
Vol.:(0123456789)1 3

KI - Künstliche Intelligenz (2018) 32:191–192
https://doi.org/10.1007/s13218-018-0531-2

SYSTEMS DESCRIPTION

Dynamic Programming on Tree Decompositions with D‑FLAT

Michael Abseher2 · Bernhard Bliem1 · Markus Hecher2 · Marius Moldovan2 · Stefan Woltran2

Published online: 15 May 2018
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract
Many hard problems can be solved efficiently by dynamic programming algorithms that work on tree decompositions. In
this paper, we present the D-FLAT system for rapid prototyping of such algorithms. Users can specify the algorithm for their
problem using Answer Set Programming. We illustrate the framework by an example and briefly discuss its main features.

Keywords Tree decomposition · Answer set programming · Dynamic programming

1 Introduction

Graphs are ubiquitous in computing. Treewidth [7] is a
parameter that, intuitively, measures how far a graph is
from being a tree. This parameter proved to be very useful
because many hard problems become tractable if instances
are restricted to those whose treewidth is bounded by a
constant [6]. Algorithms that exploit this usually employ
dynamic programming on a tree decomposition of the
instance. A tree decomposition is a tree obtained from a
graph, where each node has a bag, which is a set of verti-
ces of the original graph. A decomposition thus divides the
instance into several parts. For many problems, we can then
apply dynamic programming to compute tables containing
partial solutions for the respective subproblems and finally
combine them to obtain solutions for the whole problem (if
possible).

The D-FLAT system [1, 4] is a tool for rapid prototyp-
ing of such algorithms. Users merely need to specify the
computation at each node of the tree decomposition in a
declarative way, and the system takes care of problem-inde-
pendent parts like computing a decomposition and combin-
ing partial solutions. For formalizing the computations at the
decomposition nodes, D-FLAT uses the logic programming
language Answer Set Programming (ASP). ASP makes the

specification of many combinatorial problems easy, and this
often carries over to D-FLAT specifications.

2 Dynamic Programming with D‑FLAT

Given an ASP program specified by the user, D-FLAT first
reads an input to the problem and generates an appropriate
tree decomposition using heuristic methods. It then traverses
the decomposition in post-order and executes the user-sup-
plied program at each node (see Fig. 1) with the following
information: the vertices in the current bag (current/1),
those encountered for the first time (introduced/1),
the names of children of the current decomposition node
(childNode/1), the (globally unique) identifiers of rows
from the tables of these child nodes along with the respec-
tive node names (childRow/2), and the contents of these
child rows (childItem/2). Output predicate item/1 is
used to store the content of the current table row, whereas
extend/1 indicates the origins of this row by pointing to
one row from each child table.

We illustrate problem solving in D-FLAT with an exam-
ple. Consider the D-FLAT encoding from Listing 1, which
implements a dynamic programming algorithm for finding
independent sets (i.e., sets of vertices such that no two ele-
ments are adjacent to each other) in graphs given by facts
over the predicate edge.

 * Bernhard Bliem
 bernhard.bliem@helsinki.fi; bliem@dbai.tuwien.ac.at

1 University of Helsinki, Gustaf Hällströmin katu 2b,
00560 Helsinki, Finland

2 TU Wien, Favoritenstr. 9-11, 1040 Vienna, Austria

http://orcid.org/0000-0002-2898-2830
http://crossmark.crossref.org/dialog/?doi=10.1007/s13218-018-0531-2&domain=pdf

192 KI - Künstliche Intelligenz (2018) 32:191–192

1 3

1 { extend(R) : childRow(R,N) } 1 ←
childNode(N).

← extend(R1), extend(R2), childItem(R1,X),
not childItem(R2,X).

item(X) ← extend(R), childItem(R,X),
current(X).

{ item(X) : introduced(X) }.
← edge(X,Y), item(X), item(Y).

Listing 1 Computing independent sets with D-FLAT

In line 1, we guess a row from each child table. By line 2,
we never combine child rows that disagree on the status of a
bag element. (For this we may assume that each decomposi-
tion node with more than one child has the same bag as all
children.) If an extended partial solution contains an element
that is still present in the current bag, line 3 makes sure that
this element still appears in the current row. Line 4 guesses
for each introduced bag element whether it is included in
the partial solution, and we ensure in line 5 that the partial
solution restricted to the current bag is independent.

2.1 Advanced Features

The algorithm formalized in Listing 1 computes a table at
each tree decomposition node. However, many dynamic
programming algorithms require more involved data struc-
tures than this “flat” table structure. Hence D-FLAT sup-
ports a generalization where we store a tree of tables at each
decomposition node. It has been shown [5] that D-FLAT can
thus solve all problems expressible in monadic second-order
logic in linear time for instances of bounded treewidth.

D-FLAT also supports optimization problems and allows
for anytime optimization; that is, the execution can be

interrupted and the best solution found so far is reported [3].
This is realized via lazy evaluation, which essentially fills
tables bit by bit. Hereby, D-FLAT does not simply perform
one post-order traversal to compute all table rows but tries
to compute as few as possible using backtracking in case
the currently computed rows do not lead to a solution yet.
Moreover, the system provides a facility for shifting arith-
metic from ASP encodings into the framework, which often
leads to smaller groundings. Finally, there is an extension
of D-FLAT that allows for an easy and efficient handling of
problems whose solutions are minimal or maximal w.r.t. set
inclusion [2].

3 Sources

Source code and binary releases can be found at https ://githu
b.com/bblie m/dflat /. The project website is at http://dbai.
tuwie n.ac.at/proj/dflat / and contains references to exten-
sions and related software. For an exhaustive description of
D-FLAT, we refer to [4].

Acknowledgements This work was supported by the Austrian Science
Fund (FWF) projects P25607 and Y698.

References

 1. Abseher M, Bliem B, Charwat G, Dusberger F, Hecher M, Woltran
S (2014) The D-FLAT system for dynamic programming on tree
decompositions. In: Proceedings of the JELIA 2014, LNCS, vol
8761. Springer, pp 558–572

 2. Bliem B, Charwat G, Hecher M, Woltran S (2016) D- FLAT2 :
subset minimization in dynamic programming on tree decomposi-
tions made easy. Fundam Inform 147(1):27–61

 3. Bliem B, Kaufmann B, Schaub T, Woltran S (2016) ASP for any-
time dynamic programming on tree decompositions. In: Proceed-
ings of IJCAI 2016. AAAI Press, pp 979–986

 4. Bliem B, Moldovan M, Woltran S (2017) The D-FLAT system:
user manual. Technical report, DBAI-TR-2017-107, DBAI, TU
Wien, Vienna, Austria

 5. Bliem B, Pichler R, Woltran S (2017) Implementing Courcelle’s
theorem in a declarative framework for dynamic programming. J
Logic Comput 27(4):1067–1094

 6. Niedermeier R (2006) Invitation to fixed-parameter algorithms.
In: Oxford lecture series in mathematics and its applications, vol
31. Oxford University Press

 7. Robertson N, Seymour PD (1984) Graph minors. III. Planar tree-
width. J Combin Theory Ser B 36(1):49–64

Current table

Answer sets

ASP solver

ASP program

Instance
Bag

Child rows

1st child table

Child rows

nth child table

. . .

. . .

Fig. 1 Procedure at each tree decomposition node

https://github.com/bbliem/dflat/
https://github.com/bbliem/dflat/
http://dbai.tuwien.ac.at/proj/dflat/
http://dbai.tuwien.ac.at/proj/dflat/

	Dynamic Programming on Tree Decompositions with D-FLAT
	Abstract
	1 Introduction
	2 Dynamic Programming with D-FLAT
	2.1 Advanced Features

	3 Sources
	Acknowledgements
	References

