
TECHNICAL CONTRIBUTION

Is Your Database System a Semantic Web Reasoner?

Markus Krötzsch1 • Sebastian Rudolph1

Received: 23 May 2015 / Accepted: 3 November 2015 / Published online: 1 December 2015

� Springer-Verlag Berlin Heidelberg 2015

Abstract Databases and semantic technologies are an

excellent match in scenarios requiring the management of

heterogeneous or incomplete data. In ontology-based query

answering, application knowledge is expressed in ontologies

and used for providing better query answers. This enhance-

ment of database technology with logical reasoning remains

challenging—performance is critical. Current implementa-

tions use time-consuming pre-processing to materialise

logical consequences or, alternatively, compute a large

number of large queries to be answered by a database man-

agement system (DBMS). Recent research has revealed a

third option using recursive query languages to ‘‘implement’’

ontological reasoning in DBMS. For lightweight ontology

languages, this is possible using the popular Semantic Web

query language SPARQL 1.1, other cases require more

powerful query languages like Datalog, which is also seeing

a renaissance in DBMS today. Herein, we give an overview

of these areas with a focus on recent trends and results.

Keywords Data management � Ontologies � SPARQL

1 Introduction

For several decades, database management systems (DBMS)

had been considered a reliable, if somewhat boring, back-

bone of business IT, focusing on transactional workloads and

record-like collections of uniform data. This has changed

profoundly: recent years have seen exciting advancements

throughout the field, including in-memory databases,

NoSQL, and the ubiquitous ‘‘Big Data’’ paradigm.

These developments are particularly interesting for

semantic technologies, where DBMS are (re)discovered as

a basis for knowledge representation and reasoning. There,

too, we are confronted with larger and larger data collec-

tions, so that it seems natural to seek help from DBMS. On

the other hand, data management can also benefit by

incorporating semantic technologies. A prime example is

the approach of ontology-based query answering (OBQA),

where ontological background knowledge is used to

improve the results of database queries. The goal of this

technology is to create data management systems that can

take the user’s understanding of the application domain

into account when answering queries. To do this, the

mental model of the user is described formally in a so-

called ontology, which is then used during query answer-

ing. Figure 1 illustrates this idea.

1.1 OBQA by Example

Let us consider a small example. Assume we had a data-

base containing factual data about persons and their affil-

iations. We use the triple-based Resource Description

Framework (RDF) to express this information.

ex:markus ex:worksAt ex:tu-dresden .
ex:sebastian ex:worksAt ex:tu-dresden .
ex:tu-dresden rdf:type ex:University .

The first two facts connect the two individuals Markus

and Sebastian with their affiliation TU Dresden. The last

fact indicates that the individual TU Dresden is a university

(or, more formally, that TU Dresden is an element of the

class of all universities). According to human background

& Sebastian Rudolph

sebastian.rudolph@tu-dresden.de

1 Fakultät Informatik, Technische Universität Dresden,

01062 Dresden, Germany

123

Künstl Intell (2016) 30:169–176

DOI 10.1007/s13218-015-0412-x

http://crossmark.crossref.org/dialog/?doi=10.1007/s13218-015-0412-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s13218-015-0412-x&domain=pdf

knowledge, the works-at relation holding between two

entities allow us to deduce more information, namely that

the entity on the left is an employee and the entity on the

right is an employer. We could add the respective infor-

mation explicitly for Markus, Sebastian, and the TU

Dresden, but we can use the expressivity of RDF Schema

(RDFS) and add the ontological statements

ex:worksAt rdfs:domain ex:Employee .
ex:worksAt rdfs:range ex:Employer .

to indicate that the correspondence holds for every entity

that occurs in a works-at statement. Using further onto-

logical features of RDFS, we can describe a class hierar-

chy, to relate the classes mentioned so far with each other.

ex:Employee rdfs:subClassOf ex:Person .
ex:Person rdfs:subClassOf ex:LegalPerson .
ex:University rdfs:subClassOf ex:Employer .
ex:Employer rdfs:subClassOf ex:LegalPerson .

The purpose of expressing ontological information is to

uniformly specify universally valid information that can be

used to deduce new knowledge. This deductive capability

can be captured in a formal way by means of a deduction

calculus. In the case of RDFS, the corresponding calculus

contains deduction rules such as the ones shown in Table 1.

Whenever the premise (upper part) of a rule holds true

for some values of x, y, z, a, b, c, the conclusion (lower

part) can be inferred. By iterative application of these rules,

we can deduce many additional triples, shown in Table 2.

The approach of OBQA simply is to take such inferred

information into account when answering queries. Con-

sider the following query:1

?x rdf:type ex:LegalPerson .

This query does not return any answers over the

example database, but when taking the ontology into

account, there are several matches with the inferred triples

of Table 2 so that and

should be returned as answers.

1.2 From Vision to Reality

Unfortunately, the convenience of augmenting query

results by inferences comes at a cost. Ontology-based

query answering can be complicated in general, and in fact

it is a long open problem whether OBQA is decidable at all

for the W3C’s widely used OWL Web Ontology Language.

Even if it is, the computational complexity will most likely

make it infeasible in practice. Expressive ontology lan-

guages generally require multi-exponential algorithms for

query answering, and for the most expressive languages

where OBQA is known to be decidable today, we do not

have any elementary complexity bounds at all [16].

Practical problems start well before the theoretical

computability limits. Lightweight ontology languages like

RDFS feature low complexities even for query answering,

and yet it is challenging to cope with the large datasets

that are characteristic for modern data management

applications. Key challenges are closely aligned with the

three big Vs that are often considered to characterise Big

Data:

– Volume The sheer amount of data is problematic.

While polynomial algorithms are often considered

tractable, an algorithm that exhibits even quadratic

runtime behaviour w.r.t. the size of the database would

be completely infeasible in practice.

Fig. 1 Ontology-based query answering

Table 1 Some deduction rules for RDFS

x y z : y rdfs : domain a :

x rdf : type a :

x y z : y rdfs : range a :

z rdf : type a :

x rdf : type a : a rdfs : subClassOf b :

x rdf : type b :

a rdfs : subClassOf b : b rdfs : subClassOf c :

a rdfs : subClassOf c :

Table 2 Inferences obtained in the example

1 We use ? for variables in triple patterns like in SPARQL queries.

170 Künstl Intell (2016) 30:169–176

123

– Velocity Data changes at a quick rate. If it takes hours

or days to solve a difficult logical entailment problem,

the solution will already be meaningless when it arrives.

– Variety The heterogeneity in data formats and schemas

requires a significant amount of data integration. This is

exactly the problem that OBQA addresses, but the

practical requirements towards the expressivity and

size of the ontology are significant.

These challenges are keeping both researchers and practi-

tioners busy in the search of more adequate ontology lan-

guages, better algorithms, and more efficient

implementations. Indeed, the work on OBQA approaches

spans a wide spectrum from theory to practice. Applied

activities, such as the EU IP Optique [9], are bringing recent

research results to bear in industrial applications, whereas

foundational works continue to explore theoretical proper-

ties of ontology and query languages (e.g., [3, 5, 17]).

1.3 Three Ways of OBQA

The goal of this paper is to give an overview of basic

methods and recent advances in OBQA. The problem as

such has a long history in computer science. From the

viewpoint of traditional database technologies, OBQA

corresponds to query answering over a view on the data-

base that is defined by an ontology. The classical technique

for solving this problem is materialisation, where views

like the one shown in Table 2 are precomputed [11].

With the more recent interest in OBQA, an alternative

approach became popular, where the user query is expan-

ded at query time to find additional, inferred results. This

method of query rewriting takes advantage of existing

database technology for query answering, but may incur a

significant communication overhead as many queries need

to be answered. Some works have further combined query

rewriting with materialisation to support more expressive

ontology languages.

Finally, a most recent addition to the list of OBQA

approaches targets Semantic Web databases that support

the RDF query language SPARQL 1.1. Such queries are

more powerful than traditional SELECT-PROJECT-JOIN

queries in databases, and they can be used to ‘‘implement’’

some forms of logical reasoning entirely in queries.

We now have a closer look at each of these methods,

discuss their respective advantages and disadvantages, and

give an outlook on future developments in this field.

2 Materialisation

The most direct approach of realising OBQA is to com-

pute and store the required inferences, in our case the

additional triples shown in Table 2. This computation can

be performed by an iterated and exhaustive application of

the deduction rules of an appropriate calculus like the one

displayed in Table 1. Its result corresponds to a materi-

alised view in databases [11]. Once the view is computed,

it can be accessed like a regular database, taking advan-

tage of the usual query answering algorithms and

optimisations.

In its most basic form, materialisation can be imple-

mented as an ETL (extract-transform-load) process, where

the original data remains in its source, and a materialisation

process creates extended data that is then stored in a ded-

icated database management system. This is illustrated in

Fig. 2. A refined version of this approach is to integrate the

original database and the materialised database into one

system that can optimise the computation and view man-

agement process.

Materialisation is the basis of several DBMS that sup-

port ontological reasoning today. Indeed, the W3C’s

lightweight ontology language OWL RL was specifically

created to support efficient materialisation. Example sys-

tems include the RDF stores OntoText GraphDB, Oracle

Spatial and Graph, and RDFox.

The primary challenge for materialisation approaches is

the significant time required to build the view. Depending

on the implementation, it might be necessary to rebuild the

view whenever changes occur, or it might be possible to

perform a partial recomputation. Even in the latter case,

computation may not be fast enough to ensure continuous

view updates in the presence of very frequent changes. On

the other hand, many applications are not faced with such

extreme velocity requirements, and the benefit of fast query

answering after materialisation may outweigh the disad-

vantages in this case.

Another general limitation of materialisation approaches

is that they cannot be applied to all ontology languages.

This is not obvious from our RDFS-based example, which

may suggest that logical reasoning can be viewed as the

result of a finite number of rule applications. Other ontol-

ogy languages, however, can lead to an infinite amount of

derived facts, which cannot be precomputed. This affects

even lightweight ontology languages such as OWL QL and

OWL EL, for which other approaches are needed.

Fig. 2 Ontology-based query answering with materialisation

Künstl Intell (2016) 30:169–176 171

123

3 Query Rewriting

Instead of computing a materialised view, one might also

consider the inferences in OBQA to constitute a virtual

view that is not to be stored. Instead, queries against that

view are extended and reformulated so that they can be

executed directly against the underlying data. Intuitively

speaking, one transforms a query that asks for the inferred

information into many queries that ask for all data that

might cause such inferences to be derived.

This approach is known as query rewriting [13]. It is

illustrated in Fig. 3, which also hints at the fact that the

rewriting of a single query may lead to many queries

against the database. Moreover, it can be seen that the

ontology is used during rewriting, while the data is not

needed at this stage: the rewritten queries work for any

dataset. Query rewriting is closely related to the approach

of backward chaining known in rule-based reasoning and

especially logic programming.2 However, the algorithms

commonly used in OBQA are specific to the ontology

languages used there, which ensures that rewriting always

terminates.

Consider again our running example and the query for

all legal persons. Considering the ontology of the example,

it is clear that there are several possible cases in which an

individual is classified as a legal person after performing all

inferences: the individual might already be known as a

legal person in the input, it might be classified as one of the

subclasses of legal person, or it might be in a works-at

relationship that entails it to be in such a subclass. In total,

we therefore obtain the following set of query patterns that

capture all possibilities for ?x to be a legal person:

?x rdf:type ex:Employee .
?x rdf:type ex:Person .
?x rdf:type ex:University .
?x rdf:type ex:Employer .
?x rdf:type ex:LegalPerson .
?x ex:worksAt ?y .
?y ex:worksAt ?x .

To answer the original query, one would now have to

answer all of these queries against the input database, and

then merge the results (i.e., eliminate duplicates3). As

usual, this may require significant additional resources

depending on the results’ size.

Query rewriting in this sense is the most popular

approach to OBQA for the lightweight ontology language

OWL QL [7]. In many such applications, a traditional

relational DBMS is used together with mapping rules that

transform relational data to RDF. The query rewriting takes

both the ontology and these mapping rules into account to

produce SELECT-PROJECT-JOIN queries, which are

expressed in SQL to be answered by the DBMS. This

strategy is also known as ontology-based data access

(OBDA), especially when integrating information from

several legacy DBMS. Systems that support OBDA in this

sense include Ontop and Mastro. Other systems integrate

query rewriting with RDF stores within a single product;

examples include Complexible Stardog and OpenLink

Virtuoso.

The main advantage of query rewriting is that it avoids

materialisation, and thus does not have to deal with the

latency of view maintenance. Another possible advantage

is that the approach is more easily deployed with legacy

data sources since it suffices to access the database through

a query interface.

The key problem of query rewriting is that the size and

number of rewritten queries may be huge: exponentially

many exponentially large queries are possible in the worst

case [13]. Even if queries are mostly very simple, the

execution of exponentially many queries over a legacy

database interface is putting significant strain on the com-

munication channel. In addition, the rewritten queries may

not be the type of load that a (relational) DBMS has been

optimised for, and manual optimisation is difficult to inject

into the process. This indicates that query rewriting might

be more promising when closely integrated with the actual

query engine, as done in Stardog and Virtuoso. The use of

query rewriting systems on top of legacy DBMS, in con-

trast, requires significant optimisation.

4 Schema-Agnostic Query Rewriting

Traditional query rewriting approaches are based on con-

junctive queries, which correspond to SELECT-PROJECT-

JOIN queries in SQL, and their unions, as a kind of min-

imal interface that is supported by any DBMS. In practice,

Fig. 3 Ontology-based query answering with query rewriting

2 In this terminology, materialisation would correspond to forward

chaining.

3 Like always in OBQA, queries are evaluated under set semantics,

i.e., results cannot contain duplicates. The semantics of ontological

reasoning under bag (multiset) semantics is not usually considered,

and would most likely be hard or impossible to implement in many

cases.

172 Künstl Intell (2016) 30:169–176

123

however, many DBMS feature much more powerful query

languages, and a recent line of research has asked if these

could be exploited for OBQA [4].

For example, the SPARQL 1.1 query language for RDF

includes powerful features such as filters, property path

expressions, and inline data (VALUES). Especially prop-

erty paths are very interesting since they introduce a simple

form of recursion into the query language. The idea is

simple: instead of using an RDF property as the predicate

in a triple pattern, one might specify a regular expression

over RDF properties. To answer such queries, the DBMS

will perform a graph traversal along paths that match the

given regular expression. For example, the query

?x (ex:hasMother | ex:hasFather)+ ?y .

finds all pairs of individuals ?x and ?y such that ?y is

an ancestor of ?x. Here, | specifies alternative options

(disjunction) and ? specifies that a pattern may repeat once

or more along a path.

The key for exploiting this capability for OBQA is the

observation that such queries can be used to navigate not

only the data, but also the ontology itself. Indeed, as shown

in our examples, ontologies in RDFS and OWL can be

serialised as sets of triples, which can also be queried when

stored in an RDF database. A graphical representation of

both ontology and data in our running example is shown in

Fig. 5. For example, the following query retrieves all

subclasses of legal person:

?a rdfs:subClassOf* ex:LegalPerson .

This observation can be extended to another approach to

OBQA, which has been called schema-agnostic query

rewriting [4]. Indeed, if the ontology is treated as part of

the database, then the query rewriting does not depend on

this schema-level information as it did in traditional query

rewriting. The resulting workflow is illustrated in Fig. 4. A

notable difference to traditional query rewriting is that the

rewriting is only of polynomial size, so that it can be

conveniently expressed in a single query.4

Returning to our running example that asks for all legal

persons, we can see that a few more ontological features

need to be taken into account. We can use the above

scheme to find subclasses ?a of ex:LegalPerson, but

there are several possible reasons for why an individual ?x

might be an instance of ?a. The following schema-agnostic

rewriting uses the UNION operator of SPARQL to express

disjunctions of the three relevant cases:

?a rdfs:subClassOf* ex:LegalPerson .
{

{ ?x rdf:type ?a . } UNION
{ ?x ?y ?z .

?y rdfs:domain ?a . } UNION
{ ?z ?y ?x .

?y rdfs:range ?a . }
}

Figure 6 sketches some possible matches of this query

in the graph of Fig. 5. The two upper matches show that

Markus and Sebastian are legal persons, while the three

lower matches are three different ways of showing that TU

Dresden is. It should be noted that this rewriting is specific

to the selection of RDFS features that we have used in our

example. Additional features, such as rdfs:subProp-

ertyOf, could be taken into account, but this would lead

to a larger query.

The immediate advantage of schema-agnostic query

rewriting is that it avoids the exponential blow-up in

queries that is inherent to traditional query rewriting. It also

shares the advantage of eliminating the need for prior

materialisation. An additional benefit is that it allows us to

perform OBQA against arbitrary SPARQL query services,

Fig. 4 Ontology-based query answering with schema-agnostic query

rewriting

ex:markus ex:sebastian

ex:Employerex:Employee

ex:LegalPerson

rdfs:subClassOf

ex:worksAt rdf:type

ex:Universityrdfs:domain rdfs:range

ex:tu-dresden

Fig. 5 RDF graph representation of running example; arrows connect

triple subjects to objects; dotted lines connect predicates to triples

4 Using unions of queries, one could also express the rewritten

queries in traditional query rewriting as a single query, but this query

would be exponentially large. Issuing many small queries is less

likely to overwhelm the DBMS, and is therefore preferable in this

case.

Künstl Intell (2016) 30:169–176 173

123

even if these were not intended to support ontological

reasoning.

In spite of these encouraging results, the practicability of

schema-agnostic query rewriting largely depends on the

features of the ontology and user query language. The more

features an ontology language provides, the more cases

have to be covered in the rewriting, and the more chal-

lenging it is for RDF stores to execute the query efficiently.

Moreover, queries are becoming significantly more com-

plex when allowing for query variables that match ‘‘gen-

erated’’ individuals, i.e., individuals that are not mentioned

explicitly in the database but which can be inferred to exist

in ontology languages like OWL QL. SPARQL cannot

express such queries, but they are frequently studied in

OBQA. Bischoff et al. have described schema-agnostic

rewriting techniques for such queries and all of OWL QL

[4]. While the rewritings remains polynomial, the queries

tend to be very long (too long to show here) and they

require the use of additional SPARQL 1.1 features.

It is too early to predict the impact of schema-agnostic

rewriting in practical systems. However, as the imple-

mentation of SPARQL 1.1 requires efficient graph traver-

sal to be supported in RDF stores, it seems natural to

exploit this capability at least partially to implement rea-

soning. If integrated tightly into a system, this may not take

the form of query rewriting, but might instead issue direct

calls to the relevant physical graph traversal operations

during query answering.

5 Beyond RDFS

RDFS is typically considered a ‘‘lightweight’’ ontology

language with limited expressiveness. More expressive

Semantic Web ontology formalisms exist, among which

the Web Ontology Language OWL with its tractable frag-

ments OWL QL, OWL EL and OWL RL is the most

prominent example. More recently, existential rules ([2, 6],

also known as tuple-generating dependencies or Datalog±)

have gained interest as an alternative ontological

formalism. Existential rules are based on Datalog, but

extend it with the capability of value invention where the

existence of a new individual can be inferred from a given

situation. This ability of ‘‘generating’’ new individuals

during reasoning is also a common feature in OWL and

many of its sublanguages.

While each of the three practical query answering

strategies that we have discussed so far is applicable to

RDFS, this is no longer the case when considering more

expressive fragments of OWL or existential rules. Beyond

mere performance considerations, this also explains why

such a variety of techniques has been developed.

Materialisation is only applicable if the ontology spec-

ifies deterministic ways of extending the given data, such

that a unique database is obtained after materialisation.

Logically, this property is characterised by the existence of

a so-called least model, which can then be used for query

answering. Intuitively, a materialised database corresponds

to this least model. Ontology languages with this property

disallow the free use of negation and disjunction, and

therefore fall in the class of Horn logics. Existential rules

and each of the previously mentioned tractable fragments

of OWL satisfy this property, but OWL itself does not.

In addition, ‘‘Hornness’’ alone is not sufficient for being

able to materialise a database, since the least model might

be infinite. This behaviour may be caused by value

invention in OWL and existential rules, which might lead

to non-termination when attempting to exhaustively apply

deduction rules in a forward-chaining way. This forward-

chaining materialisation is known as the chase in databases

and existential rules, and an important practical question

therefore is whether the chase will terminate in spite of

value invention. Sets of existential rules where this is the

case have been termed finite extension sets [2]. Unfortu-

nately, chase termination is undecidable in general, but

many sufficient criteria have been proposed for detecting

this situation in practice, and it could be shown that these

criteria are indeed applicable to many existing OWL

ontologies [8]. Finally, even if the least model is infinite, it

might still be sufficiently well-behaved to admit a finite

representation that can be used for query answering [19].

The second major OBQA technique, query rewriting, is

also applicable only to some ontology languages. Again,

termination needs to be guaranteed, this time of the back-

ward-chaining query rewriting procedure. With the com-

mon choice of unions of SELECT-PROJECT-JOIN queries

as target query formalism, only lightweight ontology lan-

guages are eligible.5 Among the OWL dialects, only

OWL QL qualifies for this method. In the existential rules

Fig. 6 Matches of the schema-agnostic rewriting of the example

query in the graph of Fig. 5

5 More precisely, this approach can only be employed for formalisms

where the data complexity of OBQA is in the complexity class AC
0,

and hence strictly below logarithmic space.

174 Künstl Intell (2016) 30:169–176

123

world, rule sets where backward-chaining terminates are

known as finite unification sets [2]. The most prominent

representative of this class is linear Datalog±, which sig-

nificantly generalises OWL QL [6].

The applicability of schema-agnostic query rewriting

relies on the expressivity of the target query formalisms.

Complexity-theoretic considerations can be helpful to find

out which query language is needed for which ontology

language: evaluating a given query over an ontology and

data cannot be more complex than evaluating the schema-

agnostic rewriting of that query over a plain database.

SPARQL 1.1 queries can be evaluated in NLOGSPACE

complexity with respect to the size of the database, which

agrees with the complexity of evaluating conjunctive

queries in OWL QL with respect to the size of the ontology

and data [1]. On the other hand, the respective complexity

of OBQA is harder than NLOGSPACE for OWL EL and

OWL RL, and certainly for OWL as a whole. OWL RL

(PTIME) can be covered by using Datalog queries as target

language of the rewriting, while OWL EL (having PSPACE

complexity [18]) would require an even more expressive

query formalism. There have been approaches similar to

schema-agnostic rewriting for existential rules [10] in the

sense that auxiliary information about the ontology are

stored in the database and exploited for the subsequent

querying. The details are different since, unlike OWL,

existential rules do not come with an RDF-based encoding.

6 The Future of Semantic Data Management

The current uptake of and emerging trends in OBQA

indicate that it will be the focus of research and develop-

ment activities for many years to come.

Current developments in databases are increasing the

need for these technologies, and at the same time are

helping to bring them into practice. Graph databases—not

just for RDF but for graph-shaped data in general—are a

major technology trend that is rapidly gaining traction in

industry. Viewing datasets as graphs advocates the use of

lightweight, flexible schemas that can accommodate

heterogeneous datasets, which reinforces the need for

technologies that can overcome the greater variety that

ensues. On the other hand, a key feature of graph databases

is their capacity of exploring the graph, based on some

form of recursive queries. As illustrated in the initial works

on schema-agnostic query rewriting, this feature can be

beneficial for implementing reasoning services.

Another major trend are in-memory databases that keep

most of the database in working memory in order to speed

up computation. Persistence can still be provided by sec-

ondary storage, but runtime operations are largely decou-

pled from traditional database concerns that arise from the

use of spinning disks. Such systems improve performance

in areas that are most critical for systems that require

logical inferencing: fast random access to data is important

for recursive queries and recursive reasoning procedures

alike; fast writing and indexing is useful for forward-

chaining materialisation that may add large amounts of

entailments. A pioneering in-memory store for rule-based

reasoning on RDF is RDFox [14].

In addition to these general developments in databases,

there are a number of important research trends in OBQA.

Performance improvements and new algorithms bring

applications into reach where one has to cope with rapidly

changing data, such as data streams originating from sensor

networks, social networks or other monitoring applications.

By taking ontological data into account, more intelligent

stream processing (also referred to as stream reasoning)

becomes possible. The representation of time in ontologies

and queries remains an important open research problem in

this context.

Another promising direction of research is the explo-

ration of new optimisation methods that perform well in

practical scenarios. One interesting direction there is to

take advantage of available background knowledge that is

not used for inferring new entailments (like the ontology in

OBQA) but that defines constraints that the database must

satisfy. The knowledge that certain conditions are always

true for the data can be used to reduce the search space of

reasoning problems, e.g., by eliminating some queries in

query rewriting [15]. Some such techniques are already

used in the OBQA system ontop.

Optimisation can also be promising on the DBMS side.

Query rewriting and schema-agnostic query rewriting both

generate database queries algorithmically, and these quer-

ies may not be typical for traditional database applications.

As OBQA applications are gaining importance, it is

promising to enable DBMS to cope with this new kind of

load. This requires close cooperation between researchers

in semantic technologies and in databases. An example

endeavour of this type is part of the work in Collaborative

Research Centre HAEC,6 where in-memory graph data-

bases are developed alongside OBQA approaches.

Another area of active research that has already been

hinted at in the previous section is the continued search for

more appropriate ontology languages and according rea-

soning methods. Careful language design is essential to

find the right trade-off between expressivity and com-

plexity (or practical utility). Besides the evaluation of

queries for such languages, the static analysis of queries

bears a range of challenging theoretical and practical

problems. For example, many results have recently been

6 DFG Sonderforschungsbereich 912: Highly Adaptive Energy-

Efficient Computing.

Künstl Intell (2016) 30:169–176 175

123

obtained regarding query containment in highly expressive

query languages [3, 5, 17].

This illustrates the breadth of exciting research prob-

lems, ranging from theory to practice, that can be found in

the field of ontology-based query answering. Yet this is

merely a sample of the wealth of ongoing activities that are

advancing the field at a rapid pace. Many other topics are

currently under investigation, and ontology-based tech-

nologies will surely play their role in the future of data

management.

Acknowledgments This work has been supported by the DFG in

project DIAMOND (Emmy Noether Grant KR 4381/1-1) and in

project HAEC (DFG SFB 912), which is part of the cfAED Cluster of

Excellence. We thank the anonymous reviewers for their comments,

which helped to improve the paper.

References

1. Artale A, Calvanese D, Kontchakov R, Zakharyaschev M (2009)

The DL-Lite family and relations. J Artif Intell Res 36:1–69

2. Baget JF, Leclère M, Mugnier ML, Salvat E (2011) On rules with

existential variables: walking the decidability line. Artif Intell

175(9–10):1620–1654

3. Bienvenu M, Ten Cate B, Lutz C, Wolter F (2014) Ontology-

based data access: a study through disjunctive datalog, CSP, and

MMSNP. In: Hull and Fan [12], pp 213–224

4. Bischoff S, Krötzsch M, Polleres A, Rudolph S (2014) Schema-

agnostic query rewriting for SPARQL 1.1. In: Mika P, Tudorache

T, Bernstein A, Welty C, Knoblock CA, Vrandečić D, Groth PT,

Noy NF, Janowicz K, Goble CA (eds) Proceedings of the 13th

International Semantic Web Conference (ISWC’14), LNCS, vol

8796, pp 584–600. Springer, New York

5. Bourhis P, Krötzsch M, Rudolph S (2015) Reasonable highly

expressive query languages. In: Yang Q, Wooldridge M (eds)

Proceedings of the 24th International Joint Conference on Arti-

ficial Intelligence (IJCAI’15), pp 2826-2832. AAAI Press

6. Calı̀ A, Gottlob G, Lukasiewicz T (2012) A general datalog-based

framework for tractable query answering over ontologies. J Web

Semant 14:57–83

7. Calvanese D, Giacomo GD, Lembo D, Lenzerini M, Rosati R (2007)

Tractable reasoning and efficient query answering in description

logics: the DL-Lite family. J Autom Reason 39(3):385–429

8. Cuenca Grau B, Horrocks I, Krötzsch M, Kupke C, Magka D,

Motik B, Wang Z (2013) Acyclicity notions for existential rules

and their application to query answering in ontologies. J Artif Int

Res 47:741–808

9. Giese M, Calvanese D, Haase P, Horrocks I, Ioannidis Y, Kllapi

H, Koubarakis M, Lenzerini M, Möller R, Rodriguez-Muro M,

Özcep Ö, Rosati R, Schlatte R, Schmidt M, Soylu A, Waaler A

(2013) Scalable end-user access to big data. In: Akerkar R (ed)

Big data computing. CRC Press

10. Gottlob G, Kikot S, Kontchakov R, Podolskii VV, Schwentick T,

Zakharyaschev M (2014) The price of query rewriting in ontol-

ogy-based data access. Artif Intell 213:42–59

11. Gupta A, Mumick IS (eds) (1999) Materialized views: techniques,

implementations, and applications. MIT Press, Cambridge

12. Hull R, Fan W (eds) (2013) Proceedings of 32nd Symposium on

Principles of Database Systems (PODS’13). ACM

13. Kontchakov R, Zakharyaschev M (2014) An introduction to

description logics and query rewriting. In: Koubarakis M, Stamou

GB, Stoilos G, Horrocks I, Kolaitis PG, Lausen G, Weikum G

(eds) Reasoning web. In: Reasoning on the Web in the Big Data

Era—10th International Summer School, LNCS, vol 8714,

pp 195–244. Springer, New York

14. Motik B, Nenov Y, Piro R, Horrocks I, Olteanu D (2014) Parallel

materialisation of datalog programs in centralised, main-memory

RDF systems. In: Brodley CE, Stone P (eds) Proceedings of 28th

AAAI Conference on Artificial Intelligence (AAAI’14),

pp 129–137. AAAI Press

15. Rodriguez-Muro M, Kontchakov R, Zakharyaschev M (2013)

Query rewriting and optimisation with database dependencies in

ontop. In: Eiter T, Glimm B, Kazakov Y, Krötzsch M (eds)

Informal proceedings of 26th international workshop on

description logics (DL’13), CEUR workshop proceedings, vol

1014, pp 917–929. CEUR-WS.org

16. Rudolph S, Glimm B (2010) Nominals, inverses, counting, and

conjunctive queries or: why infinity is your friend! J Artif Intell

Res 39:429–481

17. Rudolph S, Krötzsch M (2013) Flag & check: data access with

monadically defined queries. In: Hull and Fan [12], pp 151–162

18. Stefanoni G, Motik B, Krötzsch M, Rudolph S (2014) The

complexity of answering conjunctive and navigational queries

over OWL 2 EL knowledge bases. J Artif Intell Res 51:645–705

19. Thomazo M, Baget JF, Mugnier ML, Rudolph S (2012) A generic

querying algorithm for greedy sets of existential rules. In: Brewka

G, Eiter T, McIlraith SA (eds) Proceedings of 13th international

conference on principles of knowledge representation and rea-

soning (KR’12), pp 96–106. AAAI Press

Markus Krötzsch is an Emmy

Noether Research Group Leader

at the Computer Science Faculty

of TU Dresden. Before that, he

got his PhD at the Karlsruhe

Institute of Technology in 2010,

and worked at the University of

Oxford until 2013. His research

has contributed to the fields of

lightweight and rule-based

ontology languages, query

answering, and data manage-

ment and integration.

Notable projects of his include

Wikipedia’s knowledge base

Wikidata, the content management system Semantic MediaWiki, and

the ontology reasoner ELK.

Sebastian Rudolph is a full

professor for computational

logic at TU Dresden, Germany.

Before, he worked in the

knowledge management group

at the Karlsruhe Institute of

Technology. He obtained his

PhD in mathematics at the

Institute for Algebra at TU

Dresden in 2006. His active

research interests include logic-

based knowledge representa-

tion, algebra, complexity the-

ory, database theory, and

computational linguistics. He

serves on the editorial boards of the Journal of Web Semantics and the

Journal on Data Semantics and is a member of the steering committee

of several conferences.

176 Künstl Intell (2016) 30:169–176

123

	Is Your Database System a Semantic Web Reasoner?
	Abstract
	Introduction
	OBQA by Example
	From Vision to Reality
	Three Ways of OBQA

	Materialisation
	Query Rewriting
	Schema-Agnostic Query Rewriting
	Beyond RDFS
	The Future of Semantic Data Management
	Acknowledgments
	References

