
Vol.:(0123456789)1 3

KI - Künstliche Intelligenz (2019) 33:143–150 
https://doi.org/10.1007/s13218-019-00581-6

TECHNICAL CONTRIBUTION

Catering to Real‑Time Requirements of Cloud‑Connected Mobile 
Manipulators

Christoph Walter1   · Julian‑Benedikt Scholle1   · Norbert Elkmann1

Received: 7 December 2018 / Accepted: 27 March 2019 / Published online: 12 April 2019 
© The Author(s) 2019

Abstract
In this contribution, we explore real-time requirements of mobile manipulators, a class of intelligent robots, in the context 
of the ongoing fast-robotics (https​://de.fast-zwanz​ig20.de/indus​trie/fast-robot​ics/) project. The project aims at implement-
ing such robots based on (edge-) cloud-services using wireless communication in order to make them more capable and 
efficient. Instead of trying to universally achieve hard real-time in such a system, we present a mixed real-time approach 
with an application centered fault tolerance scheme based on transition points and pre-computed alternate plans. We argue 
that deliberatively addressing uncertainties in timing is similarly important than handling uncertainties e.g. in perception 
for future intelligent robots.

Keywords  Edge computing · Architecture · Robotics · Real-time · Time-aware · Ultra-low-latency · Wireless

1  Introduction

Robots are inherently flexible machines and are thus essen-
tial parts of smart production systems. Here we can expect 
carefully engineered processes and workspaces, even in 
somehow flexible or adaptable production settings. This 
includes readily available models suitable for detailed plan-
ning of robot actions. Flexibility could be categorized as 
follows: (1) the ability to deal with local uncertainties like 
variations in part positions or wear of tools. (2) Overcom-
ing larger process variations like random placement of parts 
(e.g. bin picking), unexpected obstacles in shared work-
spaces, or new part variations. (3) Supporting implementa-
tion of new processes. We consider category 3 to be relevant 
during design time, when commissioning, or even during 
ramp-up or training phases. Category 1 and 2 are run-time 
properties and thus relevant functions of a suitable control 
system. While the category 1 can be achieved by simple 

sense-act scheme using locally installed sensors, category 2 
is better served using sense-plan-act as an approach. Even 
though planning is a broad topic, it involves data or compu-
tationally intensive tasks like managing or updating models 
[12], as well as running planning algorithms. When consid-
ering mobile robots, planning tasks are obvious candidates 
to be offloaded to remote servers. However, sensing and 
motion generation can also be computationally intensive. 
Offloading computation from the mobile robot would save 
space, weight and battery power. The ANNIE robot1 we use 
in our experiments requires about 250W for the onboard 
computers. Assuming a lithium ion battery with a specific 
energy of 140 Wh/kg is used to power the system over an 8 
h operating cycle, we see that ANNIE needs 14 kg of battery 
weight just for onboard computations. Designing a distrib-
uted system, especially one that incorporates heterogeneous 
hard- and software while still being supportive in address-
ing key challenges in domain specific application develop-
ment, is an extensive undertaking requiring considerations 
in many different directions. This paper is limited in scope 
to an initial motivation for using a mixed real-time system in 
conjunction with standard and advanced communication and 
IT-concepts, a classification of typical manipulation tasks 
dependent on elasticity concerning quality of service, and 
an analysis of an exemplary use-case.

 *	 Julian‑Benedikt Scholle 
	 Julian‑Benedikt.Scholle@iff.fraunhofer.de

	 Christoph Walter 
	 Christoph.Walter@iff.fraunhofer.de

	 Norbert Elkmann 
	 Norbert.Elkmann@iff.fraunhofer.de

1	 Fraunhofer Institute for Factory Operation and Automation, 
Magdeburg, Germany

1  https​://www.iff.fraun​hofer​.de/en/busin​ess-units​/robot​ic-syste​ms/
resea​rch-platf​orm-annie​.html

http://orcid.org/0000-0003-2714-3725
http://orcid.org/0000-0002-1735-3254
https://de.fast-zwanzig20.de/industrie/fast-robotics/
http://crossmark.crossref.org/dialog/?doi=10.1007/s13218-019-00581-6&domain=pdf
https://www.iff.fraunhofer.de/en/business-units/robotic-systems/research-platform-annie.html
https://www.iff.fraunhofer.de/en/business-units/robotic-systems/research-platform-annie.html


144	 KI - Künstliche Intelligenz (2019) 33:143–150

1 3

This paper is structures as follows: After the discussion 
of the related work, in particular concerning progress in 
wireless networking as well as related software, we moti-
vate timeliness from the point of view of a dynamic robot 
application. In Sect. 4 we present a scheme for fostering a 
distributed soft real-time system in conjunction with a fault 
tolerance scheme in order to implement a control task. This 
is followed by an in-depth analysis of a concrete application 
scenario in Sect. 5.

2 � Related Work

Our work is the result of an ongoing interdisciplinary pro-
ject with experts from both the robotics domain as well as 
from communication and cloud systems. One aspect is the 
integration of technologies. Thus, it is necessary to briefly 
summarize the state of the art in both communication- and 
IT-systems as well as in the robotics and automation soft-
ware domain for a broader perspective.

2.1 � (Wireless) Networking

In data center networking we have seen a convergence of 
applications to use a common network infrastructure based 
on Ethernet. Here, support for timing sensitive applications 
was improved by targeting the elimination of packet loss 
on the network as well as introducing prioritization. IEEE 
802.3x introduced layer 2 flow control, 802.1p priorities for 
expedited forwarding, while later 802.1Qbb implements a 
combination of both. 802.1Qat tackles end-to-end manage-
ment of streams and 802.1Qav introduced credit-based traf-
fic shaping. With 802.1Qat there is a method for reserving 
network resources. Apart from time synchronization using 
802.1AS, which is also available on 802.11 wireless net-
works, these improvements are limited to the wired backend. 
Mobile robots usually require some kind of wireless connec-
tion. Wireless networking is commonly used for interacive 
and multimedia applications. In this context wireless perfo-
mance has been improved regarding both latency [11] and 
as well as packet loss rate [10].

Here, we are using a novel implementation of EchoRing, 
a wireless industrial network with real-time capabilities. It is 
a data link layer protocol that extends the well-known token-
passing principle with a modified error recovery mechanism 
in order to deal with the dynamic nature of wireless channels 
[3]. At the moment, the implementation is bandwidth limited 
so we combined it with a conventional WLAN. Cellular net-
works are another wireless communication technology. 5G 
networks will support network slicing to address the needs 
of different application classes simultaneously [8]. Classes 
include machine-type communication as well as ultra-reli-
able low-latency communication (URLLC). Low-latency 

required the use of the 5G new radio implementation (NR) 
which is still in its infancy. However, field tests have shown 
radio segment delays of less than 1 ms [6].

2.2 � Software

Robots can be approached from different points of view. 
One such perspective is industrial automation. In automation 
equipment, real-time communication has also transitioned 
to Ethernet-based communication. With implementations 
such as Profinet (rt/irt), EtherCAT, SERCOS 3, or Ethernet/
IP, we see both largely proprietary solutions with very good 
real-time properties including isochronous communication 
and solutions featuring co-existence or interoperability with 
other Ethernet protocols.

Time sensitive networking (TSN) is a current develop-
ment based on the already established standards mentioned 
in the previous section but with a clear emphasis on highly 
deterministic real-time and automation (IEC/IEEE 60802). 
It introduces a number of new or refined technologies into 
Ethernet while enabling interoperability with other traffic. 
An analysis [4] of TSN also shows that it has the potential to 
displace all many other bus systems in the industial robotics.

However, TSN does not say anything about the minimal 
possible latencies of the software over the network, but 
merely specifies an upper expected limit for them. For the 
overall performance, the speed of the network must therefore 
also be taken into account. Since the speed of the network 
also depends on the network stack of the operating system, 
we have searched for analyses of this.

Due to the real-time software still available on the robot, 
such as the motor control and the evaluation of the safety 
laser scanners, the operation system must be real-time capa-
ble and due to the simple availability Linux is used here 
together with the RT-Preempt patches. The investigation [1] 
shows that the RT-Linux kernel can even contribute to the 
reduction of network latencies and even shows significant 
improvement through over adaptations.

The popular robotics software framework ROS is cur-
rently transitioning to the new communication middleware 
DDS [7]. This should open possibilities regarding better 
integration especially with timing improving networking 
technologies.

2.3 � Summary

While the mentioned technologies improve determinism of 
communication channels, we still face basic challenges:

•	 Admission of a (communication) tasks may fail in a 
dynamic system.

•	 Unknown or hard to estimate worst-case execution times 
of high-level computation tasks.



145KI - Künstliche Intelligenz (2019) 33:143–150	

1 3

•	 Conservative timing guaranties (when available).
•	 Variable bandwidth of wireless communication over 

time.

This stipulates the necessity of designing robot applications 
which are aware of the timing of their communication and 
computation systems and that can react to it in a similar 
way as they would react to observations of the environment. 
When it commes to robot control architecture, the availabil-
ity ot new these improved wireless communication systems 
grants access to vast computational ressources. This in turn 
enables a better integration of high-level tasks like planning 
and low-level execution by the means of a massive ammount 
of pre-computed behavior variations.

3 � Motivation for Timeliness

Robots implement interaction with the physical world and 
are by themselves physical objects. This implies real-time 
constraints on their control systems. On the other hand, the 
advent of ROS [9] has proven the usefulness of software sys-
tems with weak or no real-time support in this area. When 
taking a look at robot applications we can see different tasks 
or sub-tasks, some of which are sensitive to timing in some 
way, others are not. Timing-sensitive tasks can be found in 
applications where the process to be carried out is timing 
sensitive. An example is glue application. Here, deviations 
from a carefully engineered trajectory will cause imperfect 
results. The application process is dynamic and a tempo-
rary loss of control results in undesired behavior. Other 
processes are not inherently timing sensitive. For example, 
bin picking: The objects in the bin do not move on their 
own, the robot system can be completely implemented with 
best-effort timings. In this case, the robot would move incre-
mentally whenever a new waypoint is generated. The system 
would be quite slow and may not be feasible for commercial 
application. There is however a limit on how fast a best-
effort robot can become. The transition to swift and fluid 
movement of the robot again introduces a dynamic process 

where temporary loss of control again results in undesired 
behavior. Robotic control architectures can be classified in 
hierarchical, behavioral, hybrid approaches. All of which are 
organised in higher and lower level subtasks. The low-level 
part can only act upon locally available information. This 
part can easily made real-time compliant, in contrast to high-
level tasks. Furthermore, reactions are either very limited or 
become autonomous, which can be undesirable because of 
the limited access to relevant knowledge on the lower level. 
In the remainder of this paper we discuss a solution whereby 
we continue controlling the robot in case of a timing fault 
of the computer or the communication system. This is done 
for the most part deliberatively based on pre-planned motion 
at a higher level. We also incorporate data for fast reaction 
from a soft-real-time sensor based on sensor prediction.

4 � A Fault Tolerance Scheme Based 
on Transition Points

Our basic architectures (see. Fig. 1) consist of a high-level, 
time-aware runtime, a low-level runtime, and additional 
time-aware data-sources. The low-level runtime implements 
a time-triggered control loop and is local to the robot. It 
is hard real-time and has access to local information from 
select sensors. It furthermore subscribes to data sources with 
a similar time scope from the event driven high-level system, 
if necessary, to make decisions. It is only concerned with 
actions relevant to the current situation. The high-level runt-
ime implements the overarching robot program. It is time-
aware in the sense that it knows timing requirements of both 
the low-level runtime and the application task either explic-
itly from the user provided program or implicitly derived 
from models. It continuously communicates with the low-
level runtime during task execution and can be consolidated 
onto a remote server. This is most preferably an edge server 
with bounded communication latency, but implementation 
on a core server with soft real-time communication link to 
the robot is conceptually also possible. Time aware data 
sources are endpoints in event-driven processing chains 

Fig. 1   Basic system structure



146	 KI - Künstliche Intelligenz (2019) 33:143–150

1 3

which provide useful information. The emission of such 
events can be aperiodic, but because the source is aware 
of the timing requirements of the subscriber, information 
is processed to best fit the subscribers needs. This is being 
achieved by interpolation or prediction onto the required 
points in time.

In order to have the benefits of global knowledge gained 
from various data processing services including object 
detection, recognition and tracking, as well as demanding 
algorithms like collision-free motion planning and optimiza-
tion, we want these tasks to be performed on off-board. As a 
layered control architecture, we need a scheme for mediation 
between higher-level (slow, soft real-time, event-based) and 
lower-level (fast, hard real-time, cyclic) layers.

While it is possible to trigger a sequence of otherwise 
autonomous behaviors implemented at the lower level, this 
approach does not fully benefit from detailed knowledge and 
models available only at a higher level. Thus, we imple-
mented a hybrid approach. The concept is based on a large 
number of pre-computed movement variations to form an 
overall deliberative action. Tightly spaced transition points 
enable the change between trajectories in order to be able to 
still react swiftly to external events. This included real-time 
guarantees. We propose a spacing of 5–20 ms depending on 
the application as a suitable amount of transition points. This 
is also dependent on the capabilities of external data sources 
needed to make decisions. A time-aware data source, such as 
a camera system with object tracking capability, is expected 
to provide aligned data, if necessary based on predictions as 
input to the low-level runtime (see Fig. 2) as well as for the 
high-level runtime for planning.

The various movement variations can be pre-planned 
using parallelization on powerful off-board servers with a 
larger granularity of about ten transition points. We will pre-
sent values for a concrete example in Sect. 5.2. The number 
of variations grows rapidly over time so it is important to 
limit the number of transition points as well as the num-
ber of alternative planning goals to a number necessary for 
the application. This requires a better understanding of the 

application (sub-) task that we want to implement, but avoids 
computationally expensive overprovisioning.

The movement is encoded in the form of a graph structure 
where transition points are a group of nodes labeled with 
the same timestamp, t (see Fig. 3). Each node represents an 
intermediate pose, i.e. an intermediate goal configuration. 
The edges represent trajectory segments to reach the next set 
of nodes at the next transition point. The maximum number 
of trajectory segments between transitions is n

t−1
⋅ n

t
⋅ n

t+1
 

with n as number of nodes. Not all transitions are possible 
in all cases, because they exceed the dynamic limits of the 
robot. Other nodes can lead to paths where no alternatives 
are available or where alternatives have a different spacing of 
transition points. Autonomous behaviors are still necessary 
for implementing fastest transitions to desired actions, e.g. 
reactions to collisions. Special care must be taken for tran-
sitioning back from autonomous to pre-planned actions. The 
simplest approach to this problem is to do it when stopped. 
Another is to use motion generation at the low-level runtime 
for a brief period until a node in the deliberatively planned 
graph structure is reached. This also requires the use of rel-
ative timestamps for nodes because execution time of the 
transition is be variable. Actions group steps or branches 
of the program with distinct purpose (see Fig. 3). They are 
similar to traditional behaviors in the sense that activation 
and execution is autonomous based on locally available 
information to make decisions. However, the comparison 
can also be misleading since, in our case, we emphasize 
deliberatively planned movement variations using global 
models. The decision process within the local real-time con-
troller is realized through a user defined script provided at 
run-time initialization. This transition program is executed 
with every cycle of the control loop and is implemented 

Fig. 2   A time-aware data source is a chain of tasks (transmission, 
processing, interpolation/prediction) and provides results aligned to 
transition points Fig. 3   Concept of transition points and branching within and between 

actions. The number of controller task instances has been reduced for 
clarity. Dashed lines represent autonomous actions and transitions. 
Circles represent nodes in the pre-computed transition graph, while 
rectangles show implicit transitions to autonomous actions for con-
troller task instances when no transition point is available (only one 
instance is shown to avoid clutter). Nodes are connected with multi-
ple lines because blending causes different results for different transi-
tions



147KI - Künstliche Intelligenz (2019) 33:143–150	

1 3

with the lightweight embedded language, Lua version 5.x 
[5], which we adapted for real-time use. In every cycle the 
transition program checks which transitions are available for 
the current action and on the current cycle. It then evaluates 
their necessity based on locally available information or on 
the lack of information due to communication interruption. 
Transitions to autonomous behavior may occur on any cycle. 
Transitions to pre-computed alternatives only occur on spe-
cific transition points: points in time for which nodes are 
available in the graph structure. At these points transitions 
between pre-planned trajectories are available.

5 � Analysis of an Application Scenario

In this section, we discuss a scenario as a use-case for our 
system architecture. It consists of an assembly line with 
multiple work stations in sequence. The work stations are 
designed for human employees to operate. We want to alter-
natively operate one workstation using an anthropomorphic 
mobile manipulator. This implies not only a collaborative 
setting, i.e. co-existence [2] with human co-workers at 
neighboring workplaces, but also the requirement of com-
pleting tasks at the same speed as a human workers.

5.1 � Physical Setup, Application, and Sub‑Tasks

The physical setup is shown in Fig. 4. The whole system 
is about 10 m long and 5 m wide. We are using a mobile 
manipulator based on an omnidirectional mobile platform 
with Mecanum wheels, a head-mounted sensor array includ-
ing a fast monochrome camera, wireless communication, 
and a robot arm mounted on an adjustable torso. The robot 
arm controller requires a 1 ms cyclic task execution, while 
the mobile platform is controlled in 5 ms cycles. These real-
time functions are implemented on a x86 Intel Pentium M 
platform. The robot’s reach is roughly comparable to that 

of a small-sized person. For situational awareness we use 
additional overhead cameras dedicated to the identification 
of approaching persons while the robot is focusing its atten-
tion on the work process. The task of the robot is to approach 
parts passing by on the conveyor, and fasten a number of 
pre-placed screws on the part using a battery powered, hand-
held screwdriver. The robot therefore needs to track the con-
veyor when working on the part and thus may come close 
to a human co-worker at the next station. Workers may also 
come close to the robot on their own, requiring the robot 
to react accordingly. Off-board servers are placed near the 
station and have a direct, wired connection to the wireless 
transmitters mounted on a support frame in the working 
area. The basic sub-tasks can be summarized as follows:

•	 Detection of the approaching part.
•	 Platform motion towards the part and synchronization 

with conveyor movement.
•	 Locating the screws and moving the arm into a suitable 

start configuration.
•	 Inserting the tip of the tool into a screw.
•	 Tighten screw and repeat the previous three steps until 

all screws are fastened.
•	 Retract the arm and drive to home position.

While several of the sub-tasks are interesting candidates 
for a detailed discussion, we will limit our analysis to a sin-
gle core task, the insertion of the tool into the screw. This 
task involves tracking both tool and screw via the on-board 
camera system. The image processing and the motion gen-
eration will be executed by the off-board servers. The move-
ment cannot be pre-programmed, because the position of the 
part and the robot are expected to vary between instances. 
The robot must also react to approaching workers and inad-
vertent collisions by retracting the arm to avoid a dangerous 
situation and then stopping (Fig. 5).

Fig. 4   Experimental setup conceptual overview Fig. 5   Experimental setup with robot and tool for manipulating the 
part



148	 KI - Künstliche Intelligenz (2019) 33:143–150

1 3

5.2 � Implementation of Tool Insertion Sub‑Task

As previously mentioned, we focused our work on the sub-
task of inserting the tool into a screw at a part which is fixed 
to a moving skid, requiring motion of both the manipulator 
arm and the mobile platform to complete the task. While 
this example does not fully show the potential of higher-
level motion planning for the quite small overall movement 
of approximately 5 cm, it is the sub-task which requires the 
fastest reaction times and the largest amount of planning 
alternatives, i.e. nodes and transitions in the graph structure. 
This made it a suitable candidate for studying the feasibility 
of our approach. At first, we built a physical process model 
by analyzing the dynamics of the process using test runs. 
As a physical process, the movement of tool and screw in 
relation to the observing sensor shows periodic properties. 
In test runs, the x-component showed oscillations with a fre-
quency of approximately 7 Hz while the y-component oscil-
lated with a frequency of around 23 Hz (see Fig. 6). While 
the mobile platform in general tracks the skid satisfactory, 

dynamic position variations of the screw in relation to the 
tool clearly need to be accounted for when planning the 
insert motion.

We also need to determine the capability of the robot to 
compensate for the movement of the screw in relation to 
the tool. By experimental trials we observed in the worst 
case (full reversal of direction) that in our setup the robot 
was able to compensate 1.1 mm in 1/23 s, which is about 
twice as fast as needed according to preceding analysis of 
the process.

Next, we characterized the communication channels. We 
decided to use WLAN to transfer image data to a remote 
server because of bandwidth requirements of about 3 
MBytes per second. This already includes area of interest 
cropping with subsequent compression. Figure 7 shows the 
communication delays measured at our test location with 8 
other wireless networks in the vicinity. The average latency 
was below 5 ms with peaks in the range up to 40 ms. Result 
transfer back to the robot took an average of 1.8 ms with 
peaks up to 7 ms. All other communication including binary 

−1

−0.5

0

0.5

1

0 0.5 1 1.5 2

m
ov

em
en

t
[m

m
]

time [s]

x-component
y-component

−1

−0.5

0

0.5

1

0 0.5 1 1.5 2

m
ov

em
en

t
[m

m
]

time [s]

x-component
y-component

Fig. 6   Movement of screw (upper) and screw in relation to tool 
(lower) during a 2 s period as observed by the head mounted camera 
system

0

5

10

15

20

25

30

35

40

45

0 10 20 30 40 50 60

de
la
y
[m

s]

time [s]

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6

de
la
y
[m

s]

time [s]

Fig. 7   Communication delays when transmitting image data from the 
robot to an external server over a period of 60 s (upper), processing 
time for object tracking over a period of 6 s (lower)



149KI - Künstliche Intelligenz (2019) 33:143–150	

1 3

encoded graph structures are estimated to not exceed 200 
kBytes per second and can be transferred using EchoRing 
which provides a bounded transmission time of 10 ms. The 
processing times vary slightly with an average of 1.1 ms and 
spikes below 7 ms.

Based on this understanding of the process and commu-
nication and computational systems, we generate predictions 
of most likely part movements in order to be able to plan 
ahead in time. We use a simple autoregressive model to pre-
dict both x- and y-components separately and combine those 
to find a likely 3D goal position. Based on test data, the 
mean prediction error 50 ms ahead in time is about 0.09 mm, 
while 83.9% of prediction were within a distance of 0.15 mm 
from ground truth. We consider that distance to be to the 
threshold where larger deviations result in a failed attempt. 
Ground truth is generated by the camera system. The camera 
has 1280 × 1024 pixels, which results in a resolution 0.2 mm 
per pixel and a sub-pixel tracking performance of 0.02 mm 
at the working distance. We assume this to be sufficiently 
accurate for this analysis. To increase the likelihood of suc-
cess we increase prediction coverage by generating alternate 
goal positions. Based on our test dataset, which contains 
1258 measurements, planning only two alternates resulted 
in a complete coverage. Regarding the influence of the data 
source on live decisions, we estimate that in 1.8 percent of 
instances prediction error for a 10 ms interval will lead to a 
failed tool insertion. In addition, timing variance will lead 
to instances where less accurate predictions have to be used. 
This increases the percentage of instances that will fail to 
2.4. This is still a significant amount, which needs further 
error handling. However, a failure to insert the tip properly 
can easily be detected by a verification movement in com-
bination with repeating the sub-task. In this case the error 
rate can be considered acceptable. The main factor is the 
quality of the predictions, which can be improved by a more 
elaborate model or shorter overall latencies.

For the implementation of the motion planning in the 
high-level runtime, we therefore designed the following fault 
tolerant application: We choose to generate trajectories to 
the most likely position of the screw, with between 2 and 
4 alternatives for the insertion action. Further transitions 
are also generated when certain events occur. If a human is 
predicted to come too close to the robot, a Retraction move-
ment to a safe position triggered. If the screw moves outside 
the region covered by predictions and therefore cannot be 
reached by a pre-computed trajectory or if a timing fault 
occurs and sensor- or planning data becomes unavailable, a 
transition is triggered to a slightly retracted hold position. 
The final transition is to an autonomous reaction in case 
of a premature collision being detected. That reaction gets 
triggered based on local torque sensors only and can happen 
on any controller cycle without the need for a pre-computed 
transition point. The reaction involves switching to a joint 

compliance mode which can be transitioned out of as soon 
as the arm comes to a stop when external forces have sub-
sided. Overall, we have deliberate transition points every 5 
ms in conjunction with a planning horizon of 50 ms. In the 
worst case, this amounts to 1750 trajectory fragments to by 
planned this time. For this sub-task, two data sources are 
required by the low-level runtime: The camera-based track-
ing of the distance between screw and tool, and a minimum 
distance to the closest human worker in the vicinity.

6 � Summary and Outlook

Real-time requirements in robotics depend on the specific 
tasks of an application. Some tasks (Sect. 3) require hard 
real-time control and a fixed update rate; others are more 
flexible but still sensitive to timing faults at relevant execu-
tion speed. We have presented a scheme of realizing such 
tasks using a distributed runtime which deliberatively plans 
many alternatives of concrete behavior to relax time con-
straints on higher-level planning. As a basis for choosing 
between alternatives in a timely manner we used aligned 
predictions from asynchronous event driven sensor data 
processing which also reduces real-time constraints on 
sensing. Overall our approach represents a tradeoff between 
computational resources and communication bandwidth on 
the one hand and latency as well as jitter in processing and 
communication on the other hand. In future work we plan on 
using the presented scheme in the implementation of other 
sub-tasks of the application. An interesting question is the 
possibility of performance improvements in the discussed 
sub-task for tool insertion by automatically adjusting the 
planning horizon based on the observed dynamics of the 
process. Further automatic adjustments include the timing 
properties of the off-board, time-aware data sources, in par-
ticular the communication channel. In this work we had to 
identify these manually. However, we expect this to be an 
automatic feature, especially in next generation cellular net-
works where even short-term predictions are possible.

Acknowledgements  This work was partially funded by the Federal 
Ministry of Education and Research of Germany under Grant agree-
ment no. 03ZZ0528A.

Open Access  This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat​iveco​
mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate 
credit to the original author(s) and the source, provide a link to the 
Creative Commons license, and indicate if changes were made.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


150	 KI - Künstliche Intelligenz (2019) 33:143–150

1 3

References

	 1.	 Abeni L, Kiraly C (2013) Investigating the network performance 
of a real-time Linux kernel *. http://cites​eerx.ist.psu.edu/viewd​
oc/citat​ions;jsess​ionid​=754BB​29FF6​DFD09​D0007​FC278​7DC60​
44?doi=10.1.1.702.7571

	 2.	 Behrens R, Saenz J, Vogel C, Elkmann N (2015) Upcoming tech-
nologies and fundamentals for safeguarding all forms of human–
robot collaboration. In: Deutsche Gesetzliche Unfallversicherung 
e.V. -DGUV-: 8th international conference safety of industrial 
automated systems. SIAS, pp 18–23

	 3.	 Dombrowski C, Gross J (2015) Echoring: a low-latency, reliable 
token-passing mac protocol for wireless industrial networks. In: 
Proceedings of European wireless 2015; 21th European wireless 
conference, pp 1–8

	 4.	 Gutiérrez CSV, Juan LUS, Ugarte IZ, Vilches VM (2018) Time-
sensitive networking for robotics. Computing research repository 
(CoRR). https​://arxiv​.org/corr

	 5.	 Ierusalimschy R, de Figueiredo LH, Filho WC (2005) The imple-
mentation of lua 5.0. J Univ Comput Sci 11(7):1159–1176

	 6.	 Iwabuchi M, Benjebbour A, Kishiyama Y, Ren G, Tang C, Tian T, 
Gu L, Takada T, Kashima T (2017) 5g field experimental trials on 
urllc using new frame structure. In: 2017 IEEE Globecom work-
shops (GC Wkshps), pp 1–6. https​://doi.org/10.1109/GLOCO​
MW.2017.82691​30

	 7.	 Maruyama Y, Kato S, Azumi T (2016) Exploring the performance 
of ros2. In: 2016 international conference on embedded software 
(EMSOFT), pp 1–10. https​://doi.org/10.1145/29684​78.29685​02

	 8.	 Popovski P, Trillingsgaard KF, Simeone O, Durisi G (2018) 5g 
wireless network slicing for embb, urllc, and mmtc: a communi-
cation-theoretic view. IEEE Access 6:55765–55779

	 9.	 Quigley M, Conley K, Gerkey BP, Faust J, Foote T, Leibs J, 
Wheeler R, Ng AY (2009) ROS: an open-source robot operating 
system. In: ICRA workshop on open source software

	10.	 Sheshadri RK, Koutsonikolas D (2017) On packet loss rates in 
modern 802.11 networks. In: IEEE INFOCOM 2017—IEEE 
conference on computer communications, pp 1–9. https​://doi.
org/10.1109/INFOC​OM.2017.80571​30

	11.	 Wellnitz O, Wolf L (2010) On latency in IEEE 802.11-based 
wireless ad-hoc networks. In: IEEE 5th international symposium 
on wireless pervasive computing 2010, pp 261–266. https​://doi.
org/10.1109/ISWPC​.2010.54837​19

	12.	 Zaheer S, Jayaraju M, Gulrez T (2015) Performance analysis 
of path planning techniques for autonomous mobile robots. In: 
2015 IEEE international conference on electrical, computer and 
communication technologies (ICECCT), pp 1–5. https​://doi.
org/10.1109/ICECC​T.2015.72262​05

http://citeseerx.ist.psu.edu/viewdoc/citations;jsessionid=754BB29FF6DFD09D0007FC2787DC6044?doi=10.1.1.702.7571
http://citeseerx.ist.psu.edu/viewdoc/citations;jsessionid=754BB29FF6DFD09D0007FC2787DC6044?doi=10.1.1.702.7571
http://citeseerx.ist.psu.edu/viewdoc/citations;jsessionid=754BB29FF6DFD09D0007FC2787DC6044?doi=10.1.1.702.7571
https://arxiv.org/corr
https://doi.org/10.1109/GLOCOMW.2017.8269130
https://doi.org/10.1109/GLOCOMW.2017.8269130
https://doi.org/10.1145/2968478.2968502
https://doi.org/10.1109/INFOCOM.2017.8057130
https://doi.org/10.1109/INFOCOM.2017.8057130
https://doi.org/10.1109/ISWPC.2010.5483719
https://doi.org/10.1109/ISWPC.2010.5483719
https://doi.org/10.1109/ICECCT.2015.7226205
https://doi.org/10.1109/ICECCT.2015.7226205

	Catering to Real-Time Requirements of Cloud-Connected Mobile Manipulators
	Abstract
	1 Introduction
	2 Related Work
	2.1 (Wireless) Networking
	2.2 Software
	2.3 Summary

	3 Motivation for Timeliness
	4 A Fault Tolerance Scheme Based on Transition Points
	5 Analysis of an Application Scenario
	5.1 Physical Setup, Application, and Sub-Tasks
	5.2 Implementation of Tool Insertion Sub-Task

	6 Summary and Outlook
	Acknowledgements 
	References




