	 The ninth GCI recognizes the fact that the machine
halts. This information is then propagate backwards by
the first two GCIs.

•	 The tenth GCI describes the fact that, when the head is
on the $ symbol, the machine has to go right and stay
in the same state.

The following lemma shows the correctness of the reduc-
tion, and thus yields the undecidability result stated in
Theorem 4.

Lemma 1  The DTM M halts when started with the initial
state q0 on the empty tape iff

Proof  (Sketch) “ ⇐ ” If M does not halt then one can use
its run to create a model of TM that looks like the structure
depicted in Fig. 2, and where the element in the upper left
corner belongs to the left-hand side $ ⊓ ∀r.(B ⊓ q0) of the
subsumption statement. Since the machine does not halt,
one can interpret H as the empty set without violating the
GCIs (1), (2), and (9). In fact, if H is empty then ∀t.H is
also empty since every element has a t-successor, and thus
cannot satisfy this value restriction. This shows that GCI
(1) is satisfied. The same argument applies to GCI (2). GCI
(9) is satisfied since the machine does not reach the halting
state by assumption. Thus, we have a counterexample to the
subsumption.

“⇒ ” The converse direction is a bit trickier. Basically,
we show that a counterexample (x, I) to the subsumption

$ ⊓ ∀r.(B ⊓ q0) ⊑TM
H.

. . .
.
.
.

.
.
.

.
.
.

r r r

r r r

t t t

t t t

space

time

x0,0 � q0,0 x0,1 � q0,1 x0,2 � q0,2 . . .

x1,0 � q1,0 x1,1 � q1,1 x1,2 � q1,2

Fig. 2   A model of T
M

 corresponding to the unique run of M 

300	 KI - Künstliche Intelligenz (2020) 34:291–301

1 3

contains the structure induced by the run of M and depicted
in Fig. 2 as a kind of substructure. To be more precise, we
can show by induction on n that, for all i, if (x, y) ∈ (tnri)I ,
then

•	 y ∈ aI where a is the letter on the i-th cell at the n-th step
of the run,

•	 y ∈ NI if the head of the machine is not on the i-th cell
at the n-th step, and

•	 y ∈ qI if the head is on the i-th cell and the state of the
machine is q at the n-th step.

Note that the implications in the other direction need not
hold, i.e., it can well be that y also belongs to other states q′
or letters a′ in I  , and that y may also belong to N if the head
is actually there.

Nevertheless, we can then argue that, since the right-hand
side H of the subsumption does not contain the individual
x, the run must be a non-halting run. Otherwise, an element
y ∈ HI reachable from x via the roles r and t would be forced
to exist due to GCI (9), and H would then be propagated
back to x due to the first two GCIs. 	� ◻

Using the fact that GCIs and local RVMs can express
global RVMs, or the trick employed in the proof of Corol-
lary 2, we can transfer the undecidability result stated in
Theorem 4 also to local RVMs and TBoxes of a restricted
form.

Corollary 3  Subsumption C ⊑T D in FL0 extended with local
role-value maps is undecidable even if

1.	 C, D are FL0 concepts and T contains GCIs between
FL0 concepts and a single GCI of the form ⊤ ⊑ (tr ⊆ rt)
involving a local RVM, or

2.	 D is an FL0 concept, T contains only GCIs between FL0
concepts, and C = C� ⊓ E for an FL0 concept C′ and a
fixed concept E of FL0 extended with local role-value
maps.

6 � Conclusion

In this paper we have, on the one hand, given a more direct
proof of the known fact that subsumption in FL0 w.r.t. GCIs
is ExpTime-hard. We believe that the ideas underlying the
reduction employed in this proof may turn out to be help-
ful for showing ExpTime-hardness for other inexpressive
DLs. On the other hand, we have determined decidable and
undecidable cases for FL0 extended with role-value maps.
For the case without a TBox, we have shown that admissible

global RVMs leave the subsumption problem decidable.
What remains open is the question whether the same is true
for admissible local RVMs. For the decidable cases, it would
also be interesting to investigate the complexity of the sub-
sumption problem, depending on the form of the available
RVMs.

Acknowledgements  Open Access funding provided by Projekt DEAL.
We thank the reviewers for their pertinent comments, which helped
us to improve the paper. Franz Baader was partially supported by the
Deutsche Forschungsgemeinschaft (DFG), Grant 389792660, as part
of the collaborative research center cpec (TRR 248).

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

References

	 1.	 Baader F (1996) Using automata theory for characterizing
the semantics of terminological cycles. Ann Math Artif Intell
18:175–219

	 2.	 Baader F (2003) Description logic terminology. In: [6], pp.
485–495

	 3.	 Baader F (2003) Restricted role-value-maps in a description logic
with existential restrictions and terminological cycles. In: Cal-
vanese D, De Giacomo G, Franconi E (eds) Proceedings of the
2003 description logic workshop (DL 2003), CEUR Workshop
Proceedings, vol 81. CEUR-WS.org

	 4.	 Baader F, Brandt S, Lutz C (2005) Pushing the EL envelope. In:
Kaelbling LP, Saffiotti A (eds) Proceedings of the 19th interna-
tional joint conference on artificial intelligence (IJCAI 2005).
Morgan Kaufmann, Los Altos, pp 364–369

	 5.	 Baader F, Bürckert HJ, Nebel B, Nutt W, Smolka G (1993) On
the expressivity of feature logics with negation, functional uncer-
tainty, and sort equations. J Logic Lang Inf 2:1–18

	 6.	 Baader F, Calvanese D, McGuinness D, Nardi D, Patel-Schnei-
der PF (eds) (2003) The description logic handbook: theory,
implementation, and applications. Cambridge University Press,
Cambridge

	 7.	 Baader F, Gil OF, Pensel M (2018) Standard and non-standard
inferences in the description logic FL

0
 using tree automata. In:

Lee D, Steen A, Walsh T (eds) Proceedings of the 4th global
conference on artificial intelligence (GCAI-2018), EPiC Series
in Computing, vol 55. EasyChair, pp 1–14

	 8.	 Baader F, Horrocks I, Lutz C, Sattler U (2017) An introduction to
description logic. Cambridge University Press, Cambridge

	 9.	 Baader F, Horrocks I, Sattler U (2002) Description logics for the
semantic web. KI 16(4):57–59

	10.	 Baader F, Lutz C, Turhan AY (2010) Small is again beautiful in
description logics. KI 24(1):25–33

http://creativecommons.org/licenses/by/4.0/

301KI - Künstliche Intelligenz (2020) 34:291–301	

1 3

	11.	 Baader F, Narendran P (2001) Unification of concept terms in
description logics. J Symb Comput 31(3):277–305

	12.	 Baader F, Théron C (2019) Role-value maps and general concept
inclusions in the description logic FL

0
 . LTCS-Report 19-08, Chair

of Automata Theory, Institute of Theoretical Computer Science,
Technische Universität Dresden, Dresden, Germany. https​://tu-
dresd​en.de/inf/lat/repor​ts#BaTh-LTCS-19-08

	13.	 Book RV, Otto F (1993) String-rewriting systems. Springer, New
York

	14.	 Borgida A, Patel-Schneider PF (1994) A semantics and complete
algorithm for subsumption in the CLASSIC description logic. J
Artif Intell Res 1:277–308

	15.	 Brachman RJ, Levesque, HJ (1984) The tractability of subsump-
tion in frame-based description languages. In: Proceedings of the
4th national conference on artificial intelligence (AAAI’84), pp
34–37

	16.	 Brachman RJ, Levesque HJ (eds) (1985) Readings in knowledge
representation. Morgan Kaufmann, Los Altos

	17.	 Brachman RJ, Schmolze JG (1985) An overview of the KL-ONE
knowledge representation system. Cogn Sci 9(2):171–216

	18.	 Donini FM, Lenzerini M, Nardi D, Nutt W (1991) The complex-
ity of concept languages. In: Allen J, Fikes R, Sandewall E (eds)
Proceedings of the 2nd international conference on the principles
of knowledge representation and reasoning (KR’91). Morgan
Kaufmann, Los Altos, pp 151–162

	19.	 Glimm B, Stuckenschmidt H (2016) 15 years of semantic web: an
incomplete survey. KI 30(2):117–130

	20.	 Hoehndorf R, Schofield PN, Gkoutos GV (2015) The role of
ontologies in biological and biomedical research: a functional
perspective. Brief Bioinform 16(6):1069–1080

	21.	 Hofmann M (2005) Proof-theoretic approach to description-logic.
In: Panangaden P (ed) Proceedings of the 20th IEEE symposium
on logic in computer science (LICS 2005). IEEE Computer Soci-
ety Press, pp 229–237

	22.	 Horrocks I, Kutz O, Sattler U (2006) The even more irresist-
ible SROIQ . In: Doherty P, Mylopoulos J, Welty CA (eds.)

Proceedings of the 10th international conference on principles of
knowledge representation and reasoning (KR 2006). AAAI Press/
The MIT Press, Lake District, UK, pp 57–67

	23.	 Jurdzinski M, Sproston J, Laroussinie F (2008) Model checking
probabilistic timed automata with one or two clocks. Logic Meth-
ods Comput Sci 4:3

	24.	 Kazakov Y (2008) RIQ and SROIQ are harder than SHOIQ . In:
Brewka G, Lang J (eds) Proceedings of the 11th international con-
ference on principles of knowledge representation and reasoning
(KR 2008). AAAI Press, pp 274–284

	25.	 Kazakov Y, de Nivelle H (2003) Subsumption of concepts in FL
0

for (cyclic) terminologies with respect to descriptive semantics is
PSPACE-complete. In: Proceedings of the 2003 description logic
workshop (DL 2003). CEUR electronic workshop proceedings.
http://CEUR-WS.org/Vol-81/

	26.	 Minsky M (1975) A framework for representing knowledge. In:
Haugeland J (ed) Mind design. The MIT Press (1981). A longer
version appeared in the psychology of computer vision. Repub-
lished in [16]

	27.	 Nebel B (1990) Terminological reasoning is inherently intractable.
Artif Intell 43:235–249

	28.	 Quillian MR (1967) Word concepts: a theory and simulation of
some basic capabilities. Behav Sci 12:410–430 (Republished in
[16])

	29.	 Quillian MR (1968) Semantic memory. In: Minsky M (ed) Seman-
tic information processing. The MIT Press, London, pp 216–270

	30.	 Schmidt-Schauß M (1989) Subsumption in KL-ONE is undecid-
able. In: Brachman RJ, Levesque HJ, Reiter R (eds) Proceedings
of the 1st international conference on the principles of knowledge
representation and reasoning (KR’89). Morgan Kaufmann, Los
Altos, pp 421–431

	31.	 Walukiewicz I (2001) Pushdown processes: games and model-
checking. Inf Comput 164(2):234–263

https://tu-dresden.de/inf/lat/reports#BaTh-LTCS-19-08
https://tu-dresden.de/inf/lat/reports#BaTh-LTCS-19-08
http://CEUR-WS.org/Vol-81/

	Role-Value Maps and General Concept Inclusions in the Minimal Description Logic with Value Restrictions or Revisiting Old Skeletons in the DL Cupboard
	Abstract
	1 Introduction
	2 The Description Logic
	3 ExpTime-Hardness of with GCIs
	4 Decidable Role-Value Maps in
	5 Undecidable Role-Value Maps in
	6 Conclusion
	Acknowledgements
	References

