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Abstract An inconsistency measure is a function mapping

a knowledge base to a non-negative real number, where

larger values indicate the presence of more significant

inconsistencies in the knowledge base. In order to assess

the quality of a particular inconsistency measure, a wide

range of rationality postulates has been proposed in the

literature. In this paper, we survey 15 recent approaches to

inconsistency measurement and provide a comparative

analysis on their compliance with 18 rationality postulates.

In doing so, we fill the gaps in previous partial investiga-

tions and provide new insights into the adequacy of certain

measures and the significance of certain postulates.

Keywords Inconsistency measurement � Rationality
postulates

1 Introduction

A general challenge in knowledge representation and rea-

soning is the handling of uncertain and inconsistent infor-

mation. The notion of uncertainty here refers to the graded

or just unknown assessment of being ‘‘true’’ of some piece

of information, from a subjective point of view of a deci-

sion-making agent such as a human being. Most of the

information any agent possesses is not necessarily strictly

true in the actual world and agents have to take into

account both uncertainty of factual beliefs—such as ‘‘John

was supposedly on vacation’’ and uncertainty on the

applicability of rules when deriving new information—

such as ‘‘When going on vacation, John usually takes his

kids with him’’. A related notion is inconsistency, which

refers (usually) to multiple pieces of information and rep-

resents a conflict between those, i. e., they cannot hold at

the same time. The two statements ‘‘John is on vacation in

California’’ and ‘‘John is at home in New York’’ represent

inconsistent information and in order to draw meaningful

conclusions from a knowledge base containing these

statements, this conflict has to be consolidated somehow.

Several fields address the challenge of dealing with

inconsistencies by considering different perspectives on the

reasons why inconsistencies occur. For example, belief

revision [12] considers the scenario where the a priori

beliefs of an agent are consistent and a new piece of

information—that is potentially contradicting previous

beliefs—has to be consistently incorporated in order to

obtain the a posteriori beliefs. Similarly, belief merging

[25] considers the scenario where multiple belief sets of

different agents have to be merged in order to obtain a

coherent view on the joint beliefs. While these approaches

aim at resolving inconsistencies in the classic-logical sense,

other approaches such as paraconsistent logics [3] provide

inconsistency-tolerant semantics in order to be able to

reason under inconsistency. There are also some works

dealing with both inconsistency and (quantitative) uncer-

tainty at the same time such as belief revision and merging

for probabilistic knowledge [4, 7, 22, 38].

A quantitative treatment of the challenge of dealing with

inconsistencies in knowledge representation is provided by

the field of inconsistency measurement, see e. g. [9, 13] for

some early surveys. In this field, the main object of

research is the inconsistency measure, i. e., a function that

assign a non-negative real value to a knowledge base with
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the informal meaning that larger values indicate a larger

inconsistency. These measures are useful for the tasks of

analyzing knowledge bases in general [44], identifying the

culprits of inconsistency [16], as well as manual and

automatic debugging of knowledge bases [10, 38] and

inconsistency-tolerant reasoning [39]. The traditional set-

ting for inconsistency measurement is that of classical

propositional logic and, beginning with Knight’s incon-

sistency measure from [23, 24], a lot of proposals of

inconsistency measures have been made for this setting

[10, 11, 13, 15, 16, 19, 23, 31, 32, 34, 47, 49]. While there

are also approaches to inconsistency measurement based

on logics incorporating uncertainty [5, 6, 35, 36, 43], we

will focus our study here on the classical setting as the

variety of different measures in other settings is rather

small.

In [14], a first formal proposal was given on what

properties a basic inconsistency measure should satisfy. In

that work, Hunter and Konieczny proposed the properties

consistency (the inconsistency value should be zero iff the

knowledge base is consistent), normalization (the incon-

sistency value should range between zero and one),

monotony (adding formulas to the knowledge base should

not decrease the inconsistency value), free formula inde-

pendence (‘‘innocent’’ formulas can be removed from the

knowledge base without changing the inconsistency value),

and dominance (semantical weakening of certain formulas

should not increase the inconsistency value), to be desir-

able properties that should be satisfied by a meaningful

account to inconsistency measurement. In [16] the property

normalization was classified as an additional property and

later works such as [11] also did not include dominance in

the core set of desirable properties. Following [14] several

other works [2, 16, 33, 34, 42, 43] also proposed new

rationality postulates, either to replace previously proposed

postulates or to extend them. Although these postulates

were proposed to evaluate the rationality of concrete

approaches to inconsistency measurement, only a few of

them have been evaluated wrt. only a subset of the pos-

tulates in the references mentioned before.

In this paper, we provide a comprehensive evaluation of

15 inconsistency measures from the recent literature

[8, 10, 11, 15, 16, 21, 24, 34, 47, 49] wrt. 18 rationality

postulates proposed in [2, 14, 16, 33, 34, 42, 43]. We

conduct this evaluation objectively and refrain from dis-

cussing the actual rationality of certain postulates and the

meaningfulness of certain inconsistency measures in the

light of satisfying (or violating) them. In [2], Besnard

provides a critical examination of some of the basic pos-

tulates mentioned above and we would like to point the

interested reader to this work for some excellent discussion

on this topic. Similar discussions can also be found in

[33, 34]. The present paper shall serve as an overview of

the state-of-the-art and as collection of various technical

results on the compliance of rationality postulates.

The main contribution of this paper is summarized in

Table 1 where the compliance of each of the considered 15

inconsistency measures wrt. 18 rationality postulates is

stated. The necessary preliminaries about the logical con-

text are given in Sect. 2, the definitions of the considered

inconsistency measures can be found in Sect. 3, and the

considered rationality postulates are presented in Sect. 4.

An overview on the results is given in Sect. 5 and a final

discussion concludes this paper in Sect. 6.

2 Preliminaries

Let At be some fixed propositional signature, i. e., a

(possibly infinite) set of propositions, and let LðAtÞ be the

corresponding propositional language constructed using the

usual connectives ^ (and), _ (or), and : (negation).

Definition 1 A knowledge base K is a finite set of for-

mulas K � LðAtÞ. Let K be the set of all knowledge bases.

If X is a formula or a set of formulas we write AtðXÞ to
denote the set of propositions appearing in X. Semantics to

a propositional language is given by interpretations and an

interpretation x on At is a function x : At ! ftrue; falseg.
Let XðAtÞ denote the set of all interpretations for At. An

interpretation x satisfies (or is a model of) an atom a 2 At,

denoted by x � a, if and only if xðaÞ ¼ true. The satis-

faction relation � is extended to formulas in the usual way.

For U � LðAtÞ we also define x � U if and only if

x � / for every / 2 U. Define furthermore the set of

models ModðXÞ ¼ fx 2 XðAtÞ j x � Xg for every for-

mula or set of formulas X. By abusing notation, a formula

or set of formulas X1 entails another formula or set of

formulas X2, denoted by X1 � X2, if ModðX1Þ � ModðX2Þ.
Two formulas or sets of formulas X1;X2 are equivalent,

denoted by X1 � X2, ifModðX1Þ ¼ ModðX2Þ. Furthermore,

two sets of formulas X1, X2 are semi-extensionally equiv-

alent if there is a bijection s : X1 ! X2 such that for all

a 2 X1 we have a � sðaÞ [43]. We denote this by X1 �s X2.

If ModðXÞ ¼ ; we also write X �? and say that X is

inconsistent.

3 Inconsistency Measures

Let R1
� 0 be the set of non-negative real values including

1. Inconsistency measures are functions I : K ! R1
� 0

that aim at assessing the severity of the inconsistency in a

knowledge base K. The basic idea is that the larger the

inconsistency in K the larger the value IðKÞ. For the

remainder of the paper, we also denote IðKÞ as the
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inconsistency value of K (wrt. I ). Inconsistency is a

concept that is not easily quantified and there have been a

couple of proposals for inconsistency measures so far, in

particular for classical propositional logic, see e. g.

[2, 17, 19, 32] for some recent works. Here, we select a

representative selection of 15 inconsistency measures from

the literature in order to conduct our evaluation, taken from

[8, 10, 11, 15, 16, 21, 24, 34, 47, 49]. We briefly introduce

these measures in this section for the sake of completeness,

but we refer for a detailed explanation to the corresponding

original papers.

The formal definitions of the considered inconsistency

measures can be found in Fig. 1 while the necessary

notation for understanding these measures follows below.

The measure I dðKÞ [15] is usually referred to as a

baseline for inconsistency measures as it only distinguishes

between consistent and inconsistent knowledge bases.

The measures IMIðKÞ [15], IMICðKÞ [15], I p [10], and

Imv [49] are defined using minimal inconsistent subsets. A

set M � K is called minimal inconsistent subset (MI) of K
if M �? and there is no M0 � M with M0 �?. Let MIðKÞ
be the set of all MIs of K.
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Id(K) =
{
1 if K |=⊥
0 otherwise

IMI(K) = |MI(K)|

IMIC(K) =
∑

M∈MI(K)

1
|M |

Iη(K) = 1 − max{ξ | ∃P ∈ P(At) : ∀α ∈ K : P (α) ≥ ξ}
Ic(K) = min{|υ−1(B)| | υ |=3 K}

Imc(K) = |MC(K)| + |SC(K)| − 1

Ip(K) = |
⋃

M∈MI(K)

M |

Ihs(K) = min{|H| | H is a hitting set of K} − 1

IΣ
dalal(K) = min{

∑
α∈K

dd(Mod(α), ω) | ω ∈ Ω(At)}

Imax
dalal(K) = min{max

α∈K
dd(Mod(α), ω) | ω ∈ Ω(At)}

Ihit
dalal(K) = min{|{α ∈ K | dd(Mod(α), ω) > 0}| | ω ∈ Ω(At)}

IDf
(K) = 1 − Π

|K|
i=1(1 − Ri(K)/i)

IPm
(K) =

∑
a∈At

|P K
m(a)| · |P K

m(¬a)|

Imv(K) =
| ⋃M∈MI(K) At(M)|

|At(K)|
Inc(K) = |K| − max{n | ∀K′ ⊆ K : |K′| = n ⇒ K′ 	|=⊥}

Fig. 1 Definitions of the considered inconsistency measures
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For Imc [10], let furthermore MCðKÞ be the set of

maximal consistent subsets of K, i. e., MCðKÞ ¼
fK0 � K j K0 6�? ^8K00)K0 : K00 �?g, and let SCðKÞ be
the set of self-contradictory formulas of K, i. e.,

SCðKÞ ¼ f/ 2 K j / �?g. Note also that Inc [8] uses the

concept of maximal consistency in its formal definition, but

in a slightly different manner.

The measure I g [24] considers probability functions P

of the form P : XðAtÞ ! ½0; 1	 with
P

x2XðAtÞ PðxÞ ¼ 1.

Let PðAtÞ be the set of all those probability functions and

for a given probability function P 2 PðAtÞ define the

probability of an arbitrary formula / via Pð/Þ ¼
P

x�/ PðxÞ.
The measure I c [10] utilizes a paraconsistent semantics

using three-valued interpretations for propositional logic

[40].1 A three-valued interpretation t on At is a function

t : At ! fT ;F;Bg where the values T and F correspond to

the classical true and false, respectively. The additional

truth value B stands for both and is meant to represent a

conflicting truth value for a proposition. Taking into

account the truth order 
 defined via T 
 B 
 F, an

interpretation t is extended to arbitrary formulas via

tð/1 ^ /2Þ ¼ min
ðtð/1Þ; tð/2ÞÞ, tð/1 _ /2Þ ¼ max

ðtð/1Þ; tð/2ÞÞ, and tð:TÞ ¼ F, tð:FÞ ¼ T , tð:BÞ ¼ B.

An interpretation t satisfies a formula a, denoted by t �3 a
if either tðaÞ ¼ T or tðaÞ ¼ B.

For I hs [47], a subset H � XðAtÞ is called a hitting set

of K if for every / 2 K there is x 2 H with x � /.
The Dalal distance dd is a distance function for inter-

pretations in XðAtÞ and is defined as dðx;x0Þ ¼ jfa 2 At j
xðaÞ 6¼ x0ðaÞgj for all x;x0 2 XðAtÞ. If X � XðAtÞ is a set
of interpretations we define ddðX;xÞ ¼ minx02X ddðx0;xÞ
(if X ¼ ; we define ddðX;xÞ ¼ 1). We consider the

inconsistency measures IR
dalal, Imax

dalal, and Ihit
dalal from [11]

but only for the Dalal distance. Note that in [11] these

measures were considered for arbitrary distances and that

we use a slightly different but equivalent definition of these

measures.

For every knowledge base K, i ¼ 1; . . .; jKj define

MIðiÞðKÞ ¼ fM 2 MIðKÞ j jMj ¼ ig and CNðiÞðKÞ ¼
fC � K j jCj ¼ i ^ C 6�?g. Furthermore define RiðKÞ ¼ 0

if jMIðiÞðKÞj þ jCNðiÞðKÞj ¼ 0 and otherwise RiðKÞ ¼
jMIðiÞðKÞj=ðjMIðiÞðKÞj þ jCNðiÞðKÞjÞ. Note that the defini-

tion of IDf
in Table 1 is only one instance of the family

studied in [34], other variants can be obtained by different

ways of aggregating the values RiðKÞ.
Considering IPm

[21], for an atom x 2 At or a negated

atom x ¼ :y (y 2 At) a minimal proof in K is a set p � K
such that (1) x appears as a subformula in some a 2 p, (2)

p � x, and (3) p is minimal wrt. set inclusion (note that p is

not necessarily consistent). Let PK
mðxÞ be the set of all

minimal proofs of x in K. Note that the definition of IPm
in

Fig. 1 is not the original definition but a characterization

also provided in [21].

We conclude this section with a small example illus-

trating the behavior of the considered inconsistency

measures.

Example 1 Let K1 and K2 be given as

K1 ¼ fa; b _ c;:a ^ :b; dg
K2 ¼ fa;:a; b;:bg

Then

I dðK1Þ ¼ 1 I dðK2Þ ¼ 1

IMIðK1Þ ¼ 1 IMIðK2Þ ¼ 2

IMICðK1Þ ¼ 1=2 IMICðK2Þ ¼ 1

IgðK1Þ ¼ 1=2 I gðK2Þ ¼ 1=2
I cðK1Þ ¼ 1 I cðK2Þ ¼ 2

ImcðK1Þ ¼ 1 ImcðK2Þ ¼ 3

IpðK1Þ ¼ 2 I pðK2Þ ¼ 4

I hsðK1Þ ¼ 1 IhsðK2Þ ¼ 1

IR
dalalðK1Þ ¼ 1 IR

dalalðK2Þ ¼ 2

Imax
dalalðK1Þ ¼ 1 Imax

dalalðK2Þ ¼ 1

I hit
dalalðK1Þ ¼ 1 I hit

dalalðK2Þ ¼ 2

IDf
ðK1Þ ¼ 1=12 IDf

ðK2Þ ¼ 1=6
IPm

ðK1Þ ¼ 1 IPm
ðK2Þ ¼ 2

ImvðK1Þ ¼ 1=2 ImvðK2Þ ¼ 1

I ncðK1Þ ¼ 3 IncðK2Þ ¼ 3

A web application for trying out all the discussed

inconsistency measures can be found on the website of the

Tweety project2, cf. [45].

4 Rationality Postulates

In the previous section, we recalled concrete approaches to

inconsistency measurement from the literature. However,

the question is still open what these functions should

actually measure. In the classic-logical sense, inconsis-

tency is a binary concept. Either a knowledge base is

inconsistent or it is consistent. Inconsistency measures

address the challenge to further distinguish inconsistent

knowledge bases in a similar manner as information mea-

sures [28, 41] address the issue of further distinguishing

consistent knowledge bases, in particular through measur-

ing the information content. While information content can

be formalized in a way that is (mostly) agreed upon in the

community, the concept of inconsistency has no such

1 Note that slightly different formalizations of this idea have been

given in [16, 29, 30]. 2 http://tweetyproject.org/w/incmes/.
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generally accepted formalization. Instead, rationality pos-

tulates have been proposed to give general guidelines on

how inconsistency measures should behave in certain

scenarios. In the following, we recall 18 rationality pos-

tulates that have been proposed in the literature

[2, 14, 16, 33, 34, 42, 43]. We will refrain from discussing

the actual rationality of these postulates and only recall the

original motivation for stating these postulates as desirable

properties.

The first set of rationality postulates has been proposed

in [14] in order to provide a definition of a basic incon-

sistency measure. In order to state these postulates we need

one further definition.

Definition 2 A formula a 2 K is called free formula if

a 62
S
MIðKÞ. Let FreeðKÞ be the set of all free formulas

of K.

In other words, a free formula is basically a formula that

is not directly participating in any derivation of a contra-

diction. Using this definition and the concepts already

introduced before, the first five rationality postulates of

[14] can be stated as follows. For the remainder of this

section, let I be any function I : K ! R1
� 0, K;K0 2 K,

and a; b 2 LðAtÞ.

Consistency (CO) IðKÞ ¼ 0 if and only if K is

consistent

Normalization (NO) 0�IðKÞ� 1

Monotony (MO) If K � K0 then IðKÞ�IðK0Þ
Free-formula independence (IN) If a 2 FreeðKÞ then

IðKÞ ¼ IðK n fagÞ
Dominance (DO) If a 6�? and a � b then IðK [ fagÞ
�IðK [ fbgÞ

The first postulate, CO, requires that consistent knowledge

bases receive the minimal inconsistency value zero and

every inconsistent knowledge base has a strictly positive

inconsistency value. This postulate is actually the only

generally accepted postulate and describes the minimal

requirement for an inconsistency measure. An inconsis-

tency measure I that satisfies CO does not distinguish

between consistent knowledge bases and can, at least,

distinguish inconsistent knowledge bases from consistent

ones.

The postulate NO states that the inconsistency value is

always in the unit interval, thus allowing inconsistency

values to be comparable even if knowledge bases are of

different sizes. In later works, this postulate is usually

regarded as an optional feature.

MO requires that adding formulas to the knowledge base

cannot decrease the inconsistency value. Besides CO this is

the least disputed postulate and most inconsistency mea-

sures do satisfy it (Sect. 5).

IN states that removing free formulas from the knowl-

edge base should not change the inconsistency value. The

motivation here is that free formulas do not participate in

inconsistencies and should not contribute to having a cer-

tain inconsistency value.

DO says that substituting a consistent formula a by a

weaker formula b should not increase the inconsistency

value. Here, as b carries less information than a there

should be less opportunities for inconsistencies to occur.

The set of postulates was extended in [42] for the case of

inconsistency measurement in probabilistic logics. How-

ever, we can state these postulates also for propositional

logic.

Definition 3 A formula a 2 K is called safe formula if it

is consistent and AtðaÞ \ AtðK n fagÞ ¼ ;. Let SafeðKÞ be
the set of all safe formulas of K.

A formula is safe, if its signature is disjoint from the

signature of the rest of the knowledge base, cf. the concept

of language splitting in belief revision [26, 37]. Every safe

formula is also a free formula [42].

Safe-formula independence (SI) If a 2 SafeðKÞ then

IðKÞ ¼ IðK n fagÞ
Super-Additivity (SA) If K \ K0 ¼ ; then IðK [ K0Þ
�IðKÞ þ IðK0Þ
Penalty (PY) If a 62 FreeðKÞ then IðKÞ[ IðK n fagÞ

The postulate SI requires that removing isolated formulas

from a knowledge base cannot change the inconsistency

value. This postulate is a weakening of IN, i. e., if a

measure I satisfies IN it also satisfies SI, cf. [42] and

Theorem 1.

SA is a strengthening of MO [42] and requires that the

sum of the inconsistency values of two disjoint knowledge

bases is not larger than the inconsistency value of the joint

knowledge base.

PY is the complementary postulate to IN and states that

adding a formula participating in inconsistency must have a

positive impact on the inconsistency value.

The following two postulates have been first used in

[16]:

MI-separability (MI) If MIðK1 [ K2Þ ¼ MIðK1Þ [
MIðK2Þ and MIðK1Þ \MIðK2Þ ¼ ; then IðK1 [ K2Þ ¼
IðK1Þ þ IðK2Þ
MI-normalization (MN) If M 2 MIðKÞ then IðMÞ ¼ 1

MI focuses particularly on the role of minimal inconsistent

subsets in the determination of the inconsistency value. It
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states that the sum of the inconsistency values of two

knowledge bases that have ‘‘non-interfering’’ sets of min-

imal inconsistent subsets should be the same as the

inconsistency value of their union.

MN demands that a minimal inconsistent subset is the

atomic unit for measuring inconsistency by requiring that

the inconsistency value of any minimal inconsistent subset

is one.

The following postulates have been proposed in [33] to

further define the role of minimal inconsistent subsets in

measuring inconsistency:

Attenuation (AT) M;M0 2 MIðKÞ and IðMÞ\IðM0Þ
implies jMj[ jM0j
Equal Conflict (EC) M;M0 2 MIðKÞ and IðMÞ ¼ IðM0Þ
implies jMj ¼ jM0j
Almost Consistency (AC) Let M1;M2; . . . be a sequence

of minimal inconsistent sets Mi with limi!1 jMij ¼ 1,

then limi!1 IðMiÞ ¼ 0

The postulate AT states that minimal inconsistent sets of

smaller size should have a larger inconsistency value. The

motivation of this postulate stems from the lottery paradox3

[27].

The postulate EC is the counterpart of AT and requires

minimal inconsistent subsets having the same inconsis-

tency value also to have the same size.

AC considers the inconsistency values on arbitrarily

large minimal inconsistent subsets in the limit and requires

this to be zero.

The following postulates are from [34].

Contradiction (CD) IðKÞ ¼ 1 if and only if for all

; 6¼ K0 � K, K0 �?
Free Formula Dilution (FD) If a 2 FreeðKÞ then

IðKÞ�IðK n fagÞ
CD is meant as an extension of NO and states that a

knowledge base is maximally inconsistent if all non-empty

subsets are inconsistent. Note that CD only makes sense if

NO is satisfied as well. We do not consider here the

property Monotony w.r.t. Conflict Ratio from [34] as it is

too specifically tailored for the measure IDf
.

The following property has been first mentioned in [43]:

Irrelevance of Syntax (SY) If K1 �s K2 then IðK1Þ ¼
IðK2Þ

SY states that knowledge bases with pairwise equivalent

formulas should receive the same inconsistency value.

In [2] a series of further postulates have been dis-

cussed. For our current study, we only consider the fol-

lowing two:

Exchange (EX) If K0 6�? and K0 � K00 then

IðK [ K0Þ ¼ IðK [ K00Þ
Adjunction Invariance (AI) IðK [ fa; bgÞ ¼ IðK[
fa ^ bgÞ

EX is similar in spirit to SY and demands that exchanging

consistent parts of the knowledge base with equivalent

ones should not change the inconsistency value.

AI demands that the set notation of knowledge bases

should be equivalent to the conjunction of its formulas in

terms of inconsistency values. In difference to EX note that

AI has no precondition on the consistency of the considered

formulas.

The rationality postulates presented so far are not

independent. The following theorem shows some general

relationships (a statement ‘‘A implies B’’ is meant to be

read as ‘‘if a measure satisfies A then it satisfies B’’; a

statement ‘‘A1,..., An are incompatible’’ means ‘‘there is no

measure satisfying A1,..., An at the same time’’).

Theorem 1

1. IN implies SI

2. IN implies FD

3. SA implies MO

4. MN and AC are incompatible

5. MN and CD are incompatible

6. MO implies FD

7. MN, MI, and NO are incompatible

8. MN, SA, and NO are incompatible

The proof of the above theorem is given in the online

appendix4, see also [2] for some more detailed discussions.

5 Compliance of Inconsistency Measures

Table 1 gives the complete picture on which inconsis-

tency measure satisfies (U) and violates (�) the previously

discussed rationality postulates. Some of these results have

been shown before in [10, 11, 15, 16, 18, 21, 24, 34,

43, 47, 49]5, marked correspondingly in Table 1. The

proofs and counterexamples of the remaining statements

are all given in the online appendix4. Note that in [49] it
3 Consider a lottery of n tickets and let ai be the proposition that

ticket i, i ¼ 1; . . .; n will win. It is known that exactly one ticket will

win (a1 _ . . . _ an) but each ticket owner assumes that his ticket will

not win (:ai, i ¼ 1; . . .; n). For n ¼ 1000 it is reasonable for each

ticket owner to believe that he will not win but for e. g., n ¼ 2 it is

not. Therefore larger minimal inconsistent subsets can be regarded

less inconsistent than smaller ones.

4 http://www.mthimm.de/misc/mt_ratposim_appendix.
5 Note that proofs of [43] are for propositional probabilistic logic. As

this is a generalization of propositional logic, the results apply here as

well.
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has been shown that Imv satisfies restricted versions of MO

and IN where only formulas are considered that do not use

fresh propositions.

The only rationality postulate where all considered

measures agree upon is CO, which is not surprising as it

captures the minimal requirement for any inconsistency

measure. Most measures also satisfy MO, which is also

the least disputed in the literature. The only cases where

MO fails is usually when NO is satisfied, cf. IDf
and Imv.

However, note that MO and NO are not generally

incompatible as e. g. I g satisfies both. Some other pos-

tulates are violated by most of the considered inconsis-

tency measures, in particular if they address a very

specific feature. For example, CD is motivated by the

measure IDf
—which is also the only one satisfying it—

and can be seen as the counterpart to CO as it describes a

concept of maximal inconsistency. Of course, requiring

that a maximally inconsistent knowledge base receives

the maximal possible inconsistency value is a desirable

property. The specific instance of this requirement in

CD, i. e., that maximal inconsistency is defined by not

having non-empty consistent subsets and that the maxi-

mal value is 1, is very specific to IDf
. The value 1 only

makes sense when the measure is normalized, so that 1 is

indeed the maximal possible value. Moreover, also the

definition of maximal inconsistency requires some more

investigation.

One important thing to note from the results shown in

Table 1, is that there are no two inconsistency measures

that are equivalent in terms of these postulates. More

precisely, for every pair of inconsistency measures I ; I0

discussed in this paper there is always at least one postulate

which is satisfied by I and violated by I0 (or vice versa). A
simple corollary of this is, that all considered inconsistency

measures are different from each other. That is, for every

pair of measures I ; I0 we can find knowledge bases K1;K2

such that IðK1Þ\IðK2Þ and I0ðK1Þ� I0ðK2Þ (or vice

versa).

It can also be seen that satisfaction of many rationality

postulates is not a sufficient criterion for evaluating an

inconsistency measure, as the drastic inconsistency mea-

sure already satisfies 12 of the 18 considered postulates—

which is also the maximal number of postulates satisfied by

any measure—but should not be seen as a meaningful

inconsistency measure. Moreover, the drastic inconsistency

measure is also the only measure besides I c satisfying EX

and AI, which have been proposed in [2] as a more

meaningful alternative to the existing postulates. These

observations call for more investigations in rationality

postulates for inconsistency measurement, as the existing

ones are obviously not able to sufficiently assess the quality

of a measure. One particular approach to complement

rationality postulates in this regard is to analyze the

expressivity of inconsistency measures, i. e., the number of

different inconsistency values that can be attained on some

class of knowledge bases. See [46] for a recent discussion

on this topic.

6 Conclusion

In this paper, we provided a comprehensive evaluation of

recent approaches to inconsistency measures wrt. several

rationality postulates from the literature. It therefore

extends previous partial investigations, serves as an over-

view of the state-of-the-art, and as collection of various

technical results on the compliance of rationality postulates

(which, due to space limitations, can be found in the online

appendix4).

Our investigation on compliance is comprehensive but,

of course, not complete. In particular, we did not yet

consider the measures of [1, 18–20] and, for example, the

property weak dominance from [19]. There are variants of

the inconsistency measure I c which are also based on

multi-valued interpretations, see e. g. [16, 29, 30].

Our investigation shows that, besides the postulate CO,

there is no common agreement on the variety of rationality

postulates. This calls for both, a deeper investigation of

rationality postulates and the development of new mea-

sures satisfying them. Furthermore, besides the satisfaction

of rationality postulates, other dimensions for evaluating

inconsistency measures should also be taken into account

such as the aforementioned expressivity [46] as well as

computational complexity [48].
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