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1 Introduction

Description logics (DLs) are formal frameworks for rep-
resenting and reasoning with ontologies. A DL knowledge 
base is built upon two distinct components: a terminologi-
cal base (called TBox) representing generic knowledge, 
and an assertional base (called ABox) containing facts or 
assertions.

Recently, a particular interest was given to ontology 
based data access (OBDA), in which the ontological view 
(i.e. the TBox) is used to offer a better exploitation of asser-
tions (i.e. the ABox) when querying them (e.g. [26, 33]). A 
crucially important problem that arises in OBDA is how to 
manage conflicting information. In such a setting, an ontol-
ogy is usually verified and validated while the assertions 
can be provided in large quantities by various and unreli-
able sources that may be inconsistent with respect to the 
ontology. Moreover, it is often too expensive to manually 
check and validate all the assertions. This is why it is very 
important in OBDA to reason in the presence of incon-
sistency. Many works (e.g. [13, 15, 25, 27, 28]), basically 
inspired by the ones in the database area (e.g. [1, 12, 19]) 
and propositional logic approaches (e.g. [7, 8, 31]), deal 
with inconsistency in DLs by proposing several inconsist-
ency-tolerant inferences, called semantics. These seman-
tics are based on the notion of a maximally assertional (or 
ABox) repair which is closely related to the notion of a 
database repair [24] or a maximally consistent subset used 
in the propositional logic setting (e.g. [16, 32]). An ABox 
repair is simply an assertional subset which is consistent 
with an ontology.
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In many applications, assertions are often provided by 
several and potentially conflicting sources having differ-
ent reliability levels. Moreover, a given source may provide 
different sets of uncertain assertions with different confi-
dence levels. Gathering such sets of assertions gives a pri-
oritized or a stratified assertional base (i.e. ABox). The role 
of priorities in handling inconsistency is very important 
and it is largely studied in the literature within the propo-
sitional logic setting (e.g. [3, 10, 11]). Several works have 
also studied the notion of priority when querying inconsist-
ent databases (e.g. [30, 35]) or DLs knowledge bases (e.g. 
[6, 14, 21]).

The context of this paper is the one of handling incon-
sistency in lightweight ontologies when the ABox is prior-
itized. We use DL-Lite [2], an important tractable fragment 
of DLs, as an example of lightweight ontologies which is 
well-suited for OBDA [25].

In the presence of conflicting information, there is 
always a compromise that one needs to reach between the 
expressiveness and computational issues. Having multiple 
repairs often allows to derive more conclusions than if only 
one repair is used. However, query answering from multi-
ple repairs is generally more expensive than query answer-
ing from a single repair. In fact, reasoning from a single 
repair can be viewed as an approximation of reasoning 
from multiple repairs.

The main contribution of this paper is to investigate pol-
ynomial algorithms for selecting a unique preferred repair. 
Selecting only one preferred repair is important since, 
once computed, it allows an efficient query answering. It is 
important to note that some inference relations are specific 
to DL-Lite even if they are inspired by other formalisms 
such as the propositional logic setting. The polynomial 
algorithms proposed in this paper implement and evaluate 
five strategies that we have recently proposed in a confer-
ence paper [6].

The two first strategies for selecting one preferred repair 
are an adaptation of the well-known possibilistic inference 
[20] and linear-based inference mainly defined in prior-
itized propositional knowledge bases (e.g. [31]). The three 
other strategies are based on the use of the so-called non-
defeated assertional-based repair and its variants obtained 
by adding either deductive closure or consistency criteria. 
Interestingly enough, many of these strategies are suitable 
for the DL-Lite setting in the sense that they allow efficient 
handling of inconsistencies by producing a single preferred 
repair. Our experimental results show the benefits of add-
ing priorities when reasoning under inconsistency in DL-
Lite. This journal paper is an extended version of a part of 
the conference paper [6].

The rest of this paper is organized as follows: Sect. 2.1 pro-
vides the needed background on DL-Lite. Section 3 presents 
some elementary concepts on inconsistency handling such 

as the concepts of conflicts, repairs and free assertions. Sec-
tion 4 introduces the two first ways to compute one preferred 
repair based on possibilistic and linear-based strategies. Sec-
tion  5 presents the so-called non-defeated repair. Section  6 
introduces the notion of a prioritized deductive closure. Sec-
tions 7 and 8 show two variants of non-defeated repair based 
on the notion of consistency and prioritized closures. Sec-
tion  9 provides our experimental studies and Sect.  10 con-
cludes the paper.

2  DL‑Lite and Prioritized Assertional Base

2.1  DL‑Lite: A Brief Refresher

This section briefly recalls DL-Lite logics. For the sake 
of simplicity, we only consider DL-LiteR language [17] 
and we will simply use DL-Lite instead of DL-LiteR. Note 
that the results of this paper can be extended in a straight-
forward way to any tractable DL-Lite as far as computing 
ABox conflicts is done in polynomial time. This is true for 
DL-Litecore (a particular case of DL-LiteR) and DL-LiteF. 
The DL-Lite language is defined as follows:

where A is an atomic concept, P is an atomic role and P− is 
the inverse of P. B (resp. C) is called basic (resp. complex) 
concept and role R (resp. E) is called basic (resp. complex) 
role. A knowledge base (KB) is a couple  = ⟨ ,⟩ where 
  is a TBox and  is an ABox. A TBox includes a finite 
set of inclusion axioms on concepts and on roles respec-
tively of the form: B ⊑ C and R ⊑ E. The ABox contains 
a finite set of atomic concepts and role assertions respec-
tively of the form A(a) and P(a, b) where a and b are two 
individuals.

The semantics of a DL-Lite knowledge base is given in 
terms of interpretations. An interpretation  = (Δ , .) con-
sists of a non-empty domain Δ and an interpretation func-
tion . that maps each individual a to a ∈ Δ , each A to 
A ⊆ Δ and each role P to P ⊆ Δ × Δ . Furthermore, the 
interpretation function .I is extended in a straightforward 
way for concepts and roles as follows:

An interpretation I is said to be a model of a concept 
(resp. role) inclusion axiom, denoted by I ⊧ B ⊑ C (resp. 

R ⟶ P | P− E ⟶ R | ¬R

B ⟶ A | ∃R C ⟶ B | ¬B

AI ⊆ ΔI

PI ⊆ ΔI × ΔI

(P−)I = {(y, x) ∈ ΔI × ΔI|(x, y) ∈ PI}

(∃R)I = {x ∈ ΔI|∃y ∈ ΔI such that (x, y) ∈ RI}

(¬B)I = ΔI⧵BI

(¬R)I = ΔI × ΔI⧵RI
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I ⊧ R ⊑ E), if and only if BI ⊆ CI (resp. RI ⊆ EI). Similarly, 
we say that an interpretation I is a model of a membership 
assertion A(a) (resp. P(a,  b)), denoted by I ⊧ A(a) (resp. 
I ⊧ P(a, b)), if and only if aI ∈ AI (resp. (aI , bI) ∈ PI). A 
knowledge base  is called consistent if it admits at least 
one model, otherwise  is said to be inconsistent. A TBox 
  is said to be incoherent if there exists at least a concept 
C such that for each interpretation  which is a model of  , 
we have C = �.

2.2  Prioritized Assertional Bases

A prioritized assertional base (or a prioritized ABox), sim-
ply denoted by  = (1,… ,n), is a tuple of sets of asser-
tions. The sets  i are called layers or strata. Each layer i 
contains the set of assertions having the same level of pri-
ority i and they are considered as more reliable than the 
ones present in a layer j when j > i. Hence, 1 contains 
the most important assertions while n contains the least 
important assertions.

Throughout this paper and when there is no ambigu-
ity we simply use ’prioritized DL-Lite KB  = ⟨ ,⟩’ to 
refer to a DL-Lite KB with a prioritized ABox of the form 
 = (1,… ,n).

Example 1 Let Student, Researcher and Teacher be three 
concepts that intuitively contain the set of students, the 
set of researchers and the set of teachers respectively. Let 
TeachesTo and HasSupervisor be two roles which intui-
tively give the list of students for a given teacher and the 
list of supervisors of a given student. Assume that we have 
the following ontology:

•	 Teachers are not students.
•	 Teachers have to give a course to at least one student.
•	 Individuals who receive courses from a teacher are stu-

dents.
•	 Each student has at least a supervisor.
•	 Supervisors are teachers.
•	 Researchers are teachers.

This ontology is encoded by the following TBox  : 

In addition to this TBox, assume that we have six indi-
viduals: Bill, John, Mary, Joe, Bob and Anne. We assume 

that there is some uncertainty regarding the status and roles 
of these individuals. The available factual information is 
encoded by the following ABox, which is assumed to be 
provided by five distinct sources  = (1,2,3,4,5) 
such that: 

In this example, 1 contains the most reliable assertions 
while 5 contains the least reliable ones.  ■

In Example 1, it is easy to check that the KB is incon-
sistent. For instance, in the ABox we have Student(Bill) and 
HasSupervisor(Bob,  Bill) as assertions. From the axiom 
∃HasSupervisor− ⊑ Teacher one can conclude the follow-
ing fact: Teacher(Bill). This contradicts the negative axiom 
Teacher ⊑ ¬Student. If a knowledge base is inconsistent 
then query answering is trivialised since any thing can be 
inferred from it. As an alternative, inconsistency-tolerant 
approaches try to select consistent subsets (called repairs) 
of the inconsistent knowledge base to meaningfully answer 
the queries.

This paper proposes different approaches to deal with 
inconsistent DL-Lite KB. The input of these approaches 
is a prioritized DL-Lite knowledge base  = ⟨ ,⟩ with 
 = (1,… ,n). The output of our approaches is a stand-
ard DL-Lite knowledge base � = ⟨ ,⟩, where  is not 
prioritized (namely, just a set of assertions).  and ′ have 
the same terminological base.  will be called a preferred 
repair. Then a query q is said to follow from  if it can 
be derived, using the standard DL-Lite inference, from ′. 
Before presenting our approaches, the following section 
briefly recalls the main important concepts for handling 
inconsistency.

3  Inconsistency‑Tolerant Reasoning 
for Prioritized DL‑Lite Assertional Bases

3.1  The Concept of Repairs

Within the OBDA setting, we assume that   is coherent 
and hence its elements are not questionable in the presence 
of conflicts. Coping with inconsistency can be done by first 
computing the set of consistent subsets of assertions (not 
necessarily maximal), called repairs, then using them to 
perform inference (i.e. query answering). More formally, a 
repair is defined as follows:
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Definition 1 Let  = ⟨ ,⟩ be a prioritized DL-Lite KB 
with  = (1,… ,n).

A subset  ⊆ (1 ∪⋯ ∪ n). is said to be a repair if 
⟨ ,⟩ is consistent. And  is said to be a maximally 
inclusion-based repair of , denoted by MAR, if ⟨ ,⟩ is 
consistent and ∀� ⊆ (1 ∪⋯ ∪ n) :  ⊊ ′,⟨ ,′⟩ is 
inconsistent.

In the rest of this paper, we will use the term ‘flat’ to 
express the fact that there is no priority between different 
assertions of an ABox. According to the definition of MAR, 
adding any assertion f from (1 ∪⋯ ∪ n) ⧵  to  entails 
the inconsistency of ⟨ , ∪ {f }⟩. Moreover, the maximal-
ity in MAR is used in the sense of set inclusion. We denote 
by MAR() the set of MAR of  with respect to  . The 
definition of MAR coincides with the definition of ABox 
repair proposed in [24].

Using the notion of repair, coping with inconsistency 
in flat DL-Lite knowledge bases can be done by apply-
ing standard query answering either using the whole set 
of repairs (universal entailment or AR-entailment [24]) or 
only using one repair.

Example 2 (Example 1 continued). Assume that the 
ABox given in Example 1 is flat. To restore consistency, 
one can compute two maximal assertional-based repairs: 

Indeed, either we only ignore the assertion
Student(Bill), then the remaining assertions
2 = ⧵{Student(Bill)} is consistent with  . Or we 

keep the assertion Student(Bill) and in this case we need to 
remove HasSupervisor(Bob, Bill) and

Teacher(Bill) to restore the consistency of ⟨ ,⟩.
Then we get 1.  ■

3.2  Free Assertions and Conflict Sets

We now introduce the notion of a conflict. It is a mini-
mal subset  of assertions of  such that  = ⟨ ,⟩ is 
inconsistent.

Definition 2 Let  = ⟨ ,⟩ be a DL-Lite KB. A subset 
 ⊆  is said to be an assertional conflict of  iff ⟨ ,⟩ is 
inconsistent and ∀ f ∈ , ⟨ ,⧵{f }⟩ is consistent.

From Definition 2, removing any fact f from  restores 
the consistency of ⟨ ,⟩. In DL-Lite, when the TBox is 
coherent, a conflict involves exactly two assertions [18]. 
We denote by () the set of conflicts in .

Example 3 (Example 1 continued). The set of conflicts is: 

  ■

In the rest of this paper, we will use the term ’Conf’ to 
express the computational complexity of computing the 
set of conflicts () of a standard DL-Lite KB. Note that 
checking whether ⟨ ,⟩ is consistent or not, comes down 
to check whether () is empty or not. Hence, in the fol-
lowing Conf will also refer to the computational complex-
ity of consistency checking of a standard DL-Lite Knowl-
edge base.

A nice feature of DL-Lite is that computing the set of 
conflicts is done in polynomial time [5].

We now introduce the notion of non-conflicting or free 
elements.

Definition 3 Let  = ⟨ ,⟩ be DL-Lite KB. An asser-
tion f ∈  is said to be free if and only if ∀c ∈ ():f ∉ c.

Intuitively, free assertions correspond to assertions that 
are not involved in any conflict. We denote by free() the 
set of free assertions in . The notion of free elements is 
originally proposed in [9] in a propositional logic setting. 
Within a DL-Lite setting, free() is computed in poly-
nomial time thanks to the fact that computing conflicts is 
done in polynomial time.

Example 4 (Example 1 continued). The set of free ele-
ments for the Abox of Example 1 is: 

  ■

The folowing Lemma 1 rephrases the set of free asser-
tions using the set of maximally inclusion-based repairs:

Lemma 1 Let  = ⟨ ,⟩ be a DL-Lite KB. Then:
free() =

⋂

X∈MAR()

X.
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For flat DL-Lite knowledge bases, the free-entailment 
(entailment based on free assertions) is equivalent to the 
IAR-entailment proposed in [24]. In fact, in the context of 
propositional logic, the concept of a maximal consistent 
subset has been introduced before the concept of repairs 
[32]. Besides, the concept of free entailment has been intro-
duced in [9]. In the rest of this paper, we will only use the 
notation free() to denote the set of assertions that are not 
responsible for conflicts in ⟨ ,⟩.

The following function computes the set of free elements 
in a set of assertions X (given a set of conflicts �). This 
function will be used by algorithms developed in this paper. 

The next sections of the paper describe the main strate-
gies for computing repairs that are suitable for the DL-Lite 
setting when the assertional base is prioritized.

4  Possibilistic and Linear‑Based Repairs

This section presents two approaches for dealing with 
inconsistent DL-Lite KB that have been originally pro-
posed in a weighted propositional logic setting. These two 
approaches need a slight adaptation to be used within DL-
Lite setting.

4.1  Possibilistic‑Based Repair

Possibility theory [22] and possibilistic logic [20] are natu-
ral and intuitive frameworks for representing uncertain, 
incomplete, qualitative and prioritized information. One 
of the interesting aspects of possibilistic logic is its abil-
ity of reasoning with partially inconsistent knowledge [23]. 
As shown in [4], the entailment in possibilistic DL-Lite, 
an adaptation of DL-Lite entailment within a possibility 
theory setting, is based on the selection of one consistent, 
but not necessarily maximal, subset of . This subset is 
induced by a level of priority called here the consistency 
rank. The following gives the definition of consistency rank 
for prioritized DL-Lite assertional bases.

Definition 4 Let  = ⟨ ,⟩ be a prioritized DL-Lite 
KB. The consistency rank of , denoted by:

Consrank(), is defined as follows:

The notion of consistency rank given in Definition 4 is 
related to the notion of inconsistency degree used in pos-
sibilistic logic (where degrees are encoded using the unit 
interval [0,  1] instead of a stratification using positive 
integers). The subset �() is made of the assertions hav-
ing priority levels that are less or equal to Consrank(). If 
 is consistent then we simply let �() = 1 ∪⋯ ∪ n. 
Algorithm 1 implements Definition 4 and returns the pos-
sibilistic-based repair. It is the counterpart of the algo-
rithm proposed in [20] (resp. [34]) in the propositional 
logic (resp. description logic) setting. 

As in the propositional logic setting, Algorithm  2 
needs log2(n) consistency tests, where n is the number 
of different strata in . Note that computing repairs in a 
standard propositional logic setting is a hard task while 
it is polynomial in the DL-Lite setting [4]. Hence, Algo-
rithm  2 returns the possibilistic-based repair in polyno-
mial time.

Example 5 (Example 1 continued). According to Algo-
rithm 2, we have: 

Indeed, one can check that ⟨ ,1 ∪ 2⟩ is consistent, 
while ⟨ ,1 ∪ 2 ∪ 3⟩ is inconsistent.  ■

Consrank() =
�

0 if ⟨ ,1⟩ is inconsistent .

max{i:⟨ , (1,… ,i)⟩ is consistent } Otherwise.
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free entailment and possibilistic-based repair can be 
viewed as a safe way to deal with inconsistency. The term 
safe is used by opposition to the term risky or adventurous 
with respect to the derived conclusions. Similarly, pos-
sibilistic conclusions are also considered safe since the 
possibilistic-based repair algorithm stops at the first layer 
where the inconsistency is introduced. Hence, only asser-
tions having a rank less or equal than the one of inconsist-
ency rank are taken into account for deriving conclusions. 
However, assertions having priority levels strictly greater 
than the consistency rank are simply inhibited [7] even if 
they are not involved in any conflict. To overcome such a 
limitation and provide more productive or larger repairs, a 
linear-based approach can be used.

4.2  Linear‑Based Repair

One way to recover the inhibited assertions by the poss-
ibilistic-based repair is to use the linear-based repair from 
. Linear entailment has also been used in a propositional 
logic setting in [31] and has been applied for the DL setting 
(e.g. [34]).

Definition 5 Let  = ⟨ ,⟩ be a prioritized DL-Lite 
KB. The linear-based repair of , denoted by:

�() =  �
1
∪⋯ ∪  �

n
, is defined as follows:

(i) If i = 1: 

(ii) For i = 2,… , n

Clearly, �() is obtained by discarding a layer i when 
its facts conflict with the ones involved in the previous lay-
ers. Algorithm 3 implements Definition 5. The subset �() 
is unique and it is consistent with  . The time complex-
ity of computing �() is in P. Indeed, from Algorithm 3, 
the computational complexity of computing �() needs n 
times the computional complexity of checking the consist-
ency (namely Conf) of a standard DL-Lite. 

 �
1
=

�
1 if ⟨ ,1⟩ is consistent

� Otherwise

 �
i
=

�
i if ⟨ , �

1
∪⋯ ∪  �

i−1
∪ i⟩ is consistent .

� Otherwise.

Example 6 (Example 1 continued). According to Defini-
tion 5, we have: 

Indeed ⟨ ,1 ∪ 2⟩ and ⟨ ,1 ∪ 2 ∪ 4⟩ are consist-
ent. However ⟨ ,1 ∪ 2 ∪ 3⟩ and ⟨ ,1 ∪ 2 ∪ 4 ∪ 5⟩ 
are both inconsistent.  ■

In the following sections, we will present three new 
strategies that only select one preferred repair.

5  Non‑Defeated Repair

Another way to get one preferred repair is to iteratively 
retrieve, layer per layer, the set of free elements. More 
precisely:

Definition 6 Let  = ⟨ ,⟩ be a prioritized DL-
Lite KB. We define the non-defeated repair, denoted by 
nd() =  �

1
 ∪ ⋯ ∪  ′

n
, as follows:

Namely, nd() =

The definition of non-defeated subset is an adaptation of 
the definition proposed in [11] within a propositional logic 
setting. However, contrarily to the propositional setting, as 
we will see later, the non-defeated repair can be applied on 
 or its deductive closure c�() which leads to two dif-
ferent ways to select a single preferred repair. Besides the 
non-defeated repair is computed in polynomial time in a 
DL-Lite setting while its computation is hard in a proposi-
tional logic setting.

Algorithm 4 gives the computation of the non-defeated 
repair. Algorithm 4 first computes the set of conflicts (step 
1). Step 2 simply initializes nd() to an empty set. The 
expression:

represents the set of conflicting elements in S1 ∪⋯ ∪ i. 
Hence, Step 4 computes the set of free elements in 

∀i = 1,… , n: �
i
= free(1 ∪⋯ ∪ i).

free(1) ∪ free(1 ∪ 2) ∪⋯ ∪ free(1 ∪⋯ ∪ n).

{f :f ∈ 1 ∪⋯ ∪ i and ∃g ∈ 1 ∪⋯ ∪ i such that {f , g} ∈ 𝒞}
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S1 ∪⋯ ∪ i. Step 5 adds this result to nd(). Clearly, 
Algorithm 4 straightforwardly implements Definition 6. In 
Algorithm 4 the set of conflicts is computed once. Hence, 
the complexity of Algorithm 4 is Conf (step 1) plus (n) 
(steps 2–6), where n is the number of strata in the DL-Lite 
knowledge base .

The following proposition shows that the non-defeated 
repair is consistent and its computation is in polynomial 
time.

Proposition 1 Let  = ⟨ ,⟩ be a prioritized DL-Lite 
KB. Let nd() be its non-defeated repair. Then:

(i) ⟨ , nd()⟩ is consistent, and
(ii) The complexity of computing nd() is in P.

Proof Recall that: nd() =

Recall also that if C is a conflict then either a C is singleton 
or C is a doubleton. Now, assume that nd() is inconsist-
ent. Then this means that there exists a conflict C of ⟨ ,⟩ 
such that C ⊆ nd().

•	 Assume that C = {f } is a singleton and i is the first 
layer where f ∈ i (namely, ∀j < i, f ∉ j). This 
means that:

	– ∀ j < i, f ∉ free(1 ∪⋯ ∪ free(1 ∪⋯ ∪ j) (since 
f ∉ 1 ∪⋯ ∪ i−1),

	– ∀j ≥ i, f ∉ free(1 ∪⋯ ∪ j) (since free only con-
tains non-conflicting information).

Hence, f ∉ free(1) ∪⋯ ∪ free(1 ∪⋯ ∪ n).

Namely, f ∉ nd(). Now, assume that C = {f , g} is a 
doubleton. Let i (resp. j) be the first layer containing 
f (resp. g). Let us assume that i ≤ j. Then clearly

since f ⊈ 1 ∪⋯ ∪ 1 ∪⋯ ∪ j−1.

Besides, for all k ≥ j, we have:

Hence, using the definition of free assertion, we get:

Hence nd() contains no conflict and it is consistent. 
Regarding the computational complexity, recall that 

free(1) ∪ free(1 ∪ 2) ∪⋯ ∪ free(1 ∪⋯ ∪ n).

C ⊈ free(1) ∪⋯ ∪ free(1 ∪⋯ ∪ j−1)

free(1 ∪⋯ ∪ k) ∩ C = �.

C ⊈ free(1) ∪⋯ ∪ free(1 ∪⋯ ∪ n).

computing conflicts is done in a polynomial time. Since, 
the set of free assertions can be obtained in a linear time 
with respect to the set of conflicts, then the whole computa-
tion of nd()is also done in polynomial time.  □

Example 7 (Example 1 continued). Following Algo-
rithm 4, we have:

	– free(1) = {Student(Bill), Teacher(John)},

	– free(1 ∪ 2) = {Student(Bill), Teacher(John), 
Student(Bob), Teacher(Mary)},

	– free(1 ∪ 2 ∪ 3) = {Student(Bob), Teacher(John), 
Teacher(Mary), Researcher(Joe)},

	– free(1 ∪⋯ ∪ 4) = {Student(Bob), Teacher(John), 
Teacher(Mary), Student(Anne), Researcher(Joe)}, and

	– free(1 ∪⋯ ∪ 5) = {Teacher(John), Teacher(Mary), 
Student(Anne), Researcher(Joe), Student(Bob)}.

Therefore: nd() = {Student(Bill), Teacher(John), 
Researcher(Joe), Student(Bob), Teacher(Mary), 
Student(Anne)}.  ■

Clearly, we have 𝜋() ⊆ �() and 𝜋() ⊆ nd() but 
�() and nd() are in general incomparable, as it is illus-
trated by the following propositions and examples.

Proposition 2 Let ⟨ ,⟩ be a possibly inconsistent and 
prioritized DL-Lite knowledge base, then:

(i) 𝜋() ⊆ �(), and
(ii) 𝜋() ⊆ nd().

Proof If ⟨ ,⟩ is consistent then trivially using the defi-
nition of possibilistic-based repair, linear-based repair and 
non-defeated based repair, we have:

Now, assume that ⟨ ,⟩ is inconsistent. This means that 
there exists a rank i such that 1 ∪⋯ ∪ i is consistent but 
1 ∪⋯ ∪ i+1 is inconsistent (namely, Consrank() = i). 
Then by definition of possibilistic-based repair, we have:

�() = 𝓁() = nd() = 1 ∪⋯ ∪  i.

�() = 1 ∪⋯ ∪ i.
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Clearly, using the definition of linear-based repair we also 
have:

Similarly, since 1 ∪⋯ ∪ i is consistent then:

Now since nd() is defined by:

then we trivially have: 𝜋() ⊆ nd().  □

The following example shows a situation where �() 
and nd() are not included in �().

Example 8 Let us consider the following KB:

 = {A ⊑ ¬B} and
 = (1,2,3),

where:

1 = {A(a)},

2 = {B(a)}, and
3 = {C(a)}.

Using the definitions of possibilistic-based repair,
linear-based repair and non-defeated repair, we have:

Clearly, C(a) ∈ �(), C(a) ∈ nd() but C(a) ∉ �().  ■

6  The Notion of Prioritized Closure

We now introduce the concept of a prioritized closure 
then check which among the above approaches (possibil-
istic-based repair, linear-based repair and non-defeated 
repair) are sensitive to the use of the deductive closure. 
In fact, the three preferred repairs given in the previous 
sections can be either defined on ⟨ ,⟩ or on ⟨ , c�()⟩ 
where c�() denotes the deductive closure of a set of 
assertions  and it is defined as follows.

Definition 7 Let  = ⟨ ,⟩ be a flat DL-Lite KB. Let p 
be the set of all positive inclusion axioms of  .1 We define 

𝜋() ⊆ �().

free(1 ∪⋯ ∪ i) = 1 ∪⋯ ∪ i = �().

nd()free(S1) ∪ free(S1 ∪ 2) ∪⋯ ∪ free(S1 ∪⋯ ∪ Sn),

�() = {A(a)}, nd() = �() = {A(a),C(a)}.

1 Positive inclusion axioms are of the form B
1
⊑ B

2
.

the deductive closure of  with respect to   as follows: 
cl() = {B(a): ⟨p,⟩ ⊧ B(a) where, B is a concept of   
and a is an individual of } ∪ {R(a, b): ⟨p,⟩ ⊧ R(a, b), 
where R is a role of   and a,b are individuals of }.

The use of a deductive closure of an ABox fully makes 
sense in DL languages. Indeed, one of the specificities of a 
DL settings is the separation between positive knowledge 
(positive axioms and facts) and negative knowledge (nega-
tive axioms). Therefore, even if the DL-Lite base is incon-
sistent, it is still possible to define a non-trivial deductive 
closure (using only positive knowledge) that does not pro-
duce the whole language. Of course, the concept of a deduc-
tive closure would also make sense in a propositional set-
ting if only the positive Horn clauses were retained, which 
is essentially what Definition 7 does or if there is a way to 
separate positive from negative knowledge. The following 
definition extends Definition 7 to the prioritized case.

Definition 8 Let  = ⟨ ,⟩ be a prioritized DL-Lite KB. 
We define a prioritized closure of  with respect to  , simply 
denoted by c�(), as follows: c�() = ( �

1
,… , �

n
) where:

Example 9 (Example 1 continued). Using Definition 8, 
we have: c𝓁() =  �

1
∪⋯ ∪  �

5
 where: 

 ■

The first motivation of Definition 8 is that if an assertion 
f is derived from ⟨,1 ∪⋯ ∪ n⟩ then f should belong to 
c�(). The second motivation is that if an assertion f is 
believed to some rank i then it should also be believed to all 
ranks that are higher than i. Namely, if f is derived from 
⟨,1 ∪⋯ ∪ i⟩ then ∀j ⩾ i, f ∈  �

j
.

∀i = 1,… , n: �
i
=c𝓁(1 ∪⋯ ∪ i−1 ∪ i).
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There exists another alternative definition to Definition 8 
that avoids duplicating the set of derived conclusions. The 
idea is that a derived assertion f is added to rank i if and 
only if it can be obtained solely from i. More precisely, we 
define the local prioritized closure of  with respect to  , 
denoted by �c�() = ( �

1
,… , �

n
), as follows:

An important feature of possibilistic and linear-based 
repairs is that they are insensitive to the local prioritized 
deductive closure. Namely, if one first uses the possibilis-
tic-based repair (resp. linear-based repair) then applies local 
prioritized deductive closure will give the same result as if 
one first applies the local prioritized deductive closure then 
uses possibilistic-based repair (resp. linear-based repair). 
The situation is different if Definition 8 were used. In this 
case, possibilistic-based repair is still insensitive to the 
deductive closure, which is not the case with linear-based 
repair as it is summarized by the following proposition.

Proposition 3 Let  = ⟨ ,⟩ be a prioritized DL-Lite 
knowledge base. Then:

(i) ⟨ , c�(�())⟩ = ⟨ ,�(c�())⟩
(ii) ⟨ ,�(c�())⟩ ⊆ ⟨ , c�(�())⟩.
(iii) ⟨ ,�(�c�())⟩ = ⟨ ,�c�(�())⟩.

Proof Recall first that in standard DL-Lite, ⟨ ,⟩ is 
consistent if and only if ⟨ , c�()⟩ (resp. ⟨ ,�c�()⟩) is 
consistent.

(i) If ⟨ ,⟩ is consistent, then trivially: 
�() = 1 ∪⋯ ∪ n and �(c�()) = c�(). 
Hence, �(c�()) = c�(�()). Now, assume that 
⟨ ,⟩ is inconsistent. This means that there exists 
an integer i such that: �() = 1 ∪⋯ ∪ i is con-
sistent but: �() ∪ i+1 is inconsistent. Recall that 
c�() = ( �

1
,… , �

n
) is such that:  �

1
= c�(1), and 

Since 1 ∪⋯ ∪ i is consistent and 1 ∪⋯ ∪ i+1 
is inconsistent, then:  �

1
∪⋯ ∪  �

i
 is consistent and 

 �
1
∪⋯ ∪  �

i+1
 is inconsistent. Therefore 

Besides, it is easy to check that: 

Hence, c�(�()) = �(c�()).

(ii) To see the proof it is enough to show that: 

∀i = 1,… , n, �
i
= c�(i).

∀j = 2,… , n  �
j
= c𝓁(1 ∪⋯ ∪ j−1 ∪ j).

�(c𝓁()) =  �
1
∪⋯ ∪  �

i
.

 �
1
∪⋯ ∪  �

i
= c𝓁(1 ∪⋯ ∪ i) = c𝓁(�()).

�(c�()) = �(c�()).

If ⟨ ,⟩ is consistent, then: 𝓁() = 1 ∪⋯ ∪ n and 
�(c�()) = c�(). Hence trivially, we have: 

Assume that ⟨ ,⟩ is inconsistent. And again let i be 
such that 1 ∪⋯ ∪ i is consistent but 1 ∪⋯ ∪ i+1 is 
inconsistent. This means that: 

Recall that c�() is such that: 

and ∀j = 2,… , n j = c𝓁(1 ∪⋯ ∪ j−1 ∪ j). Since, 
1 ∪⋯∪ ≧+� is inconsistent. Then: ∀j > i, 
 �
1
∪⋯ ∪  �

j
 also is inconsistent. Therefore, 

Now, it is easy to see that: 

(iii) Recall that 𝓁c𝓁() =  �
1
∪⋯ ∪  �

i
 is such that: 

If ⟨ ,⟩ is consistent then �() = 1 ∪⋯ ∪ n. 
Since 1 ∪⋯ ∪ n is consistent, then 
c𝓁(1) ∪⋯ ∪ c𝓁(n) =  �

1
∪⋯ ∪  �

n
 is also consistent. 

Hence, 

Assume that ⟨ ,⟩ is inconsistent. Let i be an integer 
such that 1 ∪⋯ ∪ i is consistent but 1 ∪⋯ ∪ i+1 
is inconsistent. This means that �() = 1 ∪⋯ ∪ i. 
This also means that  �

1
∪⋯ ∪  �

i
 is consistent but 

 �
1
∪⋯ ∪  �

i+1
 is inconsistent. Namely, 

  □
The following is a counterexample of the converse of item 

(ii) of Proposition 3.

Example 10 Let us use the following knowledge base:

 = {A ⊑ ¬B,D ⊑ E},

 = (1,2,3).

where:

1 = {A(a)},

2 = {B(a),C(a)}, and
3 = {D(a)}.

�(c�()) = c�(�()) = c�(�()) = �(c�()).

�(c𝓁()) = c𝓁(1 ∪⋯ ∪ i) = ( �
1
∪⋯ ∪  �

i
).

 �
1
= c�(1)

ell(c�()) = �(c�()).

�(c�()) = �(c�()).

∀i = 1,… , �
i
= c�(i).

�(𝓁c𝓁()) =  �
1
∪⋯ ∪  �

n
= 𝓁c𝓁(�()).

�(𝓁c𝓁()) =  �
1
∪⋯ ∪  �

i
= 𝓁c𝓁(

1
∪⋯ ∪ 

i
)

= 𝓁c𝓁(�()).
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The prioritized closure of  is: c�() = ( �
1
, �

2
, �

3
) where:

 �
1
= {A(a)},

 �
2
= {B(a),C(a),A(a)}, and

 �
3
= {D(a),E(a),B(a),C(a),A(a)}.

The linear-base repair of ⟨ ,⟩ is:

Besides, the closure of �() is:

Clearly, E(a) can be obtained from c�(�()) while it can-
not be obtained from �(c�().  ■

The next section shows that the non-defeated repair is 
sensitive to the prioritized deductive closure which then 
leads to a new strategy for selecting repairs.

7  Adding Deductive Closure to Non‑Defeated 
Repair

The non-defeated repair, when defined on , is safe since 
it only uses elements of  which are not involved in any 
conflict. One way to get a larger consistent repair is to 
use c�() instead of . Namely, we define a closed non-
defeated repair, denoted by c�nd(), as  �

1
∪⋯ ∪  �

n
, such 

that:

Let us illustrate this new strategy on our running example.

Example 11 (Example 1 continued). We have:

	– free(c�(1)) = {Student(Bill), Teacher(John)},
	– free(c�(1 ∪ 2)) = {Student(Bill), Teacher(John), 

Student(Bob), Teacher(Mary)},

	– free(c�(1 ∪ 2 ∪ 3)) = {Teacher(Mary), 
Teacher(John), Student(Bob), Researcher(Joe), 
Teacher(Joe)},

	– free(c𝓁(1 ∪⋯ ∪ 4)) = {Teacher(Mary), 
Teacher(John), Student(Bob), Researcher(Joe), 
Teacher(Joe), Student(Anne)}, and

	– free(c𝓁(1 ∪⋯ ∪ 5)) = {Teacher(Mary), 
Teacher(John), Student(Bob), Researcher(Joe), 
Teacher(Joe), Student(Anne)}

Then c�nd() = {Student(Bill), Teacher(John), 
Student(Bob), Teacher(Mary), Researcher(Joe), 
Teacher(Joe), Student(Anne)}.

�() = {A(a),D(a)},�(c�()) = {A(a)}

c�(�()) = {A(a),D(a),E(a)}.

∀i = 1,… , n: �
i
= free(c𝓁(1 ∪⋯ ∪ i)).

One can see that Teacher(Joe) is a new assertion that 
was not part of the non-defeated repair given in Example 
7.  ■

Note that strictly speaking c�nd() is not a repair of 
⟨ ,⟩ if one refers to Definition 1. Indeed, c�nd() may 
be not included in 1 ∪⋯ ∪ n since it may contain ele-
ments which are not explicitly stated in . However, to 
avoid introducing new notations and new concepts, we 
prefer to continue using the term repair when mentioning 
c�nd(). In fact, c�nd() is a repair of ⟨ , c�()⟩, since 
c𝓁nd() ⊆ c𝓁(1 ∪⋯ ∪ n).

Contrarily to the possibilistic and linear-based repairs, 
the following proposition shows that non-defeated repair 
is sensitive to the use of the deductive closure.

Proposition 4 Let  = ⟨ ,⟩ be a prioritized DL-Lite 
KB. Then

(i) nd() ⊆ c�nd(). The converse is false.
(ii) c�(nd()) ⊆ c�nd(). The converse is false.

Proof The proof follows from the fact that ∀i = 1,… , n 
we have free(1 ∪⋯ ∪ i) ⊆ free(c𝓁(1 ∪⋯ ∪ i)). For 
the converse it is enough to consider the Example 12.  □

Example 12 Let us the following knowledge base where: 
 = {A ⊑ ¬B,B ⊑ C,A ⊑ C} and  = 1 = {A(a),B(a)}.

One can check that nd() = �, cl(nd()) = � while 
nd(c�()) = c�nd() = {C(a)}.  ■

Algorithm  5 gives the result of adding the deductive 
closure to the non-defeated repair (which is obtained from 
Algorithm 4 by replacing  by its closure c�()). 

8  Adding Consistency to Non‑Defeated Repair

We now present another new way to select a single pre-
ferred repair. It consists in slightly improving both linear-
based repair and non-defeated repair. The idea is that in 
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linear-based repair instead of ignoring a whole stratum in 
case of inconsistency, one can only ignore conflicting ele-
ments. The linear-based non-defeated repair, denoted by 
�nd(), is given by Definition 9.

Definition 9 Let  = ⟨ ,⟩ be a prioritized knowledge 
base. We define a linear-based non-defeated repair, denoted 
by 𝓁nd() =  �

1
∪⋯ ∪  �

n
 as follows:

Definition 9 is straightforwardly restated in Algorithm 6. 

Example 13 (Example 1 continued). We have: 

 ■

Clearly, �nd() extends nd() by only focusing on ele-
ments in i that are consistent with  �

1
∪⋯ ∪  �

i−1
 (rather 

than with 1 ∪⋯ ∪ i−1). The nice feature of �nd-repair 
is that the combination of �-repair and nd-repair is done 

 �
1
= free(1),

for i = 2,… , n  �
i
= free( �

1
∪⋯ ∪  �

i−1
∪ i).

without extra computational cost. More precisely, comput-
ing �nd() is in P. Clearly �nd() is consistent and it is 
larger than �() and nd(), namely

But it remains incomparable with the other approaches pre-
sented above. Properties of linear-based non defeated repair 
are summarized in the proposition 5. Property (iv) states 
that the use of linear-based non-defeated repair (�nd) on 
prioritized closure c�() simply leads to the definition of 
the closure non-defeated repair.

Proposition 5 Let  = ⟨ ,⟩ be a prioritized DL-Lite 
knowledge base. Then:

(i) �nd() is consistent.
(ii) 𝜋() ⊆ �nd().

(iii) nd() ⊆ �nd().

(iv) �nd(c�())= c�nd().

Proof The proof of item (i) follows exactly the same 
steps as the one used to establish the proof of item (i) 
of Proposition 1. Les us show the proof of item (ii). If 
 = ⟨ ,⟩ is consistent, then �() = �nd(). Hence 
item (ii) is satisfied for consistent DL-Lite knowledge 
bases. Assume now that  = ⟨ ,⟩ is inconsistent. 
Recall that 𝓁nd() =  �

1
∪⋯ ∪  �

n
 such that  �

1
= free(1) 

and for i = 2,… , n  �
i
= free( �

1
∪⋯ ∪  �

i−1
∪ i). Let 

i be such that �() = 1 ∪⋯ ∪ i is consistent but 
1 ∪⋯ ∪ i ∪ i+1 is inconsistent. We have:

 �
1
= free(1) = 1,

 �
2
= free(2 ∪  �

1
) = 1 ∪ 2, and

 �
i
= free(1 ∪⋯ .  i ∪ �

i−1
) = 1 ∪⋯ ∪ i. Hence

Let us now give the proof of item (iii). Recall that 
nd() =  ��

1
∪⋯ ∪  ��

n
 is such that:

Clearly, ∀i = 1,… , n  ′′
i
⊆  ′

i
. Hence,

Let us now show item (iv).

Let c�(A) = ( �
1
,… , �

n
) be the prioritized closure of 

. Recall that by the definition of the prioritized closure 
we have:

𝜋() ⊆ �nd() and nd() ⊆ �nd().

𝜋() ⊆ �nd().

∀i = 1,… , n  ��
i
= free(1 ∪⋯ ∪ i).

nd() ⊆ �nd().

∀i = 1,… , n, �
i
= c𝓁(1 ∪⋯ ∪ i).
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Let c𝓁nd() =  ��
1
∪⋯ ∪  ��

n
 be the closed non-defeated 

repair defined by:

and

Let 𝓁nd(c𝓁()) =  ���
1

∪⋯ ∪  ���
n

 be the repair obtained 
by applying linear-based non-defeated repair on c�(). By 
definition of �nd repair we have:  ���

1
= free( �

1
) =  ��

1
, and

Indeed,  �
i
= c𝓁(1 ∪⋯ ∪ i) and

 □

The following two examples show that the �nd-repair 
remains incomparable with linear-based repair and c�nd-
based repair.

Example 14 Let us consider the following knowl-
edge base:  = {A ⊑ ¬B,B ⊑ ¬C,A ⊑ ¬D,D ⊑ E} 
 = (1,2,3) where:

1 = {A(a)},

2 = {B(a),D(a)}, and
3 = {C(a)}.

The �nd-repair �nd() =  �
1
∪  �

2
∪  �

3
 is such that:

 �
1
= free(1) = {A(a)}

 �
2
= free( �

1
∪ 2) = �

 �
3
= free(3 ∪ S�

1
∪  �

2
) = {A(a),C(a)}.

Now, the c�nd-repair c�nd() =  ��
1
∪  ��

2
∪  ��

3
 is such 

that:

 ��
1
= free(c�(1)) = free( �

1
)

∀i = 2,… , n, ��

i
= free(c�(1∪⋯ ∪  i))

= free( �

i
).

∀i = 2,… , n, ���

i
= free( ���

1
∪⋯ ∪  ���

i−1
∪S�

i
)

= free( �
i
) =  ��

i
.

∀j = 1,… , i − 1, ���
j

⊆ c𝓁(1 ∪⋯ ∪ j).

 ��
1
= free(c�(1)) = {A(a)}.

 ��
2
= free(c�(1 ∪ 2))

= free({A(a),B(a),D(a),E(a)}) = {E(a)}

 ��
3
= free(c�(1 ∪ 2 ∪ 3)) = {E(a)}

Clearly, we have:

Similarly, E(a) ∈ c�nd() but C(a) ∉ c�nd().

Hence, � nd-repair is incomparable with c�nd-repair.  ■
Example 15 Let us consider the following knowledge 
base:

 = {A ⊑ ¬B,D ⊑ ¬C}, and
 = (1,2),

where:

•	 1 = {A(a),B(a),E(a),D(a)}, and
•	 2 = {C(a)}.

We have �() = {C(a)}.

Besides, we have:

•	 free(1) = {E(a),D(a)} and
•	 free(2 ∪ free(1)) = {E(a)}.

Hence �nd() = {E(a),D(a)}.

Therefore, �() and �nd() are incomparable.  ■

The following figure summarizes different set inclusion 
relations between different approaches presented in this 
paper:

In Fig.  1, The arc X → Y  means that the repair X is 
included in the repair Y. The proof of the inclusion rela-
tions 1 and 2 (resp. 3 and 4) is given in Propositon 2 (resp. 
Propositions 5 and 4). A counterexample for the inverse 
of relations 1 and 2 (resp. 3 and 4) is given in Example 8 
(resp. Example 12). Lastly, the incomparability relation 
between �nd() and c�nd() (resp. �() vs �nd()) is 
illustrated by Example 14 (resp. Example 15) of the proof 
of Proposition 5

As it was stated previously, c�nd() is not a repair of 
⟨ ,⟩ but a repair of ⟨ , c�()⟩. Hence, the productivity 
of c�nd() is not very surprising since it considers largest 
ABox than the

other repairs.

9  Experimental Studies

For experimental evaluation, we implemented in Java algo-
rithms for computing a single preferred repair.

These algorithms are built upon two main components: 
a DL-Lite ontology parser (that parses DL-Lite knowledge 

C(a) ∈ �nd() while E(a) ∉ �nd().
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bases expressed in OWL2-QL function syntax) and a 
SQLite database engine. As one can observe in the pro-
posed algorithms, they are mainly based on some of the 
following operations: consistency checking, computing 
conflict sets and deductive closure. To efficiently compute 
conflicting elements (and inconsistency checking), we 
evaluate over the ABox (stored as a relational DB) que-
ries expressed from the negated closure of the TBox [17] 
to exhibit whether the ABox contains conflicting elements. 
The negative closure of an ABox is made of the list of all 
negative axioms (of the form A ⊑ ¬B) that can be derived 
from   by applying positive rules on negative ones (for 
more details see [17]). Note that the negated closure can be 
pre-computed and kept in memory during all experimenta-
tions. When all these ingredients are available, we proceed 
to computing the single preferred repair using different 
algorithms proposed in this paper.

9.1  Experimental Setting

We first present the setting used for our experimental stud-
ies. As benchmark2 we considered the LUBM∃20 ontology 
(i.e. TBox), which corresponds to the DL-LiteR version of 
the original LUBM ontology [29], and we used the 
Extended University Data Generator (EUDG) in order to 
generate the ABox assertions. The LUBM∃20 ontology 
contains only 208 positive inclusion axioms. To this end, 
we used the set of negative inclusion axioms from [14] in 
order to allow for inconsistency. Computing the negated 
closure of this ontology is done in 876.906 s. Note that the 
time needed to compute the negated closure will not be 
taken into account as parameter in our experimental studies 
since it is computed only once and then stored in memory. 
Once the negated closure is computed, we use an SQL 
engine to compute conflict sets (and inconsistency check). 
This allows an efficient handling of inconsistency. For 

2 Available at: https://code.google.com/p/combo-obda/.

example, checking consistency for an ABox containing 
2432 facts through query evaluation (after storing the ABox 
into a database) takes 0.952  s while without using query 
evaluation it takes 812.4 s. Similarly, we use an SQL engine 
to compute conflict sets. It is important to mention here that 
the time needed to compute conflict sets is basically the 
same as the one needed to check consistency. Finally, we 
consider three different cases:

Case 1: We generated (using EUDG) four ABoxes and we 
split them respectively into 3 strata, 5 strata and then 7 
strata. These ABoxes contain respectively 2532, 2832, 
3432, and 4432 assertions with respectively 50, 200, 
500, and 1000 conflict sets. The results of this case are 
shown in Table 1.

Case 2: We randomly generated an ABox and we varied 
the number of strata from 1 to 15. For each number of 
strata, we partitioned the ABox uniformly and we ran 
the proposed algorithms for computing repairs. The 
results of this case are presented in Table 2.

Case 3: We considered the ABox used in Case 2 and we 
fixed the number of strata (7 strata). We then varied 
the percentage of conflicting elements from 0 to 100% 
of the size of the ABox. In each scenario we ran all 
the algorithms. The results of this case are given in 
Table 3.

In all cases, we partitioned the Box uniformly and we ran 
the proposed algorithms for computing repairs.

9.2  Experimental Results

We analyse in this section our experimental results. We 
first analyse results of Case 1, given in Table 1. From a 
productivity point of view, the possibilistic-based repair 
is very cautious comparing to the other strategies. Unsur-
prisingly, this consequently ensures low productivity 
in terms of the size of the selected repair. Namely, for a 
given ABox and a given number of strata, possibilistic-
based repair has the largest number of dropped elements. 
For instance, when a conflict is detected in the first stra-
tum, the whole ABox is discarded (hence, 100% of the 
assertions will be dropped as shown in the first row of 
Table 1). This similarly holds for the linear-based repair 
when there exists at least a conflict in each strata. As 
shown on the results of Table 1, computing the �-repair 
requires on most our experiments less time than for 
computing the other repairs. Regarding the computation 
of the non-defeated repair (resp. closed non-defeated 
repair), it depends on the number of conflicts in the 
ABox. More precisely, the time needed for computing 
the non-defeated repair (resp. closed non-defeated repair) 
increases with the size of conflicts in the ABox.

Possibilistic-based repair
π(A)

Non-defeated repair
nd(A)

Linear-based repair
(A)

Linear-based non-defeated
(A)

Closure non-defeated repair
(A) = ( (A))

2
1

4
3

Fig. 1  A comparative study between �(), �(), nd(), c�nd(), 
and �nd()

https://code.google.com/p/combo-obda/
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Finally, for the linear non-defeated repair, two param-
eters may influence the time taken to compute it, namely 
the number of layers and the number of conflicts. The pro-
portion of dropped assertions regarding the different repairs 
confirms the relationships between �, �, nd, �nd, and c�nd 
as stated in the previous sections. Table 1 also summarizes 
time complexity. Cons denotes the time complexity of con-
sistency check in standard DL-Lite. Conf is the time com-
plexity of computing conflicts. nbs is the number of strata 
in standard DL-Lite.

From Table 1, it is obvious that the number of strata and 
the number of conflicting elements in the assertional bases 
are the two main parameters that influence the productiv-
ity of the repairs and the time needed to compute them. 
Tables 2 and 3 analyse separately these two parameters.

Table  2 shows the impact of the number of strata on 
the productivity (in terms of the percentage of the deleted 

assertions when computing the repairs) and the computa-
tion of the repairs. For each ABox (used in Case 1), and 
by only varying the number of layers, one can observe that 
the productivity of c�nd(), �nd(), and nd() increases 
proportionally with the number of strata. As a negative 
effect, the running time also increases proportionally with 
respect to the number of strata. For �(), the running time 
is better than the ones of c�nd(), �nd(), and nd(), and 
also increases proportionally with respect to the number of 
strata.

Contrarily to Tables  2, 3 focuses on the impact of the 
number of conflicts on the time taken to compute the 
repairs and on the percentage of deleted facts. For a fixed 
number of stratification (7 strata), we vary the number of 
conflicts between 0 and 100% of the size of ABox. One can 
observe that for all strategies, the running time and the set 
of deleted facts increases with the percentage of conflicting 

Table 1  Percentage of deleted facts and time (in seconds) taken to compute conflicts, �, �, nd, �nd, and c�nd while varying the number of con-
flicts and number of strata for a fixed ABox

# Conflict # Strata Conflicts � � nd �nd c�nd

 (log
2
(nbs)) ∗ Conf  Conf ∗ nbs  (nbs) + Conf  (nbs) + Conf (nbs) + Conf

Time % Time % Time % Time % Time %

50 3 1451 21.47 100 22.19 100 94.91 2.98 159.47 2.98 458.73 45.04
5 1601 21.92 79.44 65.31 78.63 156.35 0.48 257.61 0.44 907.65 36.31
7 1311 32.72 85.06 65.84 67.82 188.52 0.48 340.98 2.17 1284.90 36.63

200 3 2965 24.04 100 56.35 100 91.81 14.07 185.15 15.13 478.24 44.74
5 2885 24.94 81.39 66.19 81.39 134.86 14.05 272.25 14.05 956.20 36.19
7 3258 33.07 59.40 77.07 51.04 193.99 15.04 414.73 11.43 1202.55 36.68

500 3 6288 27.72 86.94 28.83 86.94 101.37 28.40 293.60 28.40 497.08 52.65
5 5591 36.24 86.74 59.97 86.74 186.72 26.29 488.98 26.29 1116.06 57.05
7 6894 39.78 88.07 86.83 76.75 198.86 726.87 669.14 26.66 1424.63 56.95

1000 3 10500 57.26 100 57.66 87.15 126.60 45.53 722.23 45.53 1222.88 25.98
5 11339 59.10 91.58 84.43 82.87 159.41 45.65 1246.23 45.65 1511.58 31.22
7 11046 112.11 96.36 171.47 96.36 221.15 40.20 1897.57 40.23 1881.15 43.86

Table 2  The impact of 
the number of strata on 
the productivity and the 
computation time of the repairs

# strata � � nd �nd c�nd

Time % Time % Time % Time % Time %

1 28.67 100 28.77 100 48.20 72.29 98.55 39.74 128.65 35.12
3 22.74 100 24.69 100 96.27 39.65 161.52 19.67 399.98 35.04
5 24.01 88.66 30.35 77.01 147.36 37.35 243.82 26.66 915.95 27.85
7 23.11 89.80 51.26 80.12 189.95 37.29 314.54 27.02 1287.85 27.80
9 33.72 92.01 58.68 91.84 255.03 37.20 555.74 28.50 2328.47 27.68
11 21.67 100 61.07 79.57 271.81 36.45 1335.72 28.42 2448.05 27.68
13 23.90 100 61.85 78.72 314.18 36.42 1608.26 28.42 2979.21 27.61
15 30.89 100 64.18 77.85 355.38 35.89 1842.48 28.40 3846.21 20.36
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elements in the ABox. Table  3 confirms that c�nd(), 
�nd() and nd() are more productive than �() and 
�() since they remove less facts than �() and �().

Lastly, it is important to note that computing asser-
tional conflicts can be done in an incremental way (it is 
enough to only compute the new conflicts raised by the 
arrival of a new assertion or a new axiom). Comput-
ing conflicts in an incremental way has an impact on 
our algorithms in order to efficiently update the set of 
free assertions or for updating the inconsistency degree 
(which can only decrease when new assertions are 
added). Besides, most of the repairs presented in the 
paper are defined incrementally, starting from the layer 
1 until layer n. Hence, if some new assertions are added 
to a layer i, then all computations already done on layers 
1,… i − 1 remain valid.

10  Conclusion

This paper focused on how to select a single preferred 
repair from a prioritized inconsistent DL-Lite knowl-
edge base. Selecting only one repair is important since 
it allows efficient query answering once the preferred 
repair is computed. We first reviewed some well-known 
approaches that select one repair such as possibilistic 
repair or linear-based repair. Then, we presented differ-
ent strategies for selecting one preferred repair based on 
the non-defeated repair by adding deductive closure and 
consistency criterion. In the context of inconsistent light-
weight ontologies, the approaches based on non-defeated 
repairs (nd, �nd, c�nd) have not been proposed before. 
In particular, the concept of ’prioritized closure’ used 
in this paper, for defining new inconsistency tolerant 
approaches, has not been considered before. The com-
mon feature of all these repairs is that they produce as 

many safe conclusions as possible and, as shown in our 
experimental studies, they allow an efficient handling of 
inconsistency. Such facts make all the repairs suitable for 
DL-Lite.
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