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Abstract Fuzzy description logics (FDLs) have been

introduced to represent concepts for which membership

cannot be determined in a precise way, i.e., where instead

of providing a strict border between being a member and

not being a member, it is more appropriate to model a

gradual change from membership to non-membership. First

approaches for reasoning in FDLs where based either on a

reduction to reasoning in classical description logics (DLs)

or on adaptations of reasoning approaches for DLs to the

fuzzy case. However, it turned out that these approaches in

general do not work if expressive terminological axioms,

called general concept inclusions (GCIs), are available in

the FDL. The goal of this project was a comprehensive

study of the border between decidability and undecidability

for FDLs with GCIs, as well as determining the exact

complexity of the decidable logics. As a result, we have

provided an almost complete classification of the decid-

ability and complexity of FDLs with GCIs.

Keywords Knowledge representation and reasoning �
Vagueness � Fuzzy Description Logics

1 Introduction

Fuzzy description logics have been studied for over two

decades, with the aim of providing logic-based knowledge

representation and reasoning algorithms capable of dealing

with imprecise knowledge. They have been employed to

this end in various applications, ranging from image

analysis [35] and ambient intelligence [37] to software

design [36]. These applications are supported by numerous

tools for constructing and reasoning with FDL ontologies

[11, 12, 14, 50, 58, 61].

In FDLs, the classical binary truth values true and false

are extended to more than two or even infinitely many truth

values. Starting with [52, 60], a whole variety of tableau-

based reasoning algorithms were developed for such logics.

In addition to these extensions of classical DL algorithms,

new methods based on crispification, i.e., a reduction to

reasoning in classical DLs, were proposed, which are,

however, restricted to finitely valued FDLs.

It came as a big surprise when it was pointed out in [9]

that several of the existing tableau-based algorithms for

infinitely valued FDLs were not sound. The main culprit

turned out to be the presence of terminological cycles

induced by general concept inclusions (GCIs), and the

resulting loss of the finite model property. Reasoning in

several FDLs was later found to be undecidable when

allowing GCIs [6, 7, 33, 34]. This raised serious questions

about the decidability of FDLs in general, which until then

had been taken for granted.

The goal of this project was a detailed complexity

analysis of the landscape of fuzzy description logics in

order to delimit the undecidable logics from the decidable

ones. This task was complicated by the large number of

FDLs available. Starting from the known decidable and

undecidable special cases, we aimed to derive general
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conditions for proving (un)decidability of large classes of

FDLs, in particular in the presence of GCIs. In case of

decidability, we also wanted to determine the precise

computational complexity.

2 Fuzzy Description Logics

Description logics (DLs) [4] are a family of logics whose

members are determined by the constructors and axioms

they use to model the knowledge of an application domain.

Concept constructors are employed to build concepts,

which are expressions describing sets of domain elements

with common properties. Roles describe binary relations

between objects and are used within concept constructors.

Assertional axioms state properties of named individuals,

while terminological axioms formulate general knowledge

that holds for all domain elements. Reasoning can be used

to obtain additional knowledge about the domain under

consideration. In this paper, we consider consistency as the

main reasoning task; this task corresponds to deciding

whether a given ontology (i.e., a collection of axioms) has a

model.

The syntax of an FDL is based on that of a classical DL;

however, beyond the choice of constructors and axioms, the

definition of an FDL has additional degrees of freedom. While

all FDLs use more than two truth values, one can choose

whether these are represented by all rational numbers in the

interval [0, 1] (infinitely valued semantics), or a finite set of

truth degrees arranged in a lattice (finitely valued semantics).

In the former case, FDLs can use either the Zadeh semantics

[62] to interpret the constructors, or a semantics based on a

(continuous) triangular norm (t-norm) [38, 39], of which

uncountably many exist. Since the latter semantics do not

preserve all classical equivalences between constructors, it

makes sense to consider additional constructors, e.g., an

implication constructor in addition to the standard conjunc-

tion and negation; moreover, different negation functions

have been proposed in the literature on FDLs.

FDLs also allow more degrees of freedom w.r.t. the

form of axioms. Often, fuzzy axioms allow to formulate

lower bounds on the truth degree of a given classical

axiom, but some of our results also apply to crisp ontolo-

gies, where only the lower bound 1 is used. Additionally,

axioms are sometimes allowed to fix the exact truth degree

of an assertion, or compare the truth degrees of two

assertions. The final choice concerns the class of inter-

pretations considered for reasoning. Beside standard (or

general) models, which are defined in a straightforward

way by ‘‘fuzzifying’’ the classical semantics, witnessed

models were proposed in [39], which yield a more intuitive

semantics for some constructors.

3 Results

We have shown undecidability for large classes of FDLs.

Many of these FDLs are undecidable even if the ontology

is crisp; hence, undecidability emerges solely from the

fuzzy semantics and not from the ability to state truth

degrees other than true and false. As in the first undecid-

ability results [6, 7] for FDLs, our proofs are based on

reductions of the Post Correspondence Problem (PCP). To

complement these results, we developed tableau- and

automata-based reasoning methods for less expressive

FDLs, e.g. based on finitely valued or the infinitely valued

(but still relatively simple) Gödel t-norm semantics. In the

latter case, we had to develop new techniques since sur-

prisingly many Gödel FDLs turned out to lack the finite

model property.

Overall, our decidability and undecidability results

cover most of the FDLs with t-norm-based semantics, as

long as the underlying DL contains at least EL and some

kind of negation constructor. Not surprisingly, all FDLs

with finitely valued semantics that we have investigated are

decidable. For most of the decidable FDLs, we obtained

tight complexity bounds.

For the DLs EL and FL0, which do not have negation,

we obtained several results, although the overall picture

remains incomplete. Reasoning in EL is EXPTIME-hard for

many choices of t-norms, as opposed to the P-completeness

observed in the classical case. A matching EXPTIME upper

bound was shown only for finitely valued semantics. The

complexity of reasoning in fuzzy FL0 under Gödel

semantics does not increase in comparison to the classical

case.

3.1 Undecidability Results: More Details

From the first undecidability proofs [6, 7, 33], we extracted

criteria for an FDL to be able to express solvablity of a PCP

instance. Basically, the logic must be able to express the

search tree for a solution. This tree consists of nodes

labeled with pairs (u, v) of words representing a candidate

solution of the PCP. A solution is found when one node

with label (w, w) is found.

In FDLs we encode words as numbers in the interval

[0, 1] to simulate this search tree. The precise encoding

depends on the fuzzy semantics considered. The frame-

work proposed in [25] and extended in [15, 19] identifies

five properties specifying structures that can be expressed

by the constructors and axioms of a given FDL. Intuitively,

these properties are: (i) all models can be forced to contain

an element that encodes the root of the search tree; (ii) two

words can be concatenated to construct the next candidate

solution; (iii) new elements can be created to represent the
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child nodes of a given node; (iv) values can be transferred

from nodes in the tree to their child nodes; and (v) the

equality of two encodings of words can be expressed.

These properties together imply undecidability of consis-

tency in an FDL. We then identified several large classes of

FDLs that satisfy each of these properties. For example,

property (iii) always holds when dealing with witnessed

models. Similarly, property (iv) is satisfied in EL aug-

mented with value restrictions.

Overall we obtain the undecidability results shown in

Table 1 for FDLs over witnessed models. All the results

hold for crisp terminologies. The first row considers com-

pletely crisp ontologies, i.e., where the assertional part is

also crisp; in the second row, lower bounds on the degrees

of assertions can be specified; and in the third row, exact

values for such degrees can be stated. On the horizontal

axis, we consider different combinations of constructors:

the extension NEL of EL with the residual negation, the

extension NAL of NEL with value restrictions, the

extension IEL of NEL with implication, the very expres-

sive extension SROIQ of IEL that underlies the standard

ontology language OWL 2, the extension ELC of EL with

involutive negation, and the extension IALC of ELC with

value restrictions and implication. An entry P denotes that

the resulting FDL becomes undecidable when we consider

the Product t-norm for the semantics, Łð0;bÞ denotes

undecidability for a large class of t-norms that includes the

Łukasiewicz t-norm (Ł), and � indicates undecidability for

all (continuous) t-norms except the Gödel t-norm.

Most results follow from the basic undecidable cases we

identified [19]:

– NEL with crisp ontologies and Ł½0;b�-t-norms,

– IEL with equality assertions and any t-norm except the

Gödel t-norm,

– ELC with � -assertions and any t-norm except the

Gödel t-norm, and

– ELC with crisp ontologies and the Product t-norm.

In [2], it was further shown that NAL with equality

assertions and the Product t-norm is undecidable. These

results subsume all previously known undecidable cases

[6, 7, 33], and prove undecidability of all logics for which

correct tableau algorithms had been claimed to exist, but

shown to be incorrect due to the lack of the finite model

property. In [2], we discuss in depth the issues caused by

infinitely valued semantics for existing tableau methods for

FDLs, and highlight how the undecidability results exploit

these weaknesses.

As described in the next section, most of these results

are in fact tight, i.e., decidability holds for all other t-norms

(shown in Table 1 by a gray background). In particular, all

FDLs using the Gödel t-norm are decidable, even when

they use both residual and involutive negation [22]. This

covers most expressive DLs in use today, and leaves open

only the special cases at the lower left and the upper right

corners of Table 1. Regarding the former, it seems possible

to extend the undecidability result of [2] to a larger class of

t-norms, but a full classification remains open. In the latter

case, it is arguable whether fuzzy semantics using the

involutive negation, but none of the three basic t-norms

Gödel, Łukasiewicz, or Product, make sense, and whether

these open cases should be pursued further.

3.2 Decidability Results: More Details

We identified two main classes of decidable FDLs. The

first concerns FDLs that use t-norms outside of the class

Ł½0;b�, restricted to � -assertions, and without involutive

negation. We have shown in [17] that the semantics of such

logics degenerates to the underlying classical semantics.

That is, if we remove all fuzzy degrees from a fuzzy

ontology, the result is consistent in the classical sense iff

the original ontology is consistent under the fuzzy

semantics. This trivially yields the same complexity

bounds as for the underlying classical DLs. These results

hold even for very expressive DLs like SROIQ (under the

mentioned restrictions) [19]. It should be noted, however,

that this reduction works only for deciding consistency; for

other reasoning problems, decidability is still an open

problem.

The second class of decidable FDLs are ones with the

Gödel t-norm. Before our work, it was generally assumed

that Gödel FDLs have the finite model property, and in

particular the finitely valued model property, where rea-

soning can be restricted without loss of generality to

models using only finitely many degrees of truth. The

reason for this assumption was the strong similarity to the

Zadeh semantics, which has these properties [53]. We have

shown in [18] that this assumption is wrong; under Gödel

semantics, the finitely valued model property fails already

for extensions of EL with either value restrictions or the

implication constructor.

While the lack of the finite model property in other

FDLs led to undecidability, we were able to show that the

Gödel t-norm preserves decidability. We observed that the

Table 1 Undecidability of consistency in FDLs

NEL NAL IEL SROIQ ELC IALC

Crisp Łð0;bÞ Łð0;bÞ Łð0;bÞ Łð0;bÞ P, Ł P, Łð0;bÞ

� Łð0;bÞ Łð0;bÞ Łð0;bÞ Łð0;bÞ � �
¼ Łð0;bÞ P, Łð0;bÞ � � � �
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precise truth degrees used in models do not matter, but only

the order relations among them. Thus, it suffices to con-

sider abstract models, which specify only a total order on

the values relevant for the consistency of the ontology.

Based on this abstraction, we developed an automata-based

reasoning approach [18], which is closely related to the

approach for finitely valued FDLs described in Sect. 3.3

below.

We have also combined the automata approach with the

crispification method typically used for finitely valued

FDLs [30]. While applicable to relatively expressive DLs,

this approach depends on the tree model property, which

does not hold in SROIQ [59], but in its sublogics SRIQ,

SROQ, and SROI [32]. The combined approach allowed

us to show that, in most cases, the complexity of reasoning

remains the same as the one for the underlying classical

DLs.

By lifting the tableau algorithm of [41, 42] to our order

abstraction, we extended our decidability results to

SROIQ with Gödel semantics [22]. In contrast to previ-

ous tableau algorithms dealing with GCIs, ours uses a

correct blocking condition that is based on a finite repre-

sentation of possibly infinite models. Our algorithm is

related to the technique for Zadeh semantics presented in

[51], but considers infinitely many values, and supports

non-crisp concept and role inclusions. To deal with the

latter, we developed a fuzzy generalization of the auto-

mata-based technique from [42].

3.3 Finitely Valued FDLs

We investigated the complexity of FDLs with finitely

valued semantics. Although lattice-based semantics had

been proposed before [54], most research in this direction

focused on finite total orders. The crispification approach,

which was developed for such FDLs, did not provide

precise complexity bounds due to a blow-up in the size of

the resulting classical ontology [10, 13].

Our own work on this topic started with an automata-

based construction that allowed us to show tight com-

plexity bounds for a variety of finitely valued FDLs

[23, 26, 29, 31]. We have shown consistency to be in

EXPTIME for DLs up to SHOI (EXPTIME-hardness already

holds in the classical case [49]). When the terminology is

restricted to being acyclic and all transitive roles are crisp,

the classical complexity of PSPACE in these DLs does not

increase under finitely valued semantics. These results use

the PSPACE on-the-fly constructions from [5]. Using

tableau methods and pre-completion [40], we were able to

transfer these complexity results also to other reasoning

problems [24, 28].

These approaches do not work for reasoning tasks like

answering (fuzzy) conjunctive queries (CQs) over fuzzy

ontologies. Answering CQs w.r.t. ontologies is an

important extension of the classical problem of CQ

answering in databases, which has recently received

considerable attention [8, 47]. For FDLs, several fuzzy

extensions of CQs have been proposed [48, 56, 57]. In

[21, 43], we have extended the crispification approach to

answer fuzzy CQs in finitely valued FDLs. Notably, [21]

presents a pre-processing step that avoids the exponen-

tial blow-up of previous methods, yielding tight com-

plexity bounds in many cases. We also showed that

some previous crispification approaches are incorrect for

number restrictions. An evaluation of a prototype

implementation of our approach on top of DeLor-

ean [11] demonstrates that the pre-processing effectively

reduces the size of the resulting ontologies, and thus

answering fuzzy CQs becomes feasible under finitely

valued semantics.

A different approach for fuzzy CQ answering for the

inexpressive FDL DL-Lite was developed independently in

[45]. There, the rewriting approach from classical DL-Lite

is extended to its Gödel variant, and conditions under

which this technique yields correct result also for other

t-norms are investigated.

3.4 Fuzzy Extensions of Inexpressive DLs

The final area we considered were fuzzy extensions of

inexpressive DLs, like EL and FL0. In these logics, con-

sistency is trivial, and hence research focuses on deciding

subsumption between concepts.

For the Gödel t-norm, it was known that the complexity

of subsumption in EL remains P-complete [3, 44]. In con-

trast, we showed a CO-NP lower bound for a large class of

t-norms including the Łukasiewicz t-norm [27], using a

reduction from the (complement of the) vertex cover

problem. In [16] we further raised this lower bound to

EXPTIME, even for finitely valued extensions of EL. For

fuzzy EL based on finitely valued variants of the

Łukasiewicz t-norm, this means that subsumption reason-

ing is EXPTIME-complete [26], and together with [44] we

obtain a complete characterization of the complexity of

fuzzy extensions of EL with finite t-norms. However, the

precise complexity remains open for the infinitely valued

Łukasiewicz and Product t-norms.

In FL0, subsumption is EXPTIME-complete already in the

classical case [3]. Hence, by the results of Sect. 3.2, the

fuzzy variant of FL0 with the Gödel t-norm has the same

complexity. We showed that, when restricting to cyclic

terminologies, the complexity of the Gödel extension of

FL0 reduces to PSPACE, while for acyclic terminologies it

belongs to CO-NP [20]. To show these results, we

employed a weighted generalization of the automata con-

struction used in the classical case [1].
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4 Outlook

While this project has substantially increased the state of

research regarding decidability and complexity of FDLs,

there remain a number of open issues.

For instance, the picture of decidability and complexity

for the case of general models is not as clear as the one

described for witnessed models in Table 1, although some

results have been obtained [15]. Extensions of FDLs with

concrete domains [46, 55] and other non-logical con-

structors need also to be studied in more detail. Never-

theless, our results provide an important map of the

complexity landscape of fuzzy description logics, which

can aid researchers and modeling experts alike in choosing

a fuzzy description logic suitable for their needs.

Since some of the reasoning algorithms are extensions

of the classical ones used in current DL reasoners, it is

conceivable that these reasoners can be adapted to deal

with FDLs, at least under finitely valued or Gödel seman-

tics. Tableau algorithms that can deal with GCIs under

Zadeh semantics have already been implemented [14, 50].

Providing tableau reasoners for different fuzzy semantics

will help to speed up the adoption of FDLs for modeling

purposes in applications.
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2. Baader F, Borgwardt S, Peñaloza R (2015) On the decidability

status of fuzzy ALC with general concept inclusions. J Philos

Logic 44(2):117–146

3. Baader F, Brandt S, Lutz C (2005) Pushing the EL envelope. In

L. P. Kaelbling and A. Saffiotti, editors, Int. Joint Conf. on Artif.

Intell. (IJCAI), pp 364–369. Professional Book Center

4. Baader F, Calvanese D, McGuinness DL, Nardi D, Patel-Sch-

neider PF (2007) The description logic handbook: theory,

implementation, and applications. Cambridge University Press,

2nd edn
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