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Abstract
The need for transparency of predictive systems based on Machine Learning algorithms arises as a consequence of their 
ever-increasing proliferation in the industry. Whenever black-box algorithmic predictions influence human affairs, the inner 
workings of these algorithms should be scrutinised and their decisions explained to the relevant stakeholders, including the 
system engineers, the system’s operators and the individuals whose case is being decided. While a variety of interpretability 
and explainability methods is available, none of them is a panacea that can satisfy all diverse expectations and competing 
objectives that might be required by the parties involved. We address this challenge in this paper by discussing the prom-
ises of Interactive Machine Learning for improved transparency of black-box systems using the example of contrastive 
explanations—a state-of-the-art approach to Interpretable Machine Learning. Specifically, we show how to personalise 
counterfactual explanations by interactively adjusting their conditional statements and extract additional explanations by 
asking follow-up “What if?” questions. Our experience in building, deploying and presenting this type of system allowed us 
to list desired properties as well as potential limitations, which can be used to guide the development of interactive explainers. 
While customising the medium of interaction, i.e., the user interface comprising of various communication channels, may 
give an impression of personalisation, we argue that adjusting the explanation itself and its content is more important. To this 
end, properties such as breadth, scope, context, purpose and target of the explanation have to be considered, in addition to 
explicitly informing the explainee about its limitations and caveats. Furthermore, we discuss the challenges of mirroring the 
explainee’s mental model, which is the main building block of intelligible human–machine interactions. We also deliberate 
on the risks of allowing the explainee to freely manipulate the explanations and thereby extracting information about the 
underlying predictive model, which might be leveraged by malicious actors to steal or game the model. Finally, building an 
end-to-end interactive explainability system is a challenging engineering task; unless the main goal is its deployment, we 
recommend “Wizard of Oz” studies as a proxy for testing and evaluating standalone interactive explainability algorithms.
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1  Introduction

Given the opaque, “black-box” nature of complex Machine 
Learning (ML) systems, their deployment in mission-crit-
ical domains is limited by the extent to which they can be 

interpreted or validated. In particular, predictions, (trained) 
models and (training) data should be accounted for. One 
way to achieve this is by “transparency by design”, so that 
all components of a predictive system are “glass boxes”, 
i.e., ante-hoc transparency [33]. Alternatively, transpar-
ency might be achieved with post-hoc tools, which have 
the advantage of not limiting the choice of a predictive 
model in advance [30]. The latter approaches can either be 
model-specific or model-agnostic [32]. Despite this wide 
range of available tools and techniques, many of them are 
non-interactive, providing the explainee (a recipient of an 
explanation) with a single explanation that has been opti-
mised according to some predefined metric. While some of 
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these methods simply cannot be customised by the end user 
without an in-depth understanding of their inner workings, 
others can take direct input from users with a varying level 
of domain expertise: from a lay audience—e.g., selecting 
regions of an image in order to query their influence on the 
classification outcome—to domain experts—e.g., tuning 
explanation parameters such as the importance of neighbour-
ing data points. A particular risk of a lack of interaction and 
personalisation mechanisms is that the explanation may not 
always align with users’ expectations, reducing its overall 
value and usefulness.

Allowing the user to guide and customise an explana-
tion can benefit the transparency of a predictive system by 
making it more suitable and appealing to the explainee, for 
example, by adjusting its content and complexity. Therefore, 
personalisation can be understood as modifying an explana-
tion or an explanatory process to answer user-specific ques-
tions. For counterfactual explanations of the form: “had 
feature X been different, the prediction of the model would 
have been different too”, these can be user-defined constrains 
on the number and type of features (X) that can and cannot 
appear in the conditional statement. Delegating the task of 
customising and personalising explanations to the end user 
via interaction mitigates the need for the difficult process of 
modelling the user’s mental model beforehand, rendering 
the task feasible and making the whole process feel more 
natural, engaging and less frustrating.

In human interactions, understanding is naturally 
achieved via an explanatory dialogue [26], possibly sup-
ported with visual aids. Mirroring this explanatory process 
for ML transparency would make it attractive and accessible 
to a wide audience. Furthermore, allowing the user to cus-
tomise explanations extends their utility beyond ML trans-
parency. The explainee can steer the explanatory process 
to inspect fairness (e.g., identify biases towards protected 

groups1) [21], assess accountability (e.g., identify model 
errors such as non-monotonic predictions with respect to 
monotonic features) [23] or debug predictive models [20, 
35]. In contrast to ML tasks [13]—where any interaction 
may be impeded by human-incomprehensible internal rep-
resentations utilised by a predictive model—interacting with 
explainability systems is feasible as the representation has to 
be human-understandable in the first place, thereby enabling 
a bi-directional communication. Interaction with explana-
tory systems also allows incorporating new knowledge into 
the underlying ML algorithm and building a mental model 
of the explainee, which will help to customise the resulting 
explanations.

Consider the example of explaining an image with a local 
surrogate method that relies upon super-pixel segmentation 
(e.g., LIME algorithm introduced by Ribeiro et al. [30]). 
While super-pixel discovery may be good at separating 
colour patches based on their edges, these segments do 
not often correspond to meaningful concepts such as ears 
or a tail for a dog image—see Fig. 1 for an example. The 
explanation can be personalised by allowing the explainee to 
merge and split segments before analysing their influence on 
the output of a black-box model, thereby implicitly answer-
ing what prompted the explainee to alter the segmentation. 
User input is a welcome addition given the complexity of 
images; a similar approach is possible for tabular and text 
data, although user input is often unnecessary in these two 
cases. For tabular data the explainee may select certain fea-
ture values that are of interest or create meaningful binning 
for some of the continuous features; for text data (treated as 
a bag of words) the user may group some words into a phrase 

Fig. 1   Surrogate explainers 
of image classifiers require 
an interpretable representa-
tion—image segmentation—to 
communicate the explanation to 
the user. These explainers try to 
identify segments of an image 
that influence its classification 
the most, i.e., segments of high 
importance. Since the default 
outcome of image segmenta-
tion (a) may be unintuitive, we 
encourage the explainee to per-
sonalise the segmentation (b) to 
represent meaningful concepts

1  A protected group is a sub-population in a data set created by fixing 
a value of a protected attribute such as age, gender or ethnicity, which 
discriminating upon is illegal.
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that conveys the correct meaning in that particular sentence. 
This exchange of knowledge between the explainee and the 
explainability system can considerably increase the quality 
of explanations, but also poses a significant safety, secu-
rity and privacy risk. A malicious explainee may use such a 
system to reveal sensitive data used to train the underlying 
predictive (or explanatory) model, extract proprietary model 
components, or learn its behaviour in an attempt to game it 
(see Sect. 3.2).

After Miller’s [26] seminal work—inspired by explana-
tion research in the social sciences—drew attention to the 
lack of human-aspect considerations in the eXplainable Arti-
ficial Intelligence (XAI) literature—with many such systems 
being designed by the technical community for the technical 
community [27]—researchers started acknowledging the end 
user when designing XAI solutions. While this has advanced 
human-centred design and validation of explanations pro-
duced by XAI systems, another of Miller’s insights received 
relatively little attention: the interactive, dialogue-like nature 
of explanations. Many of the state-of-the-art explainability 
approaches are static, one-off systems that do not take user 
input or preferences into consideration beyond the initial 
configuration and parametrisation [8, 9, 24, 30, 31, 40].2 
While sometimes the underlying explanatory algorithms 
are simply incapable of a meaningful interaction, others do 
apply a technique or utilise an explanatory artefact that can 
support it in principle. Part of this trend can be attributed to 
the lack of a well-defined protocol for evaluating interactive 
explanations and the challenging process of assessing their 
quality and effectiveness, which—in contrast to a one-shot 
evaluation—is a software system engineering challenge3 and 
requires time- and resource-consuming user studies.

Schneider and Handali [34] noted that bespoke explana-
tions in AI—achieved through interaction or otherwise—are 
largely absent within the existing literature. Research in this 
space usually touches upon three aspects of “personalised” 
explanations. First, there are interactive machine learn-
ing systems where the user input is harnessed to improve 
performance of a predictive model or align the data pro-
cessing with its operator’s prior beliefs. While the classic 
active learning paradigm dominates this space, Kulesza et al. 
[20] designed a system that presents its users with classi-
fication explanations to help them refine and personalise 

the predictive task, hence focusing the interaction on the 
underlying ML model and not the explanations. Similarly, 
Kim et al. [14] introduced an interactive ML system with an 
explainability component, allowing its users to alter the data 
clustering based on their preferences. Secondly, the work 
of Krause et al. [16] and Weld and Bansal [44] focused on 
interactive (multi-modal) explainability systems. Here, the 
interaction allows the explainee to elicit more information 
about an ML system by receiving a range of diverse expla-
nations derived from a collection of XAI algorithms such 
as Partial Dependence (PD) [8] and Individual Conditional 
Expectation (ICE) [9] plots. While this body of research 
illustrates what such an interaction (with multiple explana-
tory modalities) might look like and persuasively argues 
its benefits [44], the advocated interaction is mostly with 
respect to the presentation medium itself—e.g., an interac-
tive PD plot—and cannot be used to customise and person-
alise the explanation per se. Thirdly, Madumal et al. [25] 
and Schneider and Handali [34] developed theoretical frame-
works for interactive, personalised explainability that pre-
scribe the interaction protocol and design of such systems. 
However, these theoretical foundations have not yet been 
utilised to design and implement an interactive explainabil-
ity system coherent with XAI desiderata outlined by Miller 
[26], which could offer customisable explanations. A more 
detailed overview and discussion of the relevant literature 
is given in Sect. 2.

In this paper we propose an architecture of a truly interac-
tive explainability system, demonstrate how to build such a 
system, analyse its desiderata, and examine how a diverse 
range of explanations can be personalised (Sect. 3). Further-
more, we discuss lessons learnt from presenting it to both a 
technical and a lay audience, and provide a plan for future 
research in this direction (Sect. 4). As a first attempt to build 
an XAI system that allows the explainee to customise and 
personalise the explanations, we decided to use a decision 
tree as the underlying predictive model. This choice simpli-
fies many steps of our initial study, allowing us to validate 
(and guarantee correctness of) the explanations and reduce 
the overall complexity of the explanation generation and 
tuning process by inspecting the structure of the underlying 
decision tree. Using ante-hoc explanations derived from a 
single predictive model also allows us to mitigate engineer-
ing challenges that come with combining multiple independ-
ent XAI algorithms as proposed by Weld and Bansal [44]. 
Furthermore, a decision tree can provide a wide range of 
diverse explanation types, many of which can be customised 
and personalised. Specifically, for global model explanations 
we provide

•	 model visualisation, and
•	 feature importance;

2  To clarify, the notion of interaction is with respect to the explana-
tion, e.g., the ability of the explainee to personalise it, and not the 
overall interactiveness of the explainability system.
3  Building such systems requires a range of diverse components: 
user interface, natural language processing unit, natural language 
generation module, conversation management system and a suitable 
and well-designed XAI algorithm. Furthermore, most of these com-
ponents are domain-specific and cannot be generalised beyond the 
selected data set and use case.
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while as prediction explanations we provide

•	 decision rule—extracted from a root-to-leaf path,
•	 counterfactual—achieved by comparing decision rules 

for different tree leaves, and
•	 exemplar—a similar training data point extracted from 

the tree leaves.

When presented to the user, all of these explanations span a 
wide range of explanatory artefacts in visualisation (images) 
and textualisation (natural language) domains, thereby 
allowing us to test the extent to which they can be interac-
tively personalised. Contrastive explanations, in particular 
class-contrastive counterfactual statements, are the founda-
tion of our system. These take the form of: “had one of the 
attributes been different in a particular way, the classifica-
tion outcome would have changed as follows....” Arguably, 
they are the most suitable, natural and appealing explana-
tions targeted at humans [26, 40]. In addition to all of their 
desired properties grounded in the social sciences [26] and 
legal considerations [40], they can be easily adapted to an 
interactive dialogue aimed at personalisation, which is not 
widely utilised. In our system they are delivered in an inter-
active dialogue—a natural language conversation, which is 
the most intuitive explanatory mechanism [26]. In summary, 
our approach aims to build a holistic and diverse interactive 
XAI system where the interaction is focused on personalis-
ing explanations (in accordance with Miller’s [26] notion 
of XAI interactivity) as opposed to simply building an XAI 
system that provides explanations interactively (to explain 
different aspects of a black-box system using a range of XAI 
algorithms)—a subtle but significant difference.

2 � Background and Related Work

Throughout our research we have identified three distinct 
research strands in the literature that are relevant to interac-
tive explanations:

•	 interactive Artificial Intelligence and Machine Learning 
(mostly from the perspective of Human–Computer Inter-
action),

•	 interactive explainability tools, which are interactive with 
respect to the user interface that delivers the explana-
tions, and

•	 theory of explanatory interactions, e.g., a natural lan-
guage dialogue, between two intelligent agents (be them 
humans, machines or one of each).

The Human–Computer Interaction community has identi-
fied the benefits of human input for tools powered by AI 
and ML algorithms that extend beyond the active learning 

paradigm where people act as data labelling oracles [2]. For 
example, consider a movie recommendation system where 
the user provides both explicit feedback, such as movie rat-
ings, and implicit feedback, e.g., movies that the user did 
not finish watching. In order to utilise the full potential of 
any feedback and ensure user satisfaction, the users have to 
understand how their input affects the system (in particular, 
its underlying predictive model). Among others, the users 
should be informed whether their feedback is incorporated 
into recommendations immediately or with a delay and how 
does “liking” a movie influences future recommendations 
(e.g., similar genre and shared cast members). Here, this 
understanding is mostly achieved (in the case of user studies) 
by inviting the users to onboarding sessions or (progres-
sively) disclosing relevant information via the user interface, 
hence the explanation is provided outside of the autonomous 
system. These actions help the users build a correct mental 
model of the “intelligent agent” allowing them to seamlessly 
interact with it. Ideally, the users would develop a structural 
mental model that gives them a deep and in-detailed under-
standing of how the ML or AI operates, however a functional 
mental model (a shallow understanding) often suffices.

While explanations are often provided outside of the 
interactive agents, several researchers showed how to inte-
grate them into the user interface of autonomous systems 
[14, 17, 19, 20]. This is especially useful when the system 
is dynamic—e.g., its underlying predictive model evolves 
over time—in which case the explanations support and 
inform users’ interaction with the system and guide the 
users towards achieving the desired objective. There are 
two prominent examples of such systems in the literature. 
Kulesza et al. [20] developed an interactive topic-based 
Naïve Bayes classifier for electronic mail to help the users 
“debug” and “personalise” the categorisation of emails. 
The users are presented with explanations pertaining to 
every classified email—words in the email that contribute 
towards and against a given class—and are allowed to adjust 
the weights of these factors if they do not agree with their 
premise, and hence refine and personalise the model in a 
process which the authors call explanatory debugging [17, 
19, 20]. Kim et al. [14] designed a similar system where the 
users can interactively personalise clustering results—which 
are explained with cluster centroids and prominent exem-
plars—by promoting and demoting data points within each 
cluster. In this literature, explanations of predictive models 
are used to improve users’ understanding (mental model) of 
an autonomous system to empower them to better utilise its 
capabilities (e.g., via improved personalisation) by interac-
tively providing beneficial input. Hence, AI and ML explain-
ability is not the main research objective in this setting and 
the explanations are not interactive themselves.

The second research strand that we identified in the lit-
erature covers interactive, multi-modal explainability tools 
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in AI and ML. These systems allow investigating a black-
box model and its predictions by providing the user with a 
variety of explanations produced with a range of diverse 
explainability techniques delivered via (an interactive) user 
interface. For example, Krause et al. [16] built an interactive 
system that allows its users to inspect Partial Dependence 
[8] of selected features (model explanation) and investigate 
how changing feature values for an individual data point 
would affect its classification (prediction explanation) [15, 
16]. Whereas combining multiple explainability techniques 
within a single system with a unified user interface is feasi-
ble, ensuring coherence of the diverse explanations that they 
produce poses significant challenges as some of the explana-
tions may be at odds with each other and provide contradic-
tory evidence for the same outcome. Weld and Bansal [44] 
showed an idealised example of such a system and persua-
sively argued its benefits, however they have not discussed 
how to mitigate the issue with contradictory and compet-
ing explanations. While both of these explainability tools 
are interactive, the interaction is limited to the presentation 
medium of the explanations and a choice of explainability 
technique, which, we argue, is insufficient—the system is 
interactive but the explanation is not. Truly interactive expla-
nations allow the user to tweak, tune and personalise them 
(i.e., their content) via an interaction, hence the explainee is 
given an opportunity to guide them in a direction that helps 
to answer selected questions.

The third research strand in the literature characterises 
explanatory communication as interaction between two 
intelligent agents [3, 25, 34, 43]. Arioua and Croitoru [3] 
formalised explanatory dialogues in Dung’s argumentation 
framework [6] and introduced “questioning” dialogues to 
evaluate success of explanations. Walton [43] introduced 
a similar shift model composed of two distinct dialogue 
modes: an explanation dialogue and an examination dia-
logue, where the latter is used to evaluate the success of 
the former [41–43]. Madumal et al. [25] refined these two 
approaches and proposed an interactive communication 
schema that supports explanatory and questioning dialogues, 
which also allow the explainee to formally challenge and 
argue against some of the decisions and their explanations. 
Madumal et al. [25] have also empirically evaluated their 
explanatory dialogue protocol on text corpora to show its 
flexibility and applicability to a range of different scenarios. 
Schneider and Handali [34] approached this problem on a 
more conceptual level discussing interactions with various 
explainability tools and showing examples of how they could 
allow for personalised explanation. Most of the work pre-
sented in this body of literature is purely theoretical and has 
not yet been embraced by practical explainability tools.

These diverse research strands come together to help 
eXplainable AI and Interpretable Machine Learning (IML) 
researchers and practitioners design appealing and useful 

explainability tools with many of their recommenda-
tions originating from explanatory interactions between 
humans. Miller [26] reviewed a diverse body of social 
sciences literature on human explanations and proposed 
an agenda for human-centred explanations in AI and ML. 
Miller et al. [27] noticed that explainability systems built 
for autonomous agents and predictive systems rarely ever 
consider the end users and their expectations as they are 
mostly “built by engineers, for engineers.” Since then, XAI 
and IML research has taken a more human-centred direc-
tion, with many academics and engineers [12, 34, 39, 40, 
44] evaluating their approaches against Miller’s guidelines 
to help mitigate such issues.

Two of Miller’s recommendations are of particular impor-
tance: interactive, dialogue-like nature of explanations and 
popularity of contrastive explanations among humans. While 
interactivity of explanations [34] has been investigated from 
various viewpoints in the literature (and discussed earlier in 
this section), explanations delivered in a bi-directional con-
versation, giving the explainee the opportunity to customise 
and personalise them, have not seen much uptake in practice. 
One-off explanations are still the most popular operationali-
sation of explainability algorithms [34], where the explainer 
outputs a one-size-fits-all explanation in an attempt to make 
the behaviour of a predictive system transparent. A slight 
improvement over this scenario is to enable the explainer 
to account for user preferences when generating the expla-
nations [22, 29], but this modality is not common either. 
Interactively personalising an explanation allows the users 
to adjust its complexity to suit their background knowledge, 
experience and mental capacity; for example, explaining a 
disease to a medical student should take a very different 
form from explaining it to a patient. Therefore, an interactive 
system can satisfy a wide range of explainees’ expectations, 
including objectives other than improving transparency such 
as inspecting individual fairness of algorithmic predictions 
[21].

The prominence of contrastive statements in human 
explanations is another important insight from the social 
sciences, which also highlights their capacity to be interac-
tively customised and personalised. In the recent years this 
type of explanations has proliferated into the XAI and IML 
literature in the form of class contrastive counterfactual 
explanations: “had you earned twice as much, your loan 
application would have been successful.” This uptake can 
also be attributed to their legal compliance [40] with the 
“right to explanation” introduced by the European Union’s 
General Data Protection Regulation (GDPR). However, 
their capacity to be customised and personalised is often 
overlooked in practice [26, 29, 39, 40].

All in all, many of Miller’s [26] insights from the social 
sciences have found their way into research and practice. 
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An example of the latter is Google’s People + AI Guide-
book4 describing best practices for designing human-cen-
tred AI and ML products and acknowledging the impor-
tance of interaction and explainability in such systems. 
The lack of customisable explanations has also received 
attention in the literature [34]. Schneider and Handali 
[34] have reviewed an array of explainability approaches 
focusing on their personalisation capabilities. They have 
observed that personalised explanations in XAI and IML 
are generally absent from the existing literature. To help 
researchers design and implement such methods, Sch-
neider and Handali [34] proposed a generic framework 
for personalised explanations that identifies their three 
adjustable properties: complexity, content (called “deci-
sion information”, i.e., what to explain) and presentation 
(how to explain, e.g., figures vs. text); Eiband et al. [7] 
discussed the latter two properties from a user interface 
design perspective. Furthermore, Schneider and Handali 
[34] highlighted that interactive personalisation of expla-
nations can either be an iterative, e.g., a conversation, or 
a one-off process, e.g., specifying constrains before the 
explanation is generated. The latter approach does not, 
however, require the explainability system to be interac-
tive as the same personalisation can be achieved off-line 
by extracting the personalisation specification from the 
explainee and subsequently incorporating it into the data 
or algorithm initialisation. Interaction with explainabil-
ity systems has also been acknowledged by Henin and 
Le Méetayer [12], who proposed a generic mathematical 
formulation of black-box explainers consisting of three 
distinct steps: sampling, generation and interaction.

While some explainability approaches introduced in 
the literature are simply incapable of interactive personal-
isation—a number of them may still be personalised off-
line—others are, however this property is neither utilised 
[40] nor acknowledged. This lack of recognition may be 
because the explainability system designers do not see the 
benefits of this step or due to the difficulties with building 
such systems (from the engineering perspective) as well as 
evaluating them. To facilitate interactive personalisation the 
user interface has to be capable of delivering explanations 
and collecting explainees’ feedback, which may require 
an interdisciplinary collaboration with User Experience 
and Human–Computer Interaction researchers. Systematic 
evaluation and validation of this type of explainers is also 
more elaborate, possibly requiring multiple rounds of time-
consuming user studies.

Despite these hurdles, a number of explainability tools 
and techniques enable the user to personalise explanations 
to some extent. Akula et al. [1] presented a dialogue-driven 

explainability system that uses contrastive explanations 
based on predictions derived from And-Or graphs and hand-
crafted ontology, however generalising this technique may 
be challenging as it requires hand-crafting separate ontology 
and And-Or graph for each application. Lakkaraju et al. [22] 
introduced rule-based explanations that the user can person-
alise by choosing which features will appear in the expla-
nation—an off-line personalisation. Google published their 
what-if tool5 which provides the explainee with an interac-
tive interface that allows generating contrastive explanations 
of selected data points by modifying their features, i.e., ask-
ing “What if?” questions.

In our work we strive to bring together the most important 
concepts from this wide spectrum of research as a generic 
and powerful aid to people building explainers of predictive 
systems that allow explanation personalisation via on-line 
interaction. To this end, we provide an overview of a voice-
driven contrastive explainer built for an ML loan application 
model, which allows the explainee to interrogate its predic-
tions by asking counterfactual questions [37]. We discuss 
our experience from building, deploying and presenting the 
system, which allowed us to critically evaluate its properties 
and formulate further desiderata and lessons learnt. We pre-
sent these observations in the following sections as guide-
lines for developing similar projects.

3 � Interactively Customisable Explanations

As a first step towards personalised, interactive XAI systems 
we developed Glass-Box [37]: a class-contrastive counter-
factual explainability system that can be queried with a natu-
ral language dialogue (described in Sect. 3.1). It supports a 
range of “Why?” questions that can be posed either through 
a voice- or chat-based interface. Building this system and 
testing it in the wild provided us with invaluable experience 
and insights, which we now share with the community as 
they may be useful to anybody attempting to develop and 
deploy a similar system—Sects. 3.2 and 3.3 discuss interac-
tive explainers desiderata and properties respectively. The 
feedback that helped us to refine our idea of interactive XAI 
systems producing personalised explanations (presented in 
Sect. 3.4) was collected while demonstrating Glass-Box 
to a diverse audience consisting of both domain experts, 
approached during the 27th International Joint Conference 
on Artificial Intelligence (IJCAI 2018), and a lay audience, 
approached during a local “Research without Borders” fes-
tival6 that is open to the public and attended by pupils from 

5  https​://pair-code.githu​b.io/what-if-tool.
6  The festival spans a wide range of research projects both in social 
sciences and engineering.4  https​://pair.withg​oogle​.com.

https://pair-code.github.io/what-if-tool
https://pair.withgoogle.com
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local schools. While at the time of presentation our system 
was limited to class-contrastive counterfactual explanations 
personalised by (implicitly) choosing data features that the 
counterfactual statements were conditioned on and provided 
to the user in natural language, we believe that our observa-
tions remain valid beyond this particular XAI technique. We 
hope to test this assumption in our future work—see Sect. 4 
for more details—by employing the remaining four deci-
sion tree explainability modalities listed in the introduction, 
albeit in an XAI system refined based on our experience to 
date.

3.1 � Glass‑Box Design

Glass-Box has been designed as a piece of hardware built 
upon the Google AIY (Artificial Intelligence Yourself) 
Voice Kit7—a customisable hardware and software plat-
form for development of voice interface-enabled interactive 
agents. The first prototype of Glass-Box utilised the Amazon 
Alexa skill Application Programming Interface, however the 
limitations of this platform at the time (the processing of 
data had to be deployed to an on-line server and invoked via 
an API call) have hindered the progress and prompted us 
to switch to the aforementioned Google AIY Voice device. 
These recent technological advancements in automated 
speech-to-text transcription and speech synthesis provided 
as a service allowed us to utilise an off-the-shelf, voice-ena-
bled, virtual, digital assistant to process explainees’ speech 
and automatically answer their questions—something that 
would not have been feasible had we decided to build this 
component ourselves. We extended the voice-driven user 
interface with a (textual) chat-based web interface that 
displays the transcription of the conversation and its his-
tory—to improve accessibility of the system, among other 
things—in addition to allowing the explainee to type in the 
queries instead of saying them out loud.

To avoid a lengthy and possibly off-putting process of 
submitting (mock) personal details—i.e., a data point—to 
be predicted by the underlying Machine Learning model and 
explained by Glass-Box, we opted for a predefined set of 
ten data points. Any of them could be selected and input to 
Glass-Box by scanning a QR code placed on a printed card 
that also listed details of this fictional individual.

Once a data point is selected, the explainee can alter per-
sonal details of this fictional individual by interacting with 
Glass-Box, e.g., “I am 27 years old, not 45.” Any input to 
the system is passed to a natural language processing and 
understanding module built using rasa8. Our deployment 

of the Glass-Box system was based on the UCI German 
credit data set9 (using a subset of its features) for which a 
decision tree classifier was trained using scikit-learn10 [28]. 
Since the German credit data set has a binary target variable 
(“good” or “bad” credit score), the class contrast in the coun-
terfactual explanations is implicit. Nevertheless, this could 
be easily generalised to a multi-class setting by requiring 
the explainee to explicitly specify the contrast class, tak-
ing the second-most likely one or providing one explanation 
per class. A conceptual design of Glass-Box is presented in 
Fig. 2.

To facilitate some of the user interactions the data set had 
to be manually annotated. This process allowed the genera-
tion of engaging natural language responses and enabled 
answering questions related to individual fairness. The lat-
ter functionality was achieved by indicating which features 
(and combinations thereof) should be treated as protected 
attributes (features), hence had a counterfactual data point 
conditioned on one of these features been found, Glass-
Box would indicate unfair treatment of this individual. This 
functionality could be invoked by asking “Is the decision 
fair?” question and further interrogating the resulting coun-
terfactual explanation if one was found. Depending on the 
explainability and interactiveness requirements expected of 
the system, other data set annotations may be required. Since 
annotation is mostly a manual process, creating them can be 
time- and resource-consuming.

As noted before, the main objective of Glass-Box is to 
provide the users with personalised explanations whenever 
they decide to challenge the decision of the underlying 
Machine Learning model. The explainee can request and 
interactively customise the resulting counterfactual explana-
tions through a natural language interface with appropriate 
dialogue cues. This can be done in three different ways by 
asking the following questions:

Explainee

Data
ML ModelTraining Speech synthesis

and transcription
   (cloud)

I/O:
questions/

explanations

(text & speech)

Prediction

Data Point

Counterfactual
generator

Meta-data
User interface:

intent extraction &
output synthesis

Glass-Box

?

Fig. 2   Glass-box design and information flow

7  https​://aiypr​oject​s.withg​oogle​.com/voice​.
8  https​://githu​b.com/RasaH​Q/rasa.

9  https​://archi​ve.ics.uci.edu/ml/datas​ets/statl​og+(germa​n+credi​
t+data).
10  https​://sciki​t-learn​.org.

https://aiyprojects.withgoogle.com/voice
https://github.com/RasaHQ/rasa
https://archive.ics.uci.edu/ml/datasets/statlog+%28german+credit+data)
https://archive.ics.uci.edu/ml/datasets/statlog+%28german+credit+data)
https://scikit-learn.org
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•	 “Why?”—a plain counterfactual explanation—the 
system returns the shortest possible class-contrastive 
counterfactual;

•	 “Why despite?”—a counterfactual explanation not con-
ditioned on the indicated feature(s)—the system returns 
a class-contrastive counterfactual that does not use a 
specified (set of) feature(s) as its condition; and

•	 “Why given?”—a (partially-)fixed counterfactual 
explanation—the system returns a counterfactual that 
is conditioned on the specified (set of) feature(s).

By repetitively asking any of the above “Why?” questions 
the system will enumerate all the possible explanations 
with the condition set (the features that need to change) 
increasing in quantity until no more explanations can be 
found. It is also possible to mix the latter two questions 
into “Why given ... and despite ... ?”, thereby introducing 
even stronger restrictions on the counterfactual explana-
tions. In addition to “Why?” questions the explainee can 
also ask “What if?” In this case it is the user who provides 
the contrast and wants to learn the classification outcome 
of this hypothetical data point. This question can be either 
applied to the selected data point (which is currently being 
explained) or any of the counterfactual data points offered 
by the system as an explanation. All of these requirements 
imposed by the user are processed by a simple logical unit 
that translates the user requests into constraints applied to 
the set of features that the counterfactual is allowed and/
or required to be conditioned upon. All of these happen 

through a natural language dialogue, an example of which 
is depicted in Fig. 3.

The method used to generate counterfactual explanations 
from the underlying decision tree classifier relies upon a 
bespoke leaf-to-leaf distance metric. It allows to find leaves 
of different classes to the one assigned to the selected data 
point that require the fewest possible changes to this data 
point in its feature space. One obvious solution to this prob-
lem is any neighbouring leaf of a different class; this requires 
just one feature to be altered. However, there may also exist 
leaves that are relatively distant in the decision tree structure 
but also require just one feature value change, for exam-
ple, when these two decision tree paths do not share many 
features. This distance metric is computed by representing 
the tree structure in a binary meta-feature space that is cre-
ated by extracting all the unique feature partitions from the 
splits of the decision tree. Finally, an L1-like metric (when 
a particular feature is present on one branch and absent on 
the other, this distance component is assumed to be 0) is 
calculated and minimised to derive a list of counterfactual 
explanations ordered by their length.

3.2 � Explanation Desiderata

During the development stage and early trials of Glass-Box 
we identified a collection of desiderata and properties that 
should be considered when building such systems. Some of 
these attributes are inspired by relevant literature [20, 26, 
34, 44], while others come from our experience gained in 
the process of building the system, presenting it to various 
audiences, discussing its properties at different events and 
collecting feedback about interacting with it. While this and 
the following sections focus on desiderata for interactive 
and customisable explanations, we provide an in-depth dis-
cussion on this topic for generic explainability systems in 
our work on “Explainability Fact Sheets” [36]. The relevant 
subset of these desiderata are summarised in Table 1 as well 
as collected and discussed below. Section 3.3, on the other 
hand, examines the properties of interactive explainability 
systems.

G
lass-B

o
x

Explainee

?
Your loan application has been declined.

Why?

Had you earned more than £1000, instead
of £750, it would be accepted.

Disregarding my income and employment
type, what can I do to get the loan?

You already have 2 loans. Had you paid
them back, you would get this loan.

Fig. 3   An example explanatory conversation between Glass-Box and 
an explainee who personalises the explanations by asking counterfac-
tual questions

Table 1   A subset of desiderata 
for explainability systems 
proposed by Sokol and Flach 
[36], which are applicable 
to interactive explainers that 
support personalisation. (Please 
see Sect. 3.2 for a discussion.)

Functional Operational Usability

F3: Explanation Target O7: Function of the Explanation U3: Contextfullness
F4: Explanation Breadth/Scope O8: Causality vs. Actionability U6: Chronology
F7: Relation to the Predictive System U7: Coherence

U8: Novelty
U9: Complexity
U10: Personalisation
U11: Parsimony
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Given the complex nature of such systems, it would be 
expected that some of these objectives might be at odds with 
each other, their definition may be “fuzzy”, they might be 
difficult to operationalise, their “correct” application might 
depend on the use case, etc. Furthermore, striking the right 
balance between these desiderata can be challenging. Nev-
ertheless, we argue that considering them while designing 
interactive explainers will improve the overall quality of 
the system, help the designers and users understand their 
strengths and limitations, and make the interaction feel more 
natural to humans. Furthermore, some of these desired prop-
erties can be achieved (and “optimised” for the explainees) 
by simply allowing user interaction, thereby alleviating the 
need of explicitly building them into the system. For exam-
ple, interactive personalisation of the explanations (on-line, 
with user input) can mean that it does not have to be solved 
fully algorithmically off-line.

The main advantage of Glass-Box interactiveness is the 
explainee’s ability to transfer knowledge onto the system—
in this particular case various preferences with respect to 
the desired explanation—thereby personalising the resulting 
explanation [36, property U10, see Table 1]. In our expe-
rience, personalisation can come in many different shapes 
and forms, some of which are discussed below. By interact-
ing with the system the explainee should be able to adjust 
the breadth and scope of an explanation [36, property F4]. 
Given the complexity of the underlying predictive model, 
the explainee may start by asking for an explanation of a 
single data point (black-box prediction) and continue the 
interrogation by generalising it to an explanation of a sub-
space of the data space (a cohort explanation) with the final 
stage entailing the explanation of the entire black-box model. 
Such a shift in explainee’s interest may require the explain-
ability method to adapt and respond by changing the target 
of the explanation [36, property F3]. The user may request 
an explanation of a single data point or a summary of the 
whole data set (training, test, validation, etc.), an explana-
tion of a predictive model (or its subspace) or any number 
of its predictions. Furthermore, interactive personalisation 
of an explanation can increase the overall versatility of such 
systems as customised explanations may serve different pur-
poses and have different functions [36, property O7]. An 
appropriately phrased explanation may be used as an evi-
dence that the system is fair—either with respect to a group 
or an individual depending on the scope and breadth of the 
explanation—or that it is accountable, which again can be 
investigated with a varied scope, for example, a “What if?” 
question uncovering that two seemingly indistinguishable 
data points yield significantly different class assignment, 
aka adversarial examples [10]. Importantly, if the explainer 
is flexible enough and the interaction allows such customi-
sation, however the explanations were designed to serve 
only one purpose, e.g., transparency, the explainee should 

be explicitly warned of such limitations to avoid any unin-
tended consequences. For example, the explanations may be 
counterfactually actionable but they are not causal as they 
were not derived from a causal model [36, property O8].

Some of the aforementioned principles can be observed 
in how Glass-Box operates. The contrastive statements about 
the underlying black-box model can be used to assess its 
transparency (their main purpose), fairness (disparate treat-
ment via contrastive statements conditioned on protected 
attributes) and accountability (e.g., answers to “What if?” 
questions that indicate an unexpected non-monotonic behav-
iour). The contrastive statements are personalised via user-
specified constrains of the conditional part (foil) of the coun-
terfactual explanation and by default are with respect to a 
single prediction. Cohort-based insights can be retrieved by 
asking “What if?” questions with regard to counterfactual 
explanations generated by Glass-Box—Sect. 4 discusses 
how the scope and the target of our explanations can be 
broadened to global explanations of the black-box model. 
Given the wide range of possible explanations and their 
uses some systems may produce contradictory or compet-
ing explanations. Glass-Box is less prone to such issues as 
the employed explainer is ante-hoc [36, property F7], i.e., 
predictions and explanations are derived from the same ML 
model, hence they are always truthful with respect to the 
predictive model. This means that contradictory explana-
tions are indicative of flaws in the underlying ML model, 
hence can be very helpful in improving its accountability.

In day-to-day human interactions we are able to commu-
nicate effectively and efficiently because we share common 
background knowledge about the world that surrounds us—a 
mental model of how to interact with the world and other 
people [18]. Often, human–machine interactions lack this 
implicit link making the whole process feel unnatural and 
frustrating. Therefore, the creators of interactive explain-
ability techniques should strive to make their systems coher-
ent with the explainee’s mental model to mitigate this phe-
nomenon as much as possible [36, property U7]. While this 
objective may not be achievable in general, modelling a part 
of the user’s mental model, however small, can make a sig-
nificant difference. The two main approaches to extracting 
an explainee’s mental model are interactive querying of the 
explainee in an iterative dialogue (on-line), or embedding 
the user’s characteristics and preferences in the data or in 
the parameters of the explainer (off-line), both of which are 
discussed in Sect. 2.

For explainability systems this task is possible to some 
extent as their operation and purpose are limited in scope 
in contrast to more difficult tasks like developing a generic 
virtual personal assistant. Designers of such systems should 
also be aware that many interactions are underlined by 
implicit assumptions that are embedded in the explainee’s 
mental model and perceived as mundane, hence not voiced, 
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for example, the context of a follow-up question. However, 
for human–machine interactions the context and its dynamic 
changes can be more subtle, which may cause the coher-
ence of the internal state of an explainer and the explainee’s 
mental model to diverge [36, property U3]. This issue can be 
partially mitigated by explicitly grounding explanations in a 
context at certain stages, for example, whenever the context 
shifts, which will help the users to adapt by updating their 
mental model and assumptions. Contextfullness will also 
help the explainee better understand the limitations of the 
system, e.g., whether an explanation produced for a single 
prediction can (or must not) be generalised to other (similar) 
instances: “this explanation can be generalised to other data 
points that have all of the feature values the same but feature 
x
5
 , which can span the 0.4 ≤ x

5
< 1.7 range.”

Regardless of the system’s interactivity, the explanations 
should be parsimonious—as short as possible but not shorter 
than necessary—to convey the required information without 
overwhelming the explainee [36, property U11]. Maintain-
ing a mental model of the user can help to achieve this objec-
tive as the system can provide the explainee only with novel 
explanations—accounting for factors that the user is not 
familiar with—therefore reducing the amount of informa-
tion carried by the explanation [36, property U8]. Another 
two user-centred aspects of an explanation are its complex-
ity and granularity [36, property U9]. The complexity of 
explanations should be adjusted according to the depth of 
the technical knowledge expected of the intended audience, 
and the level of detail chosen appropriately for their intended 
use. This can either be achieved by design (i.e., incorporated 
into the explainability technique), be part of the system con-
figuration and parametrisation steps (off-line) or adjusted 
interactively by the user as part of the explanatory dialogue 
(on-line). Another aspect of an explanation, which is often 
expected by humans [26], is the chronology of factors pre-
sented therein: the explainee expects to hear more recent 
events first [36, property U6]. While this property is data 
set-specific, the explainee should be given the opportunity 
to trace the explanation back in time, which can easily be 
achieved via interaction.

Glass-Box attempts to approximate its users’ mental 
models by mapping their interests and interaction context 
(inferred from posed questions) to data features that are 
used to compose counterfactual explanations. Memorising 
previous interactions, their sequence and the frequency of 
features mentioned by the user help to achieve this goal and 
avoid repeating the same answers—once all of the explana-
tions satisfying given constraints were presented, the system 
explicitly states this fact. Contextfullness of explanations is 
based on user interactions and is implicitly preserved for 
follow-up queries in case of actions that do not alter the 
context and are initiated by the user—e.g., interrogative dia-
logue. Whenever the context shifts—e.g., a new personalised 

explanation is requested by the user or an interaction is ini-
tiated by Glass-Box—it is explicitly communicated to the 
user. Contrastive explanations are inherently succinct, but a 
lack of parsimony could be observed for some of Glass-Box 
explanations, which resulted in a long “monologue” deliv-
ered by the system. In most of the cases this was caused by 
the system “deciding” to repeat the personalisation condi-
tions provided by the user to ensure their coherence with the 
explainee’s mental model.

Glass-Box is capable of producing novel explanations 
by using features that have not been acknowledged by the 
user during the interaction. Interestingly, there is a trade-
off between novelty of explanations and their coherence 
with the user’s mental model, which we have not explored 
when presenting our system but which should be navigated 
carefully to avoid jeopardising explainee’s trust. Glass-
Box was built to explain predictions of the underlying ML 
model and did not account for possible generalisation of its 
explanations to other data points (the users were informed 
about it prior to interacting with the device). However, the 
explainees can ask “What if?” questions with respect to the 
counterfactual explanations, e.g., using slight variations of 
the explained data point, to explicitly check whether their 
intuition about the broader scope of an explanation holds up. 
Finally, chronology was not required of Glass-Box explana-
tions as the data set used to train the underlying predictive 
model does not have any time-annotated features.

3.3 � Glass‑Box Properties

In addition to a set of interactive explainability system desid-
erata, we consider a number of their general properties and 
requirements that should be considered prior to their devel-
opment. These are summarised in Table 2 and discussed 
below.

Assuming that the system is interactive, the communica-
tion protocol between the explainee and the explainer should 

Table 2   A subset of properties of explainability systems proposed by 
Sokol and Flach [36], which are applicable to interactive explainers 
that support personalisation. (Please see Sect. 3.3 for a discussion.)

Operational Usability Safety

O1: Explanation Family U4: Interactiveness S3: Expla-
nation 
invariance

O2: Explanatory Medium
O3: System Interaction
O4: Explanation Domain
O5: Data and Model  

Transparency
O6: Explanation Audience
O10: Provenance
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be carefully chosen to support the expected input and deliver 
the explanations in the most natural way possible. For exam-
ple, clearly indicating which parts of the explanation can 
be personalised and the limitations of this process should 
be disclosed to the user [36, property O3, see Table 2]. The 
choice of explanatory medium used to convey the explana-
tion is also crucial. Plots, interactive or not, can be very 
informative, but may not convey the whole story due to the 
curse of dimensionality and the limitations of the human vis-
ual system [36, property O2]. Supporting visualisations with 
textual description can greatly improve their intelligibility, 
and vice versa, nevertheless in some cases this approach may 
be sub-optimal, for example, explaining images using only 
a natural language interface. The intended audience should 
be considered in conjunction with the communication pro-
tocol to choose a suitable explanation type [36, property 
O6]. Domain experts may prefer explanations expressed in 
terms of the internal parameters of the underlying predictive 
model, but a lay audience may rather prefer exemplar expla-
nations that use relevant data points—choosing the appro-
priate explanation domain [36, property O4]. The audience 
also determines the purpose of the explanation. For example, 
inspecting a predictive model for debugging purposes will 
need a different system than guiding the explainee with an 
actionable advice towards a certain goal like getting a loan. 
Interactive explainers can support a wide spectrum of these 
properties by allowing the explainee to personalise the out-
put of the explainer as discussed in Sect. 3.2.

Achieving some of these objectives may require the fea-
tures of the underlying data set or the predictive model itself 
to be transparent [36, property O5]. For example, consider 
explaining a model trained on a data set with features that are 
object measurements in meters in contrast to magnitudes of 
embedding vectors. When the raw features (original domain) 
are not human-interpretable, the system designer may decide 
to use an interpretable representation (transformed domain) 
to aid the explainee. Providing the users with the provenance 
of an explanation may help them to better understanding 
its origin, e.g., an explanation purely based on data, model 
parameters or both [36, property O10]. Choosing the right 
explanation family is also important, for example: relation 
between data features and the prediction, relevant examples 
such as similar data points or causal mechanisms [36, prop-
erty O1]. Again, interactive explainers have the advantage of 
giving the user the opportunity to switch between multiple 
different explanation types. Furthermore, the design of the 
user interface should be grounded in the Interactive Machine 
Learning, Human–Computer Interaction, User Experience 
and Explainable Artificial Intelligence research to seem-
ingly deliver the explanations. For example, the explainee 
should be given the opportunity to reverse the effect of any 
actions that may influence the internal state of the explainer 
and the system should always respect user’s preferences and 

feedback [36, property U4]. Finally, if an explanation of the 
same event can change over time or is influenced by a ran-
dom factor, user’s trust is at stake. The explainee should 
always be informed about the degree of explanation invari-
ance and its manifestation in the output of an explainer [36, 
property S3]. This property is vital to Glass-Box’s success, 
which we discuss in more detail in Sect. 4.

3.4 � Glass‑Box Reception and Feedback

We presented Glass-Box to domain experts (general AI 
background knowledge) and a lay audience with the inten-
tion to gauge their reception of our prototype and col-
lect feedback that would help us revise and improve our 
explainability system. To this end, we opted for informal 
and unstructured free-form feedback, which was mostly 
user-driven and guided by reference questions (based on 
our list of desiderata) whenever necessary. We decided to 
take this approach given the nature of the events at which 
we presented our prototype—a scientific conference and a 
research festival.

Glass-Box is composed of multiple independent compo-
nents, all of which play a role in the user’s reception of the 
system:

•	 natural language understanding and generation,
•	 speech transcription and synthesis,
•	 voice and text user interfaces, and
•	 a data set that determines the problem domain.

Therefore, collecting free-form feedback at this early stage 
helped us to pin-point components of the system that 
required more attention and identify possible avenues for 
formal testing and design of user studies.

While presenting the device we only approached mem-
bers of the audience who expressed an interest in interacting 
with the device and who afterwards were willing to describe 
their experience. In total, we collected feedback from 6 
domain experts and 11 participants of the research festi-
val of varying demographics. When introducing the system 
and its modes of operation to the participants, we assessed 
their level of AI and ML expertise by asking background 
questions, which allowed us to appropriately structure the 
feedback session.

While discussing the system with the participants, we 
were mainly interested in their perception of its individ-
ual components and suggestions about how these can be 
improved. Most of the participants enjoyed asking questions 
and interacting with the device via the voice interface, how-
ever some of them found the speech synthesis module that 
answered their questions “slow”, “unnatural” and “clunky”. 
These observations have prompted some of the participants 
to disable voice-based responses and use the text-based chat 
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interface to read the answers instead of listening to them. 
When asked about the quality of explanations, their com-
prehensibility and content, many participants were satis-
fied with received answers. They claimed that personalised 
explanations provided them with information that they were 
seeking for as opposed to the default explanation given at 
first. However, some of them expressed concerns regarding 
the deployment of such systems in everyday life and taking 
the human out of the loop. The most common worry was 
the impossibility to “argue” and “convince” the explainer 
that the decision is incorrect and the explanation does not 
capture the complexity of one’s case. Some participants were 
also sceptical of the general idea of interacting with an AI 
agent and the fail-safe mode of the device, which produced 
“I cannot help you with this query.” response whenever the 
explainer could not answer the user’s question.

We plan to use all of this feedback and our experience in 
building interactive explainers to refine the system focus-
ing on its explanation personalisation aspect, and test this 
particular component with formal user studies. Isolating this 
module of the explainer will alleviate the influence of the 
user interface on the perception of the explanations, allowing 
us to investigate the effectiveness and reception of personal-
ised explanations in a formal setting.

4 � Discussion

Developing Glass-Box and demonstrating it to a diverse 
audience provided us with a unique experience of build-
ing, deploying and refining interactive explainers. To help 
researchers and engineers with a similar agenda we summa-
rise the lessons learnt in Sect. 4.1. We also discuss our next 
steps in interactive and personalised explainability research 
in Sect. 4.2 to draw attention to interesting open questions.

4.1 � Lessons Learnt

The major challenge of building Glass-Box was the develop-
ment overhead associated with setting up the hardware and 
software needed to make it voice-enabled and capable of 
processing the natural language. While ready-made compo-
nents were adapted for these purposes, the effort required to 
build such a system is still significant which may not always 
be justified. We encourage researchers to build such a sys-
tem if the research value lies in the system itself or it is used 
as a means to an end, for example, research on interactive 
explainability systems. In this case, one should be aware 
of generalisability issues as each new data set used within 
such a system must be adapted by preparing appropriate 
annotations and (possibly) training a new natural language 
processing model. In many cases, based on our observations, 
it seems that all this effort is only justified when the creator 

of the system is committed to deploying it in real life. For 
research purposes, however, the engineering overhead can be 
overwhelming, in which case we suggest using the Wizard 
of Oz studies [5] as an accessible alternative.

Once Glass-Box was operational, its major usability bar-
rier was the time-consuming process of inputting personal 
data when role-playing the loan application process. At 
first, we implemented this step as a voice-driven question-
answering task but even with just 13 attributes (most of 
which were categorical) this proved to be a challenge for 
the explainee. We overcame this issue by pre-defining 10 
individuals whom the explainee could impersonate. We then 
allowed the explainee to further customise the attributes of 
the selected individual by asking Glass-Box to edit them 
(with voice- and text-based commands). In hindsight, we 
believe that this kind of task should be completed by using 
a dedicated input form (e.g., a questionnaire delivered as a 
web page), thereby giving the explainee the full control of 
the data input process and mitigating the lengthy “interroga-
tion” process.

The interactive aspect of Glass-Box (discussed in length 
in Sect. 3.1) provides many advantages from the point of 
view of explainability. For example, it enables the explainee 
to assess individual fairness of the underlying predictive 
model and personalise the explanations (see Sects. 3.2 and 
3.3 for more details). However, not all types of explainability 
algorithms allow for the resulting explanation to be inter-
actively customised and personalised, restricting the set of 
tools that can be deployed in such a setting. If incorporating 
the user feedback (delivered as part of the interaction, e.g., 
via argumentation [25]) into the underlying predictive model 
is desired, this model has to support refinements beyond the 
training phase, further reducing the number of applicable 
Machine Learning and explainability techniques.

As noted in Sect. 3.2, some of the interactivity and per-
sonalisation desiderata cannot be achieved without “simu-
lating” the explainee’s mental model. While we believe that 
cracking this problem will be a corner stone of delivering 
explanations that feel natural to humans, we do not expect it 
to be solved across the board in the near future.

In case of Glass-Box, where the explanations are pre-
sented to the user as counterfactual statements, we observed 
a tendency amongst the explainees to generalise an expla-
nation of a single data point to other, relatively similar, 
instances. However tempting, Glass-Box explanations can-
not be generalised as they are derived from a predictive 
model (structure of a decision tree) that does not encode and 
account for the causal structure of the underlying phenome-
non. This can sometimes lead to contradictory explanations, 
which can be detrimental to the explainee’s trust. Since 
Glass-Box uses an ante-hoc explainability algorithm (i.e., 
explanations and predictions are derived from the same ML 
model), contradictory, incorrect or incoherent explanations 
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are indicative of issues embedded in the underlying predic-
tive model, which should be reported to and addressed by the 
model creators. However, if a post-hoc explainability tool 
is employed (explanations are not derived directly from the 
predictive model, e.g., surrogate explainers), contradictory 
explanations manifest a problem with the system. This issue 
cannot be uniquely pinpointed and can either be attributed to 
a low-fidelity explainer or to an underperforming predictive 
model, putting explainees’ trust at risk. Communicating the 
limitations of the explanations clearly can help to partially 
mitigate this problem; grounding the explanations in a con-
text (see Sect. 3.2) is another approach.

While truthful to the underlying black box, an ante-hoc 
explainability approach may not be available for a chosen 
predictive model. For example, deep neural networks are 
intrinsically complex, which encumbers explaining them 
without resorting to proxies. This observation highlights 
another trade-off of AI-based systems: predictive power 
vs. transparency [11]. Simpler models such as decision 
trees are less expressive but more interpretable. On the 
other hand, complex models such as deep neural networks 
are more powerful at the expense of opacity. It is still pos-
sible to explain the latter model family with proxies and 
post-hoc approaches, but issues with the fidelity and truth-
fulness of such explanations can be unacceptable, e.g., in 
high-stakes situations such as criminal justice or financial 
matters [33]. These conclusions have led some researchers 
(e.g., Rudin [33]) to deem post-hoc explainers as outright 
harmful. Instead, they argue, developers behind predictive 
systems for high-stake applications should invest more time 
in feature engineering and restrict their toolkit to inherently 
transparent ML models.

As might be expected, the power and flexibility of Glass-
Box explanations comes at a cost. The interactiveness of the 
process enables malicious users to ask for explanations of 
arbitrary data points, which in large quantities may expose 
internals of the underlying predictive model [36, proper-
ties S1 and S2]. Adversaries can misuse the information 
leaked by the system in an attempt to reverse-engineer the 
underlying predictive model (which may be proprietary) or 
use this knowledge to game it. This is particularly visible in 
Glass-Box as the condition of the counterfactual explana-
tions is based on one of the splits in the underlying decision 
tree, thereby revealing the exact threshold applied to one of 
the features, e.g., “had you been older than 25,...” implies 
age > 25 internal splitting node. Since every explanation 
reveals a part of the tree structure (at least one split), with 
a certain budget of queries the adversary can reconstruct 
the tree.

This issue is intrinsic to ante-hoc explainers but may also 
affect high-fidelity post-hoc approaches, albeit to a lesser 
extent since in the latter case the explanations are not gen-
erated directly from the black-box model. This undesired 

side-effect can be controlled to some extent by limiting the 
explanation query budget for untrustworthy users or obfus-
cating the precise (numerical) thresholds. The latter can be 
achieved either by injecting random noise (possibly at the 
expense of explainees’ trust) or replacing the numerical val-
ues with quantitative adjectives, e.g., “slightly older” (shown 
to enhance user satisfaction [4]). The trade-off between 
transparency and security of interactive explainers should be 
explicitly considered during their design stage, with appro-
priate mitigation technique implemented and documented.

4.2 � Next Steps

One of the main contributions of Glass-Box lies in the com-
position of its software stack and hardware architecture. 
While investigating the challenge of readying such a system 
for a deployment is one possible avenue for future research, 
we believe that a more interesting direction is to design 
explainability tools and techniques that facilitate (interac-
tive) personalisation of their explanations. Since the latter 
research aspect is conditioned upon the availability of the 
former, we plan to use the Wizard of Oz approach [5] to 
mitigate the need for building an interactive user interface 
that is responsible for processing the natural language. In 
this scenario, the input handling and the output generation 
are done by a human disguised as an intelligent interface, 
who can access all the components of the tested explainabil-
ity approach and is only allowed to take predefined actions. 
Therefore, bypassing an algorithmic natural language inter-
face by using the Wizard of Oz [5] approach will allow us to 
focus our research agenda on designing and evaluating the 
properties of personalised explanations. It will also ensure 
that our findings are not adversely affected by poor perfor-
mance of the natural language interface.

To this end, we will use a bespoke surrogate explainer 
of black-box predictions similar to the Local Interpretable 
Model-Agnostic Explanations (LIME) [30] algorithm. Our 
explainer uses decision trees as the local surrogate model 
[38], whereas LIME is based on a sparse linear regression. 
Among others, this modification allows us to improve the 
fidelity of the explainer by reducing the number of conflict-
ing explanations. Furthermore, a tree-based surrogate inher-
its the best of both worlds: the explainer is model-agnostic, 
hence it can be used with any black-box model, and it can 
take advantage of the wide variety of explanations supported 
by decision trees (as discussed in Sect. 1).

We plan to apply this approach to three different data 
domains: tabular data, text, and images, which tests its 
capacity of interactively generating personalised explana-
tions for a range of tasks. We expect object recognition for 
images and sentiment analysis for text to be the most effec-
tive evaluation tasks as they do not require any background 
knowledge. In our studies, the explainees will be asked to 
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interactively personalise two aspects of the explanations: 
an interpretable representation of the data features and 
their content.

The objective of the first task depends on the data 
domain. For text, it will allow the explainees to adjust and 
introduce the concepts that can only be expressed with 
multiple words since the default interpretable representa-
tion would be a bag of words. For images, the users will 
modify the default super-pixel segmentation to separate 
semantically meaningful regions—see the example shown 
in Fig. 1 and discussed in Sect. 1. For tabular data, the 
interpretable representation is achieved by discretising 
continuous features. Since the local surrogate model is a 
decision tree, this representation is learnt automatically 
and cannot be explicitly modified by the explainee. We 
will give the users indirect control over the feature splits 
by allowing them to adjust the tree structure in terms of 
depth, the number of data points required for a split and 
the minimum number of data points per leaf.

The second personalisation objective will allow the 
explainee to choose the explanation type and customise it 
accordingly. The visualisation of the surrogate tree structure 
can either depict the whole tree or zoom in on its selected 
part. The explainee will also be able to inspect tree-based 
feature importance either by viewing all of them in a list 
or by querying the importance of the chosen ones. These 
two explanation types will allow the user to grasp the over-
all behaviour of the black-box model in the vicinity of the 
explained data point. For text and images these will be the 
interactions between the words and super-pixels in that 
region, i.e., within a sentence and an image respectively, 
and for tabular data the influence of raw features and ranges 
of their values. Furthermore, the explainee will be able to get 
personalised explanations of individual predictions. A coun-
terfactual retrieved from the local tree, e.g., “had these two 
super-pixels/words not been there, the image/sentence would 
be classified differently”, will be customised by specifying 
constraints appearing in its condition. Next, the explainee 
can request a logical rule, e.g., “these three super-pixels/
words must be present and these two must be removed”, for 
any leaf in the tree, which will be extracted from the cor-
responding root-to-leaf path. Both of these explanations will 
allow the user to understand how parts of an image or a sen-
tence (super-pixels and words respectively) come together 
to predict a data point. Finally, the user can view exemplar 
explanations of any prediction, which come from the part 
of the surrogate training set—generated by perturbing the 
selected data point, possibly in the interpretable domain—
assigned to the relevant tree leaf. This means that the exem-
plars will be images with occluded super-pixels, sentences 
with missing words and, for tabular data, slight variations 
of the explained data point in its original feature space. We 
believe that this diverse set of personalised explanations 

will encourage the user to investigate different aspects of 
the black-box model thus lead to a better understanding of 
its behaviour.

Interactions form another aspect of a system that deliv-
ers a multitude of different explanation types. A user who 
has learnt which features are important may want to know 
whether one of the counterfactual explanations is con-
ditioned upon them. In particular, we want to investigate 
whether the user would discount the counterfactual expla-
nations conditioned upon unimportant features and focus 
on the ones that include important factors. Also, we are 
interested in how the user’s confidence is affected upon dis-
covering that most of the (counterfactual) explanations are 
based on features indicated as unimportant by a different 
explanation type.

As part of the study we aim to recognise current limita-
tions of the interaction and personalisation aspects of the 
system by taking note of the requests that failed from the 
user’s perspective. The possibility of retrieving multiple 
counterfactuals of the same length (the same number of 
conditions) brings up the question of their ordering. One 
approach is to use a predefined, feature-specific “cost” of 
including a condition on that feature into the explanation. 
This heuristic can be based on the purity (accuracy) of the 
counterfactual leaf, the cumulative importance of features 
that appear on the corresponding root-to-leaf path, the col-
lective importance of features listed in its conditional state-
ment or, simply, the number of training data points falling 
into that leaf [39]. However, a more user-centred approach 
is to allow the explainee to supply this information either 
implicitly or explicitly during the interaction.

To improve the quality of the interactions, we will build 
a partial mental model of the explainee using a formal argu-
mentative [6] dialogue introduced by Madumal et al. [25]. 
Many user arguments can be parsed into logical require-
ments, allowing for further personalisation and more con-
vincing explanations. The roles in this dialogue can also be 
reversed to assess and validate the explainee’s understanding 
of the black-box model—the machine questioning the human 
[42, 43]. In this interrogative dialogue, if an insight about 
the black box voiced by the user is incorrect, the system can 
provide a personalised explanation in an attempt to correct 
explainee’s beliefs. Asking the user “What if?” questions can 
further assist in this task by directing the explainee’s atten-
tion towards evidence relevant to the preconceived miscon-
ceptions. When an interaction is finished, a succinct excerpt 
summarising the whole explanatory process (similar to a 
court transcript) can be provided to the user as a reference 
material. This document should only contain explanations 
that the user has challenged or investigated in detail, avoid-
ing the ones that agree with the explainee’s mental model.

The mental model can also be utilised to adjust the 
granularity and complexity of explanations. For example, a 
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disease can be explained in medical terms—e.g., on a bacte-
rial level—or with easily observable external symptoms—
e.g., cough and abnormal body temperature—depend-
ing on the audience. While solving this task for a generic 
case is currently not feasible, we will investigate possible 
approaches for a data set that exhibits a hierarchy of low-
level features, which can be hand-crafted and incorporated 
into the explainer.

5 � Summary and Conclusions

In this paper we discussed the benefits that Interactive 
Machine Learning can bring to eXplainable Artificial Intelli-
gence and Interpretable Machine Learning. We showed how 
personalised explanations can improve the transparency of 
a Machine Learning model and how they can be generated 
via a human–machine interaction. While other aspects of 
an explainability system can also be made interactive, we 
argued that one of the major benefits comes from person-
alisation. In particular, we showed the difference between 
interactiveness of an explainability system—e.g., interac-
tive plots—and interactiveness of an explanation—e.g., 
personalisation. We supported our discussion and claims 
with experience gained from building and demonstrating 
Glass-Box: a class-contrastive counterfactual explainabil-
ity system that communicates with the user via a natural 
language dialogue. To the best of our knowledge, this is the 
first XAI system tested in the wild that supports explanation 
customisation and personalisation via interaction.

Our experience building Glass-Box and experimenting 
with it helped to identify a collection of desired functional-
ity and a set of properties that such systems should have. 
We discussed which ones are applicable to Glass-Box, and 
summarised a list of lessons that we have learnt. The most 
important one draws attention to the engineering overhead 
required to build such a system despite adapting many off-
the-shelf components. We concluded that one should avoid 
this effort in favour of Wizard of Oz studies when the main 
objective is to use such a platform as a test bed for various 
explainability techniques, unless the intention is to deploy 
it afterwards. Other key observations concerned both the 
importance and impossibility of simulating an explainee’s 
mental model. While doing so is highly beneficial, fully 
satisfying this requirement is out of reach at present. Never-
theless, we observed that by using a formal argumentation 
framework to model a part of the user-machine interactions, 
it may be possible to extract some relevant knowledge from 
the explainee, which can be utilised to this end.

To ground our study we have reviewed relevant litera-
ture, where we identified three related research strands and 
showed how our work has the potential to bridge them 
together. Our investigation has shown that while some of 

the explainability algorithms and tools are capable of expla-
nation personalisation via user interaction, many more are 
not. A number of other explainability approaches, such as 
contrastive explanations, can easily support such interac-
tions, however their implementations lack this functional-
ity. Finally, these observations combined with our findings 
helped us to devise next steps for our research, which pivot 
around investigating personalised explanations and their 
properties in a more principled way.
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