
DOCTORAL AND POSTDOCTORAL DISSERTATIONS

Towards Next Generation Sequential and Parallel SAT Solvers

Norbert Manthey1

Published online: 14 October 2015

� Springer-Verlag Berlin Heidelberg 2015

Keywords SAT solving � Parallel search � Formula

simplification � Formula rewriting

1 Introduction

Satisfiability testing (SAT) is used to solve many academic

and industrial problems from the complexity class NP, for
example hardware verification or scheduling [1]. The

described dissertation [4] focuses on improving the SAT

solving technology, such that tools that build on SAT

solvers are improved automatically as well. The improve-

ments focus on two major subjects: sequential SAT solving

and parallel SAT solving. However, to allow also formal

reasoning on the soundness of the presented SAT tech-

niques, a theoretical foundation has been built as well.

Hence, the thesis covers a broad range from theory and

soundness proofs over abstract reduction systems and

algorithm to parallel algorithms. New approaches and

approaches from the literature have been implemented and

have been evaluated. The probably most useful presented

technique is bounded variable addition, which allows to

automatically rewrite an existing CNF formula into a

smaller formula by introducing auxiliary variables. The

implemented solvers participated in international SAT

competitions, and the first versions have been implemented

from scratch. From the year 2012 on, the search engine was

replaced by the MINISAT solver. The parallel solver PCASSO

showed a good performance in 2013 and 2014. The

sequential SAT solver RISS in combination with the for-

mula simplification tool COPROCESSOR won several first,

second and third prices, including two Kurt-Gödel-Medals.

These results show, among other contributions of the the-

sis, that the research summarized in the thesis improved the

state of the art in modern SAT solving.

2 Sequential SAT Solving

This part of the thesis analyses sequential SAT solving

techniques ranging from reencoding the formula over

simplification methods to search algorithms and search

extensions. Solving the SAT problem is to answer whether

there exists a satisfying interpretation for a given propo-

sitional formula, where implemented systems accept only

formulas in conjunctive normal form (CNF). The consid-

ered algorithms, which nowadays are based on the conflict

driven clause learning (CDCL) algorithm, also show if a

given formula is unsatisfiable.

As SAT solvers construct partial models, an extension to

classical logic is proposed, that allows to work with partial

interpretations. Next, the abstract reduction system GENERIC

CDCL has been introduced [2] for a formal analysis of new

solving methods. The system is based on a solver state,

which is formed by a tuple of the current formula and the

interpretation. Then, eight rules are specified that allow to

modify the state. These rules include termination rules like

SAT and UNSAT, as well as rules for decisions and

inference for controlling search, unit propagation and other

inferences, as well as formula transformations for formula

simplification techniques. With this system a modern SAT

solver can be modeled, and properties like soundness can

be shown in the abstract reduction system. Based on this

reduction system many proposed solving techniques from

& Norbert Manthey

norbert.manthey@tu-dresden.de

1 Knowledge Representation and Reasoning Group,

Technische Universität Dresden, 01062 Dresden, Germany

123

Künstl Intell (2016) 30:339–342

DOI 10.1007/s13218-015-0406-8

http://crossmark.crossref.org/dialog/?doi=10.1007/s13218-015-0406-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s13218-015-0406-8&domain=pdf

the literature presented and a way how to model these

techniques with GENERIC CDCL was shown. All techniques

that can be modeled automatically inherit the properties of

GENERIC CDCL, most importantly being sound. The tech-

niques have been implemented into the SAT solver RISS

and are evaluated.

Figure 1 presents the work flow for solving a problem

with a SAT solver. Besides the steps preprocessing and

search, modern systems furthermore interleave formula

simplification with search, as during search additional

knowledge is acquired that allows further simplifications.

With the work of this thesis, another step is added as well:

the formula can be rewritten by the formula simplification

tool. The runtime distribution of the three parts in the SAT

solving workflow shows that improvements in the search

will lead to the most significant effect. Still, formula sim-

plification techniques are crucial to the overall system, as

they for example allow to reduce the formula size

significantly.

Therefore, the formulas simplifier COPROCESSOR has been

implemented [3]. Furthermore, the implemented formula

simplification techniques from the literature are presented,

and a way how to model them with GENERIC CDCL has

been demonstrated. The implementation of some of these

techniques has been adapted to work only on a subset of the

variables of the formula, so that the simplifier can also be

used for formula transformations [7], or for model count-

ing or model enumeration of models for a subset of the

variables of the formula. During the work of this thesis two

formula simplification techniques have been proposed,

namely bounded variable addition (BVA) [5] and cov-

ered literal elimination.1 With BVA, many formulas that

resulted from naive CNF encodings can be automatically

reencoded into formulas that lead to an improved perfor-

mance of the SAT solver, with an size reduction of up to

factor 10 and a runtime improvement of up to factor 36 [5].

This especially includes the widely used at-most-one con-

straints over a set of variables, that is used to encode high

level constraints into CNF, for example the domain of a

constraint variable based on a set of Boolean variables M.

The naive CNF formula has a quadratic size in M, more

precisely
jMjðjMj�1Þ

2
clauses are produced. After applying

BVA to this encoding, the reduced formula contains only

3jMj � 6 clauses. As for application formulas the number

of clauses usually has a higher influence on the perfor-

mance of modern SAT solvers, BVA turned out to be very

powerful.

Furthermore, the cardinality constraint recognition for

the Fourier–Motzkin simplification technique has been

improved. Without the detection, the Fourier–Motzkin

method is ineffective on CNF formulas. With these addi-

tional techniques, RISS can solve more unsatisfiable for-

mulas from the used benchmark than the state-of-the-art

SAT solvers GLUCOSE or LINGELING.

During introducing the search algorithms three exten-

sions have been proposed: Local Look-Ahead, Local

Probing and All Unique Implication Point Learning. All

three techniques aim at finding implied unit clauses during

search, either by using look-ahead with up to five decision

literals, by performing probing with each learned clause, or

by trying to learn multiple unit clauses from a single

conflict. With all extensions enabled, RISS is improved over

its default configuration—instead of 2510 the new config-

uration can solve 2521 instances of the benchmark with

3886 problems. The resulting configuration of RISS can

solve as many formulas as GLUCOSE, but more unsatisfiable

formulas.

3 Parallel SAT Solving

Due to the increasing number of cores in CPUs, parallel

solving approaches for the SAT problem have been

investigated in this thesis. After giving a detailed overview

on related work, the thesis discusses both low-level paral-

lelization approaches and high-level approaches, and

evaluated the proposed improvements.

3.1 Parallel Approaches: Ideas and Weaknesses

A contribution is that for each proposed techniques in the

literature weaknesses have been pointed out and that ideas

that led to improvements have been emphasized. Where for

sequential SAT solvers clause learning and formula sim-

plification is very important, parallel SAT solvers benefit

especially from sharing the learned clauses. Hence, the

compatibility of clause sharing and formula simplification

in parallel SAT solvers also has been analyzed [6]. Sound

combinations of simplification and sharing have been

explained and a novel combination was proposed. This

work received the best paper award of the SAT conference

2013.

3.2 Low-Level Parallel Search

Next, the thesis presents low-level parallelizations for SAT

solving techniques. Parallel solving approaches can be

divided into high-level parallelization and low-level par-

allelization. Although not presented in much detail, the

parallelization of unit propagation has been investigated

with the result that this low-level parallelization does not

scale beyond two workers.

1 Covered literal elimination has been invented independently also

by Marijn Heule.

340 Künstl Intell (2016) 30:339–342

123

As a low level parallelization of the CDCL algorithm is

not promising, we focussed on formula simplification

techniques. A parallel algorithm for the most powerful

formula simplification techniques subsumption,

strengthening and variable elimination have been pre-

sented. The evaluation showed that especially on large

formulas the simplification time improves for the parallel

variants. The implementation of these algorithms is scal-

able on the hardware that has been used for the benchmarks

and achieved almost linear speedups.

3.3 Scalable Parallel Search

High-level parallelizations can be divided into search space

partitioning solvers and parallel portfolio solvers that run

multiple configurations in parallel. Since portfolio solvers

are known to scale with the number of configurations, the

thesis presents the parallel and more scalable SAT solving

approach iterative partitioning for the multi-core architec-

ture. The multi-core implementation has been adapted from

a grid implementation. Along the thesis, modifications and

extensions are proposed, which increase the performance

of the resulting parallel solver—from 771 instances in the

benchmark, the basic version solves 636 instances and the

final configuration solves 656 instances. The most impor-

tant extensions are as follows. The first extension is clause

sharing, more precisely clause sharing based on partition

tree level based clause tagging. Here each learnt clause

memorizes its dependencies, by storing the level of the

partition tree it depends on, such that sound clause sharing

is possible. Clauses are then only shared in the subtree they

depend on. Furthermore, the search space partitioning was

first based on a short sequential search of a SAT solver, and

a procedure called scattering. The best combination is to

partition the search space with the look-ahead procedure

and the scattering approach. Finally, the partition tree level

of the clauses can also be used to abort search in redundant

search space partitions once some solver found an unsat-

isfiable search space partition. If a subtree is found to be

unsatisfiable, all solvers in this subtree can be aborted.

The resulting parallel SAT solver PCASSO has been

compared to state-of-the-art SAT solvers, and their scala-

bility has been evaluated when moving from 8 cores to 16

cores. The number of solvable formulas from PCASSO is

very competitive to other parallel SAT solvers like PLIN-

GELING or PENELOPE. However, the iterative partitioning

solving approach of PCASSO turns out to be the most scal-

able parallel SAT solving routine.

4 Conclusion

From the findings in the thesis a few conclusions can be

drawn: since there is currently no known approach to

parallelize the sequential SAT algorithm, high-level par-

allelizations are the only possible way to exploit modern

parallel hardware. While the portfolio approach is a simple

way to obtain a robust parallel solving procedure, search

space partitioning results in a better scalability. An

important fact is that improvements to the sequential

algorithm can be easily added to the parallel procedure.

Since parallelization is not believed to result in superlinear

speedups in average, the sequential solving algorithm

should remain in the research scope so that parallel SAT

solvers are improved by developments on both the parallel

and the sequential part. The thesis contributed to both

fields, sequential and parallel SAT solving and presented

algorithms that when being added to modern systems result

in improved state-of-the-art SAT solvers.

Due to the missing understanding of the reason why

modern CDCL SAT solvers are so powerful, this thesis

contributes more to the engineering side of SAT solving by

introducing an appropriate extension to classical proposi-

tional logic and an abstract reduction system. Then, exten-

sions of sequential search are introduced and additional

prototypical formula simplification techniques are pre-

sented, which already boost the reasoning power of current

CDCL solvers. Finally, a scalable parallel solving approach

is ported to themulti-core architecture and has been extended

to increase its performance. All these novelties do not

Fig. 1 Tool chain of modern SAT solver with a run time distribution

Künstl Intell (2016) 30:339–342 341

123

consider studying the reasoning power of the CDCL solvers,

and neither try to improve the underlying reasoning systems.

The presented simplification techniques bounded variable

addition and the cardinality extraction for the Fourier–

Motzkin method are only two steps into this direction.

From an applied point of view, the most interesting

contribution of the thesis might be bounded variable

addition, which rewrites inefficient CNF encodings with

respect to formula size into more sophisticated encodings.

Hence, naively encoded CNF formulas can be rewritten

with the help of the simplifier COPROCESSOR.

To obtain a next generation SAT solver, the underlying

reasoning system should become stronger than the cur-

rently used resolution system, which is only loosely linked

with more powerful reasoning systems in a few systems.

However, such a next generation SAT solver cannot

compete with current state-of-the-art solvers if the engi-

neering that leads to the implemented system is not per-

formed well. Hence, both theory and engineering have to

work closely together in future research to enter the next

generation of SAT solving.

References

1. Biere A, Heule MJH, van Maaren H, Walsh T (eds) Handbook of

satisfiability, Frontiers in artificial intelligence and applications,

vol 185. IOS Press (2009)

2. Hölldobler S, Manthey N, Philipp T, Steinke P (2014) Generic

CDCL—A formalization of modern propositional satisfiability

solvers. In: Berre DL (ed) POS-14, EPiC Series, vol 27,

pp 89–102. EasyChair

3. Manthey N (2012) Coprocessor 2.0—A flexible CNF simplifier.

In: Cimatti A, Sebastiani R (eds) Theory and Applications of

Satisfiability Testing—SAT 2012, Lecture Notes in Computer

Science, vol 7317, pp 436–441. Springer Berlin Heidelberg (2012).

doi:10.1007/978-3-642-31612-8_34

4. Manthey N (2014) Towards next generation sequential and parallel

SAT solvers. Ph.D. thesis, Technische Universität Dresden. http://

nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-158672

5. Manthey N, Heule MJH, Biere A (2013) Automated reencoding of

Boolean formulas. In: Biere A, Nahir A, Vos T (eds) Hardware and

software: verification and testing, Lecture Notes in Computer

Science, vol 7857, pp 102–117. Springer Berlin Heidelberg (2013).

doi:10.1007/978-3-642-39611-3_14

6. Manthey N, Philipp T, Wernhard C (2013) Soundness of

inprocessing in clause sharing SAT solvers. In: Järvisalo M, Van

Gelder A (eds) Theory and applications of satisfiability testing—

SAT 2013, Lecture Notes in Computer Science, vol 7962,

pp 22–39. Springer Berlin Heidelberg. doi:10.1007/978-3-642-

39071-5_4

7. Wernhard C (2013) Computing with logic as operator elimination:

The ToyElim system. In: Tompits H, Abreu S, Oetsch J, Pührer J,

Seipel D, Umeda M, Wolf A (eds) Applications of declarative

programming and knowledge management, Lecture Notes in

Computer Science, vol 7773, pp 289–296. Springer Berlin

Heidelberg (2013). doi:10.1007/978-3-642-41524-1_17

Norbert Manthey was born 4th

December in 1986 in Räckel-

witz. He conducted his studies

of computer science at the

Technische Universität Dresden

from 2006 to 2010. In this per-

iod he also visited the NICTA in

Sydney, Australia, for a project

work. After his studies, he

stayed at TU Dresden and did

his doctorate in 2014 under the

supervision of Prof. Steffen

Hölldobler, who is the head of

the Knowledge Representation

and Reasoning group. In 2011

he visited Helsinki and Linz for research stays. The implemented

software systems won several first prices as well as many other Top 3

prices, and hence these systems have also been used for collaboration

with leading research experts of his field.

342 Künstl Intell (2016) 30:339–342

123

http://dx.doi.org/10.1007/978-3-642-31612-8_34
http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-158672
http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-158672
http://dx.doi.org/10.1007/978-3-642-39611-3_14
http://dx.doi.org/10.1007/978-3-642-39071-5_4
http://dx.doi.org/10.1007/978-3-642-39071-5_4
http://dx.doi.org/10.1007/978-3-642-41524-1_17

	Towards Next Generation Sequential and Parallel SAT Solvers
	Introduction
	Sequential SAT Solving
	Parallel SAT Solving
	Parallel Approaches: Ideas and Weaknesses
	Low-Level Parallel Search
	Scalable Parallel Search

	Conclusion
	References

