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Abstract
Many hard problems can be solved efficiently by dynamic programming algorithms that work on tree decompositions. In 
this paper, we present the D-FLAT system for rapid prototyping of such algorithms. Users can specify the algorithm for their 
problem using Answer Set Programming. We illustrate the framework by an example and briefly discuss its main features.
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1 Introduction

Graphs are ubiquitous in computing. Treewidth [7] is a 
parameter that, intuitively, measures how far a graph is 
from being a tree. This parameter proved to be very useful 
because many hard problems become tractable if instances 
are restricted to those whose treewidth is bounded by a 
constant [6]. Algorithms that exploit this usually employ 
dynamic programming on a tree decomposition of the 
instance. A tree decomposition is a tree obtained from a 
graph, where each node has a bag, which is a set of verti-
ces of the original graph. A decomposition thus divides the 
instance into several parts. For many problems, we can then 
apply dynamic programming to compute tables containing 
partial solutions for the respective subproblems and finally 
combine them to obtain solutions for the whole problem (if 
possible).

The D-FLAT system [1, 4] is a tool for rapid prototyp-
ing of such algorithms. Users merely need to specify the 
computation at each node of the tree decomposition in a 
declarative way, and the system takes care of problem-inde-
pendent parts like computing a decomposition and combin-
ing partial solutions. For formalizing the computations at the 
decomposition nodes, D-FLAT uses the logic programming 
language Answer Set Programming (ASP). ASP makes the 

specification of many combinatorial problems easy, and this 
often carries over to D-FLAT specifications.

2  Dynamic Programming with D‑FLAT

Given an ASP program specified by the user, D-FLAT first 
reads an input to the problem and generates an appropriate 
tree decomposition using heuristic methods. It then traverses 
the decomposition in post-order and executes the user-sup-
plied program at each node (see Fig. 1) with the following 
information: the vertices in the current bag (current/1), 
those encountered for the first time (introduced/1), 
the names of children of the current decomposition node 
(childNode/1), the (globally unique) identifiers of rows 
from the tables of these child nodes along with the respec-
tive node names (childRow/2), and the contents of these 
child rows (childItem/2). Output predicate item/1 is 
used to store the content of the current table row, whereas 
extend/1 indicates the origins of this row by pointing to 
one row from each child table.

We illustrate problem solving in D-FLAT with an exam-
ple. Consider the D-FLAT encoding from Listing 1, which 
implements a dynamic programming algorithm for finding 
independent sets (i.e., sets of vertices such that no two ele-
ments are adjacent to each other) in graphs given by facts 
over the predicate edge.
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1 { extend(R) : childRow(R,N) } 1 ←
childNode(N).

← extend(R1), extend(R2), childItem(R1,X),
not childItem(R2,X).

item(X) ← extend(R), childItem(R,X),
current(X).

{ item(X) : introduced(X) }.
← edge(X,Y), item(X), item(Y).

Listing 1 Computing independent sets with D-FLAT

In line 1, we guess a row from each child table. By line 2, 
we never combine child rows that disagree on the status of a 
bag element. (For this we may assume that each decomposi-
tion node with more than one child has the same bag as all 
children.) If an extended partial solution contains an element 
that is still present in the current bag, line 3 makes sure that 
this element still appears in the current row. Line 4 guesses 
for each introduced bag element whether it is included in 
the partial solution, and we ensure in line 5 that the partial 
solution restricted to the current bag is independent.

2.1  Advanced Features

The algorithm formalized in Listing 1 computes a table at 
each tree decomposition node. However, many dynamic 
programming algorithms require more involved data struc-
tures than this “flat” table structure. Hence D-FLAT sup-
ports a generalization where we store a tree of tables at each 
decomposition node. It has been shown [5] that D-FLAT can 
thus solve all problems expressible in monadic second-order 
logic in linear time for instances of bounded treewidth.

D-FLAT also supports optimization problems and allows 
for anytime optimization; that is, the execution can be 

interrupted and the best solution found so far is reported [3]. 
This is realized via lazy evaluation, which essentially fills 
tables bit by bit. Hereby, D-FLAT does not simply perform 
one post-order traversal to compute all table rows but tries 
to compute as few as possible using backtracking in case 
the currently computed rows do not lead to a solution yet. 
Moreover, the system provides a facility for shifting arith-
metic from ASP encodings into the framework, which often 
leads to smaller groundings. Finally, there is an extension 
of D-FLAT that allows for an easy and efficient handling of 
problems whose solutions are minimal or maximal w.r.t. set 
inclusion  [2].

3  Sources

Source code and binary releases can be found at https ://githu 
b.com/bblie m/dflat /. The project website is at http://dbai.
tuwie n.ac.at/proj/dflat / and contains references to exten-
sions and related software. For an exhaustive description of 
D-FLAT, we refer to [4].
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Fig. 1  Procedure at each tree decomposition node

https://github.com/bbliem/dflat/
https://github.com/bbliem/dflat/
http://dbai.tuwien.ac.at/proj/dflat/
http://dbai.tuwien.ac.at/proj/dflat/

	Dynamic Programming on Tree Decompositions with D-FLAT
	Abstract
	1 Introduction
	2 Dynamic Programming with D-FLAT
	2.1 Advanced Features

	3 Sources
	Acknowledgements 
	References


