
TECHNICAL CONTRIBUTION

Full-Body Motion Planning for Humanoid Robots using Rapidly
Exploring Random Trees

Jacky Baltes1 • Jonathan Bagot2 • Soroush Sadeghnejad3 • John Anderson2 •

Chen-Hsien Hsu1

Received: 9 May 2016 / Accepted: 23 July 2016 / Published online: 1 August 2016

� Springer-Verlag Berlin Heidelberg 2016

Abstract Humanoid robots with many degrees of freedom

have an enormous range of possible motions. To be able to

move in complex environments and dexterously manipu-

late objects, humanoid robots must be capable of creating

and executing complex sequences of motions to accom-

plish their tasks. For soccer playing robots (e.g., the par-

ticipants of RoboCup), the highly dynamic environment

require real-time motion planning in spite of the enormous

search space of possible motions. In this research, we

propose a practical solution to the general movers problem

in the context of motion planning for robots. The proposed

robot motion planner uses a sample-based tree planner

combined with an incremental simulator that models not

only collisions, but also the dynamics of the motion. Thus

it can ensure that the robot will be dynamically stable while

executing the motion. The effectiveness of the robot

motion planner is demonstrated both in simulation and on a

real robot, using a variation of the Rapidly Exploring

Random Tree (RRT) type of motion planner. The results of

our empirical evaluation show that CONNECT works

better than EXTEND versions of the RRT algorithms in

simple domains, but that this advantage disappears in more

obstacle-filled environments. The evaluation also shows

that our motion planning system is able to find and execute

complex motion plans for a small humanoid robot.

Keywords Humanoid robots � Motion planning � RRT �
Real time AI

1 Introduction

The cost of building robots has decreased considerably in

recent years. Now many researchers are able to develop

humanoid robots, and address new research challenges

with robots possessing increased degrees of freedom

(DOF).

A desire to increase the robot’s range of motion and

autonomous performance in uncertain environments with

real-time requirements makes motion planning a crucial

component of an intelligent robot system. In robotic soccer

competitions such as RoboCup, a small set of parame-

terised motion plans are currently sufficient (e.g., walk

forward, walk backward, turn left, turn right, shuffle left,

shuffle right, kick left, kick right, stand up forward, and

stand up backward). These can be implemented off-line in

about two weeks by a motivated graduate student. How-

ever, in the future, improved skills of the robots will

require more versatile motions (e.g., headers, squeezing by

an opponent, throw-ins, and sliding tackles). As the robot

begins to be capable of performing a large number of

complex motions, it becomes impossible to pre-program all

possible motions offline. Instead the robot must generate

new motions online. Efficient motion planning is also

necessary for greater utility and to allow robots to work in

shared work spaces.

In this paper we use Rapidly Exploring Random Trees

(RRTs) as a basis for complex online motion planning,

implementing several variants and examining these in both

simulation and on a 19 DOF physical humanoid robot in

five different environments.

& Jacky Baltes

jacky.baltes@ntnu.edu.tw; jacky.baltes@gmail.com

1 National Taiwan Normal University, Taipei, Taiwan, ROC

2 University of Manitoba, Winnipeg, MB, Canada

3 Amirkabir University of Technology, Tehran, Iran

123

Künstl Intell (2016) 30:245–255

DOI 10.1007/s13218-016-0450-z

http://orcid.org/0000-0003-3360-1892
http://crossmark.crossref.org/dialog/?doi=10.1007/s13218-016-0450-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s13218-016-0450-z&domain=pdf

2 Background and Related Work

The motion planning problem is a form of the general

mover’s problem, an extension of the piano mover’s

problem. The piano mover’s problem is to determine how

to move a piano from an initial position to a goal position

without colliding with objects in the environment. The

general mover’s problem replaces the piano with a generic

object where the moving object may have multiple poly-

hedra freely linked together at various distinguished

vertices [14].

Planners generally rely on some form of representation to

reason about space in the world and the consequences of

their actions. The most commonly used state space repre-

sentation for robot motion planning is known as a Config-

uration Space (CSPACE) [13]. A robot in CSPACE is

reduced to a single n-dimensional point (configuration)

moving through space, where n is the number of DOF. The

CSPACE represents the set of all transformations that can

be applied to the robot. The Configuration Free (CFREE)

set denotes the set of all robot configurations that are not in

collision with obstacles. The Configuration Obstacle

(COBS) set is the compliment of the CFREE set, therefore

the COBS set denotes the set of all robot configurations that

are in collision with obstacles. A valid path from a robot’s

initial configuration to goal configuration would consist of

configurations which all belong to the CFREE set.

Solving a planning problem for a full-bodied articulated

humanoid robot is difficult, because the search space yields

a combinatorial explosion. Consider a subset of the general

humanoid motion problem, an assembly robot arm such the

Selective Compliance Articulated Robot Arm (SCARA)

with 4 DOF, as a simple example. If each of the 4 joints has

a range of [0.0, 180.0] in 0.1 degree increments, this yields

a state space of 18004 for just this arm. Finding the optimal

solution would require searching through the state space

for a set of states that arrive at the goal state from the initial

state and maximize a heuristic function. The heuristic

function itself can also have many factors: for example if a

robot has a limited power supply, the heuristic function

might rank solutions that use less power more highly.

Searching through the entire state space is infeasible for

high-DOF humanoid robots especially if a solution must be

found in real-time, and so for robots with many DOF in

uncertain environments, completeness and optimality are

typically sacrificed [6, 8].

By giving up completeness, we accept that the path

planner will sometimes not find a path, even if such a path

exists. Reducing a robot’s think and react cycle time is a

critical task for operation in dynamic environments, and a

path that is good enough but not optimal supports this.

Sample-based probabilistically complete planners (i.e., will

find a solution if one exists but cannot determine if one

does not exist) have shown promise returning sub-optimal

results in reasonable time. Sample-based planners can be

classified in two general groups: roadmap and tree [18].

The main difference between roadmap and tree planners is

the underlying data structure. A roadmap planner typically

stores the map in a graph and requires two phases to return

a solution [3]. The first (learning) phase builds the map and

the second (query) phase determines the plan with a graph

search algorithm. The learning phase is an expensive

operation but in a static environment the learning phase

needs to run only once. In dynamic environments the cost

of the learning phase would be too large to react to changes

in the environment in a timely fashion, since the roadmap

must be rebuilt before each query [4]. A tree planner stores

only the necessary data to find a solution to the query in a

tree. The root of the tree represents the initial state and the

tree is built incrementally until the goal state is reached.

The answer to the query is simply a path from the root

(initial) to a leaf (goal) node [17]. Building the tree is

computationally inexpensive which makes tree planners

ideal for dynamic environments where plans may become

invalid quickly.

A popular version of sample-based roadmap planning is

the Probabilistic Road Map (PRM) [2, 7]. The learning

phase creates the PRM by randomly generating configu-

rations in CFREE which are then connected to nearby

configurations. The learning phase does not consider the

initial or goal configuration. A map for the entire CSPACE

is created, which is a waste of time if the environment

changes. For this reason, roadmap planners work best for

holonomic robots in static environments where the map can

be queried multiple times once generated because of the

cost incurred by the learning phase [10, 11]. The PRM is a

multi-query planner, whereas the solution strategy pre-

sented in our work is a single-query planner that does not

require a learning phase. Our solution strategy only con-

siders the portions of the environment necessary to find a

suitable motion plan.

A major disadvantage of using PRMs is the number of

connections that must be made between configurations,

which is not a simple task [10]. Our solution strategy does

not require as many connections between configurations,

which reduces the time to find a suitable motion plan. For a

large CSPACE the learning phase is an expensive opera-

tion because of the logic required to make connections. In

an uncertain environment with real-time requirements, the

learning phase (think) does not allow sufficient time to

react and the map cannot be reused if the environment

changes rapidly.

Many popular versions of sample-based tree planners

use the Rapidly Exploring Random Tree (RRT). An RRT is

246 Künstl Intell (2016) 30:245–255

123

a data structure where the nodes of the tree represent

configurations. The configurations are generated randomly

and typically biased towards unexplored areas [10]. The

RRT is rooted at the initial configuration of the robot. In a

tree, every node except the root has exactly one parent

node. The random configurations in a RRT are connected

in this fashion. Each random configuration or node in the

RRT belongs to the CFREE set. Every edge between nodes

in a RRT represents a path which also belongs to the

CFREE set. The goal is to generate a leaf node which is the

goal configuration. The RRT data structure itself can be

used as an algorithm for motion planning because the data

structure translates directly to the CSPACE state space

representation. A path in the tree from the root (initial

configuration) to leaf (goal configuration) is a motion plan.

The RRT algorithm terminates once the goal configuration

is achieved, so no unnecessary work is done. A RRT does

not require a learning phase like the PRM. Only a single

phase or query is required to determine a motion plan, and

this more easily supports dynamic environments.

The key parameters of a RRT are a sample bias

method, a method for selecting the nearest neighbor given

a random node (NN method), a distance metric, and a

method for collision detection. The choices for each of

these elements affect the performance of the RRT in

different ways. For example, different sample biases have

a direct impact on how well the tree covers the envi-

ronment while the nearest neighbor method only influ-

ences how fast random configurations can be connected to

the tree. In this work we use RRTs as a basis for a

complex motion planner, and contrast a number of vari-

ations in RRT approaches.

In the classic RRT Algorithm [10], the root of the tree

is set to the robot’s initial configuration (pose and coor-

dinates). The algorithm then adds random configurations

to the tree n times, taking care to prevent premature ter-

mination due to small n. These random configurations are

generated according to some sample bias, and the nature

of a configuration is dependent on the robot—if a robot

has 19 DOF, for example, each configuration will consists

of the randomly generated joint angles for all 19 DOF.

Once the random configuration is generated, the nearist

neighbour (NN) in current tree is found using a specified

NN and distance metric method. After the NN is found, a

move is attempted from the NN to the random configu-

ration. One of three things may occur during the

attempted move between the two configurations. Either

the move is blocked by an obstacle, which is determined

by using a specified collision detection method, or the

move is not physically possible with the robot, or the

move can be performed by the robot. If the move can be

performed by the robot then the random configuration is

added to the tree by connecting it to the NN. If the move

is not possible then a new configuration that was gener-

ated by the movement up until it could no longer get any

closer to the random configuration is added to the tree by

connecting it to the NN.

Variants of the RRT data structure as a motion planner,

such as RRT-CONNECT have been shown to be proba-

bilistically complete [11]. However is has been proven

that the probability of the classic RRT construction

algorithm converging to an optimal solution is zero [5].

When a problem has a solution, a probabilistically com-

plete algorithm’s probability of finding a solution goes to

one as the runtime approaches infinity [1]. In other words,

the algorithm will eventually converge to a solution. In

our work, the goal is not necessarily to find the optimal

solution in terms of a heuristic function. The main con-

cern is finding a sub-optimal solution that is good enough

as quickly as possible. Further variants of the RRT are

possible, such as RRT-EXTEND, where the move towards

the random configuration from the NN is performed for

n time steps, or until the NN is reached, or an obstacle is

blocking the path.

Motion planning algorithms also differ in producing

results that are stable in the environment, beyond simply a

collision free path from an initial state to a goal state.

Stability is relatively straightforward for simple wheeled

robots where the terrain is even. This becomes difficult

very quickly once terrain becomes uneven, and where

robots themselves are not dynamically stable in all possible

configurations (e.g. humanoids with many DOF operating

in real time). Our motion planner includes kinodynamic

constraints, can find or approximate the inverse kinematics

(IK) solution, and performs collision detection quickly and

reliably in order to generate feasible motions plans for real

time processing.

3 Motion Planner with RRT and Incremental
Simulator

Because the intended use of our motion planner is for high-

DOF humanoids, we begin by describing the humanoid

robot for which it was developed, for context. The robot

Blitz used in this research is shown in Fig. 1. Blitz is a

custom modified robot based on Robotis’ Bioloid kit, with

19 DOF. We used a Nokia 5500 mobile phone running

Symbian 9.1 to control the robot. This has a reasonably

powerful CPU that executed the motion planner and per-

forms visual processing with the phone’s camera used for

visual capture. The Nokia 5500 communicates with a

Künstl Intell (2016) 30:245–255 247

123

custom-built IRDA transceiver with an AtMega128-based

microcontroller that is responsible for sending commands

to the actuators. A three-axis gyroscope and accelerometer

in the Nokia 5500 is used for balancing.

Each DOF in blitz is articulated by a Dynamixel AX-12

servo, which is capable of producing 1.5 N-M of torque at

12V. The servos are daisy chained together using a serial

bus.

Our motion planner is a single-query algorithm, since it

doesnot require building amapbefore a solution can be found,

unlike other approaches such as Probabilistic Road Maps

(PRM) [7]. The solution is found by incrementally building a

data structure, which ultimately encompasses the solution.

The single-query sample-based tree algorithm employed

is a variant of the RRT construction algorithm, RRT-

EXTEND and RRT-CONNECT [9, 11]. Pseudocode for

these are shown in Algorithms 1 and 2. The RRT-

EXTEND algorithm differs from the classic RRT in that

the move towards the random configuration from the NN is

performed for n time steps, or until the NN is reached, or an

obstacle is blocking the path. The RRT-CONNECT algo-

rithm is similar to the EXTEND algorithm but there is no

restriction of n time steps. Without this restriction, the

CONNECT algorithm can generate longer paths with fewer

calls to the NN method. CONNECT tends to work best for

holonomic planning problems, while EXTEND tends to

work best for non-holonomic planning problems.

Fig. 1 Humanoid robot blitz

248 Künstl Intell (2016) 30:245–255

123

Our motion planner builds an RRT while exploring the

CSPACE, and nodes in this tree represent robot configu-

rations and the current state of our incremental simualtor.

This results in a vast search space which makes exhaustive

or even systematic search intractable. However, the size of

the search space alone is not the only important feature that

determines the runtime of the motion planner. Another

important feature is the number of possible solutions in the

search space. In puzzles, there are few solutions and

common sense heuristics often lead the search astray, but

in motion planning, there are usually many possible solu-

tions and reasonable heuristics such as the distance to the

goal. So in this research, we show that a probabilistic

algorithms with fast checks for validity provided by an

inremental simulator are able to find good solutions.

Robot configurations are randomly generated and the

planner attempts to move from the closest configuration

currently in the tree to the new configuration.

If the resulting configuration is legal (that is obeys all

kinematic, dynamic, and stability constraints checked by

the simulator), then the resulting configuration is added to

the tree. The configurations that are legal and hence sub-

sequently added to the RRT are those that: belong to the set

of all robot configurations that do not result in collisions

with obstacles (CFREE), and the robot configuration is

dynamically stable, and the robot configuration is feasible

given the torque limits of the robot.

Just as in any standard RRT, our planner requires a

sample bias method, a NN method (the method used to find

the nearest node to a randomly selected node), a distance

metric, and a collision detection method. The standard

implementation of a RRT has an inherent Voronoi bias

when using uniform sampling because the probability that

a configuration in the tree is selected is proportional to the

volume of its Voronoi region [12]. Configurations with

larger Voronoi regions are more likely to be chosen. The

convergence of the standard RRT implementation can be

improved with a goal bias [11] which simply selects the

goal configuration instead of a random configuration using

a predefined probability. The predefined probability must

be chosen with care because a probability that is too large

can potentially lead to local minima traps. The sample bias

method used is a goal bias method. If the goal bias prob-

ability is set to zero then the RRT has the standard Voronoi

bias. The NN method uses a third party library that can be

configured for k-NN and different distance metrics. The

collision detection method is built into the physics engine,

and uses a mesh method similar to the bounding polygon

collision detection method.

Our motion planning system also allows the sample bias

method, distance metric, k-Nearest parameter, collision

detection method, and incremental time step to all be

dynamically altered during the planner’s execution.

One novel feature of our motion planning system is the

tight integration of a fast, accurate incremental simulator.

The simulator checks kinematic constraints (e.g., collision

detection and actuator range limits), but more significantly it

checks dynamic constraints (e.g., torque limits on actuators).

The simulator also implements the Inverse Kinematics (IK)

of the robot. That is it determines the joint angles of the robot

in order to achieve a desired target position and orientation.

There is no general closed form solution to the IK problem

for robot manipulators with greater than 6 DOF [16],

therefore numerical solutions or hill climbing methods are

used in such situations [15]. Since the simulator is an

incremental simulator, a solution is found by incremental hill

climbing. A nice side effect of this approach is that the

increments are actually a coarse trajectory plan. Finally, the

simulator calculates the zero moment point ZMP and uses it

as stability criterion to ensure that the robot will not fall over

while executing the motion.

The main feature of the simulator is that the simulation

can be quickly restarted from a given snapshot in time to

simulate the effects of a particular motion. The simulator

creates snapshots that include the current kinematics (i.e.,

position of all joints) and dynamics (i.e., forces on the

Künstl Intell (2016) 30:245–255 249

123

joints). Only states that guarantee the stability of the robot

are considered for inclusion.

The states in the RRT include the snapshot of the

kinematic and dynamics of the simulator from the initial

configuration to the node.

In the empirical evaluation that follows, we evaluate

both both EXTEND and CONNECT-based versions of our

motion planner.

4 Empirical Evaluation

We performed our empirical evaluation using both our

simulator and the real world. Our evaluation was focused

on two goals. The first was to showcase the versatility of

the motion planner and simulator integration and to analyze

some of the trade-offs associated with different parameters

(sample bias, nearest neighbor collision detection method,

distance metric, and connect heuristics). The second goal

was to identify bottle-necks in the implementation and to

find the fastest implementation methods so that the

resulting motion planner is able to execute on the Bioloid

robot platform in real-time.

We used two robots in this evaluation. In simulation

only, we employed Sphere, a simple proof of concept

spherical robot with six DOF—the translational and rota-

tional velocities in the X, Y, and Z planes respectively. In

both simulation and the real world we employed blitz, the

humanoid robot described in Sect. 3.

We created six different simulation environments to

evaluate the performance of the sphere and blitz robot of

our motion planning system.

4.1 World Models

A world model consists of simple objects such as cubes,

cylinders, planes, and spheres combined together to create

a complex environment for a robot to traverse and

manipulate, along with an initial configuration and goal

configuration in terms of the arrangement of these objects

and the robot’s position and pose. The forces that act upon

these objects, such as friction and gravity, are simulated

using the physics engine in the motion simulator. The

motion simulator user interface provides an easy method to

create, modify, and arrange objects in the world. Four of

the worlds used in our evaluation are shown in Fig. 2.

World1 has the robot located inside of a box and the goal is

just outside the only exit. World2 is similar, but has the

goal moved to the side of the box and extra obstacles

surrounding the goal position added. World3 is a u-shaped

long and narrow corridor. World4 has a random field of

boxes between the initial and the goal position. In our

experiments, there is never a direct collision-free path from

the initial to the goal configuration.

Real world environments that were used in the valida-

tion of our motion planning system with our humanoid

robot blitz are shown in Fig. 3. The goal sits on top of the

box, and must be touched by the tool manipulated by blitz.

Fig. 2 Sample worlds used in

the simulated portion of the

empirical evaluation: World1

(top left), World2 (top right),

World3 (bottom left) and

World4 (bottom right)

250 Künstl Intell (2016) 30:245–255

123

There is no straight path directly from the initial configu-

ration to goal configuration.

4.2 Experiments

One of the design goals of our motion planning system is to

support real-time applications. We therefore investigated

the run-time performance of many different goal biases,

NN methods, and distance metrics, both in simulation and

the real world, and found that a Euclidean distance metric

with a 1-NN selection and a variable goal bias with 10 %

increments resulted in the best real-time performance. Due

to space limitations, we omit a detailed description of those

experiments and focus on the trade-offs between EXTEND

and CONNECT variants of the RRT algorithms.

Each combination of settings was performed three times

in simulation. For the real robot each combination of set-

tings was performed once due to the amount of time it takes

to execute the plan on the real robot. We evaluated the

performance of the motion planning system using the

dimensions indicated in Table 1.

For the experiments the visualization of the motion plan

provided by the motion simulator was used to view the plan

as it was generated in real-time. The visualization is

implemented in OpenGL and consumes significant

resources when drawing many objects. It is expected that if

the visualization was turned off that an improvement in

total execution time can be realized.

While the plans produced for the Bioloid robots were

large due to the number of motion changes, those for the

Sphere robot can be reproduced reasonably here to show

the plan complexity for this environment. Figures 4 and 5

show the best solutions found by the CONNECT and

EXTEND algorithms respectively in the World0 environ-

ment for the sphere robot. In both cases, the fastest solution

was found with a goal bias of 40 (but both algorithms

returned reasonable paths within milliseconds using a goal

bias between 10 and 40 percent). The figures do not show

the contents of each node (i.e. the motion changes) but do

show the path and and the underlying tree data structure

(yellow nodes are on the correct path, red are added to the

RRT but do not ultimately form part of the path) for the

Fig. 3 Real World

Environments used in the

evaluation of blitz

Table 1 Summary of evaluation criteria

Criteria Description

Total execution time The motion planner’s response time to a plan request

Number of configurations The number of configurations in the motion planner’s data structure

Modified random

configurations

The number of generated random configurations that had to be modified before use in the motion planner’s data

structure

Dispersion A measure of how distributed the configurations are throughout the world [12]

Total move test time The total amount of time to check if a move between to configurations is possible

Total NN query time The total amount of time to query the NN data structure

Qualitative inspection Quality of the generated plan by manual inspection of the output

Künstl Intell (2016) 30:245–255 251

123

motion planner. The CONNECT algorithm out performed

the EXTEND algorithm for this relatively simply case.

Since the goal configuration is not very far, adding random

configurations to the RRT that are far away from the goal

configuration actually causes a loss of performance for the

CONNECT algorithm. The EXTEND algorithm does not

add random configurations that are very far since motion

from NN is only attempted for n time steps before modi-

fying the random configuration so this is actually advan-

tageous in this case. We found similar results for

environments World1 and World2.

The total execution time of World0 was dominated by

the total move test time, accounting for 97 % of it. This

was a common finding for all experiments. Due to the

implementation of the move test (IK and trajectory

planning solutions), determining if the robot can move

between two configurations is slow since the incremental

simulator is stepped in real-time. This could easily be

solved by stepping the incremental simulator faster than

real-time, or if the move test could be done with the models

alone by using parametric equations. These improvements

were not be considered at this time in our work since IK

and trajectory planning solutions are not the focus of this

research. However, if we look at the delta between the total

execution time and total move test time, then the fastest

solution average returned by the motion planner for a

specific combination of settings was given in 0.2 s.

Based on the NN Query Time statistic for World0, the

NN method is efficient and does not significantly impact

the runtime of the motion planner. The majority of NN

Fig. 4 Path and search tree

generated by CONNECT (Goal

Bias 40) in World0

Fig. 5 Path and search tree

generated by EXTEND (Goal

Bias 40) in World0

252 Künstl Intell (2016) 30:245–255

123

queries returned in sub-millisecond time. The NN method

is actually so efficient that there is no need to optimize its

performance since any gains would be negligible. This is a

common finding across all experiments. From these find-

ings it was decided not to tweak NN epsilon which allows

for the NN query algorithm to stop when close enough

instead of calculating the exact NN. It was also decided to

not change the Euclidean distance metric which is used

exclusively by the NN method. If the robots used for the

experiments had substantially more DOF, then the NN

method might have a noticeable impact on the runtime of

the motion planner. It is expected that the number of DOF

necessary for there to be a noticeable impact on the runtime

of the motion planner is an unrealistic amount for a real

robot. Determining the threshold for the NN method and

the number of DOF is not the focus of this research since it

will not be applicable to real robots.

The majority of the random configurations in World0

are modified because of the way the EXTEND algorithm

works. The number of modified random configurations

provides a good indication of how cluttered with obstacles

the world is, if most of the generated random configura-

tions are in COBS as opposed to CFREE. The number of

modified random configurations can also provide insight

into how good the motion planner is at selecting configu-

rations: if it is very good then no random configurations

would need to be modified and they could be used directly.

The motion towards the random configuration from the NN

is only performed for n time steps, unlike CONNECT

which will complete the motion unless an obstacle is hit or

the robot cannot physically perform the motion. The

number of modified configurations for EXTEND could

potentially be reduced by increasing n. This is also a

common finding across all result tables. As n is increased,

the EXTEND algorithm will start to behave more like the

CONNECT algorithm.

The tree images clearly illustrate one of the major dif-

ference between the EXTEND and CONNECT algorithms.

EXTEND generates longer branches than CONNECT. For

configurations that are far apart, EXTEND must generate

many intermediate configurations between the two con-

figurations where as if it is possible to move between the

two configurations CONNECT does not require any

intermediate configurations. Having the intermediate con-

figurations could be useful if a trajectory planner could use

the additional information to refine the trajectory, other-

wise due to the wasted time generating intermediate con-

figurations makes CONNECT a better choice than

EXTEND.

When the dispersion is low and the number of config-

urations is also low, then typically the total execution time

is small. In this case a solution was found quickly. A low

dispersion is not necessarily bad since the goal of the

motion planner is to find a solution rather than to do a good

job at exploration. If dispersion is low and the number of

configurations is high then this would definitely be bad

because this would mean that the motion planner is trapped

and is not doing a sufficient job of exploring to get out of

the local minima. The latter was not observed in any of the

experiments conducted.

It is desirable for the motion planner to return results in

approximately the same amount of time when the same

settings are used, while a large variability with the same

settings is undesirable. This may not be completely

unavoidable since a motion planner is probabilistic and will

converge to a solution eventually if one exists, but a

potential workaround if the motion planner is taking longer

than expected to find a solution is to start the motion

planner again with a different Random Number Generator

(RNG) seed value because there is a chance that it will

converge more quickly.

The motion planner had the greatest difficulty with the

Sphere Robot in World3 (see Fig. 2). The average total

execution time in this world was around 1.2 s. One problem

with the motion planner in this case is that the initial

configuration and goal configuration are in terms of

Euclidean distance extremely close to one another, but

there is an impassible obstacle between them. Whenever an

attempt is made to connect a configuration to the goal

configuration, selecting the nearest configuration is actually

not the right thing to do. The motion planner does not find a

solution until a random configuration is generated that is

closer to the goal configuration than the initial configura-

tion, which takes quite a long time. CONNECT cannot

exploit its ability to connect nodes to the goal quickly, but

incurs a penalty by trying this connection until a configu-

ration passed the wall has been found.

The performance of the CONNECT and EXTEND

algorithms are quite similar in World3. CONNECT and

EXTEND do not handle the case where the initial config-

uration and goal configuration are very close but an

impassible obstacle is blocking the shortest path between

them. A potential solution to this case is discussed in

Sect. 5.

The selection of the bias probability affects the motion

planner’s ability to explore unexplored areas or converge to

the goal configuration. A bias probability that is too high

will not explore and similarly a bias probability that is too

low will take a long time to converge to the goal config-

uration. We found that a bias probability between 10 and

40 percent produced the best results for the humanoid

robot, as shown in Fig. 6. When the bias probability is too

high or too low the total execution time goes up. A balance

between exploration and bias is required to achieve optimal

results for a wide variety of motion planning problems. As

the bias probability is increased the number of random

Künstl Intell (2016) 30:245–255 253

123

configurations follows. However, the additional configu-

rations provide little to no useful additional information

since the majority of samples are biased the dispersion is

low (i.e. there is little exploration).

The previous experiments showed the practicality and

efficiency of our motion planning system. We focus on the

performance of our system in the humanoid robot envi-

ronments. Our system proved efficient and versatile. It was

able to solve problems in about 1.23 s as shown in Fig. 6

for the humanoid robot.

One obvious important aspect of any motion planner is

whether or not the robot can actually execute the gener-

ated plan. By qualitative inspection and the real world

experiment with the humanoid robot, there is no doubt

that the sphere and humanoid robot would be able to

successfully execute the motion plans generated by our

motion planner.

5 Conclusions and Future Work

There are a number of possible optimizations and

improvements that could be performed in our implemen-

tation. One possibility is to always pick the goal on the first

iteration of the RRT construction algorithm. This handles

the simple cases where there is a direct collision-free path

to the goal configuration from the initial configuration.

Another simple improvement that could be implemented

is, regardless of bias probability, to choose the goal

configuration if the last configuration added to the RRT is

within distance � of the goal configuration. This could

potentially be a way to prevent unnecessary additional

exploration when a configuration in the RRT is already

close to the goal configuration and thus likely to have a

direct collision-free path to the goal.

One problem with our motion planner identified in

experiments with the Sphere Robot in World3 is when the

initial configuration and goal configuration are close to one

another but there is no direct path between the two con-

figurations. A potential solution to this problem could be to

try to connect every configuration added to the RRT to the

goal configuration. Unfortunately, since the current move

test implementation uses the incremental simulator stepped

in real-time, move tests are slow. This optimization would

result in a significant increase in total execution time. If the

move test implementation is improved in the future, then

this optimization could be implemented.

A different solution to this problem is to use the k-NN

instead of just the NN ([19] use a similar approach but for

different reasons). To understand why using k-NN would

be advantageous, consider the case where the path from the

nearest neighbor to the goal is blocked, but another close

neighbor has a direct collision-free path. In that case, if a

connection to that neighbor is tried, the path can be found

much faster. Of course, there is a trade-off when using

k-NN. If move tests are an expensive operation and all of

the k-NN are blocked, the additional move test time is k

times longer.

Fig. 6 Comparison of EXTEND and CONNECT-RRT in humanoid robot blitz domain

254 Künstl Intell (2016) 30:245–255

123

References

1. Berenson D, Srinivasa S (2010) Probabilistically complete plan-

ning with end-effector pose constraints. In: Proceedings of ICRA

2. Geraerts R, Overmars MH (2002) A comparative study of prob-

abilistic roadmap planners. In: Workshop on the Algorithmic

Foundations of, Robotics, pp 43–57

3. Hsu D, Latombe J-C, Kurniawati H (2007) On the probabilistic

foundations of probabilistic roadmap planning. In: Thrun S,

Brooks R, Durrant-Whyte H (eds) Robotics research. Springer

tracts in advanced robotics, vol 28. Springer, Berlin, Heidelberg,

pp 83–97

4. Jaillet L, Simeon T (2004) A PRM-based motion planner for

dynamically changing environments. In: Proceedings of IROS

2004, vol 2, pp 1606–1611

5. Karaman S, Frazzoli E (2011) Sampling-based algorithms for

optimal motion planning. Int J Rob Res 30(7):846–894

6. Kavraki LE, Latombe JC, Motwani R, Raghavan P (1995) Ran-

domized query processing in robot path planning (extended

abstract). J Comput Syst Sci:353–362

7. Kavraki LE, Svestka P, Latombe J-C, Overmars MH (1996)

Probabilistic roadmaps for path planning in high-dimensional

configuration spaces. IEEE Trans Robot Autom 12(4):566–580

8. Kuffner Jr. JJ, Kagami S, Nishiwaki K, Inaba M, Inoue H (2002)

Dynamically-stable motion planning for humanoid robots. Auton

Robot 12(1):105–118

9. Kuffner Jr. JJ, LaValle SM (2000) RRT-Connect: An efficient

approach to single-query path planning. In: Proc. IEEE Intl Conf.

on Robotics and Automation, pp 995–1001

10. LaValle SM (1998) Rapidly-exploring random trees: A new tool

for path planning. Technical report, Carnegie Mellon University

11. LaValle SM, Kuffner Jr. JJ (2000) Rapidly-exploring random

trees: progress and prospects. In: Algorithmic and Computational

Robotics: New Directions, pp 293–308

12. Lindemann SR, LaValle SM (2004) Incrementally reducing dis-

persion by increasing voronoi bias in RRTs. In: Proceedings of

ICRA 2004, vol 4, pp 3251–3257

13. Lozano-Perez T (1980) Spatial planning: a configuration space

approach

14. Reif JH (1979) Complexity of the mover’s problem and gener-

alizations. In: SFCS ’79: Proceedings of the 20th Annual Sym-

posium on Foundations of Computer Science. IEEE Computer

Society, Washington, DC, pp 421–427

15. Selig JM (1992) Introductory robotics. Prentice hall, USA

16. Spong MW, Hutchinson S, Vidyasagar M (2005) Robot modeling

and control, chapter 3. Wiley, New York, pp 73–110

17. Sucan I, Kavraki LE (2012) A sampling-based tree planner for

systems with complex dynamics. IEEE Trans Robot

28(1):116–131

18. Tsianos KI, Sucan IA, Kavraki LE (2007) Sampling-based robot

motion planning: towards realistic applications. Comput Sci Rev

1:2–11

19. Urmson C, Simmons R (2003) Approaches for heuristically

biasing RRT growth. In: Proceedings of IROS

Künstl Intell (2016) 30:245–255 255

123

	Full-Body Motion Planning for Humanoid Robots using Rapidly Exploring Random Trees
	Abstract
	Introduction
	Background and Related Work
	Motion Planner with RRT and Incremental Simulator
	Empirical Evaluation
	World Models
	Experiments

	Conclusions and Future Work
	References

