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Abstract This paper describes the project TRADR: Long-

Term Human-Robot Teaming for Robot Assisted Disaster

Response. Experience shows that any incident serious

enough to require robot involvement will most likely

involve a sequence of sorties over several hours, days and

even months. TRADR focuses on the challenges that thus

arise for the persistence of environment models, multi-

robot action models, and human-robot teaming, in order to

allow incremental capability improvement over the dura-

tion of a mission. TRADR applies a user centric design

approach to disaster response robotics, with use cases

involving the response to a medium to large scale industrial

accident by teams consisting of human rescuers and several

robots (both ground and airborne). This paper describes the

fundamentals of the project: the motivation, objectives and

approach in contrast to related work.

Keywords Disaster response robotics � Persistent

environment models � Persistent multi-robot action

models � Persistent multi-robot collaboration models �
Persistent human-robot teaming � User-centric design

1 Introduction

A real disaster response takes longer than a single sortie

into the area. As witnessed recently for example in Japan

(Fukushima) and in Northern Italy (Emilia Romagna)

deployments can last days, weeks, months, if not years.

TRADR builds on the research and experience of the

NIFTi project [21]. In July 2012 NIFTi assisted in structure

damage assessment in Emilia Romagna, after it was hit by

over 250 seismic events in May–June 2012, causing

widespread damage to an area rich in cultural heritage

(Fig. 1). Together with the Vigili del Fuoco, the Italian

national rescue organisation responsible for disaster

response, NIFTi fielded a human-robot team with a mobileTRADR is an EU-funded Integrated Project in the FP7 ICT

Programme, grant no. 609763, Nov. 2013–Dec. 2017. URL: www.

tradr-project.eu

I. Kruijff-Korbayová (&)
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command post, two unmanned ground vehicles (UGVs),

and two quadcopter unmanned aerial vehicles (UAVs). The

crucial insight from this deployment was the need for

integrated persistent situation awareness [22]. Multiple

robots need to be sent into the area, together (synchronous

operation) or one after another (asynchronous operations).

Different kinds of robots play complementary roles in this

process. They need to build integrated persistent situation

awareness gradually over multiple sorties, to allow the

team to coordinate its efforts (team-level), and learn to best

execute its tasks (task-level).

TRADR addresses the ensuing challenge of making the

experience of a human-robot disaster response team per-

sistent over multiple sorties during a prolonged mission.

We employ proven-in-practice user-centric design meth-

odology (Fig. 2, left), involving tight cooperation with end

users and tight integration of technology. The TRADR use

cases involve response to a medium to large scale industrial

accident by teams consisting of human rescuers and several

ground and airborne robots (Fig. 2, right). The team col-

laborates to explore the environment and gather measure-

ments and physical samples. TRADR’s goal is to enable

the team to gradually develop its understanding of the

disaster area over multiple synchronous and asynchronous

sorties (persistent environment models), to improve team

members’ understanding of how to work in the area (per-

sistent single- and multi-robot action models), and to

improve team-work (persistent human-robot teaming).

TRADR missions will ultimately stretch over several days

in increasingly dynamic environments.

Project Partners The TRADR consortium consists of 12

partners,1 including 3 research institutes: DFKI

(coordinator), Fraunhofer, TNO; 5 universities: ETH,

KTH, CTU, ROMA and TUD; one industry partner:

Ascending Technologies; and 3 end-user organizations,

representatives of the fire-brigades from Germany (Stadt

Dortmund Institut für Feuerwehr und Rettungstechnolo-

gie), Italy (Vigili del Fuoco directed by the Ministero

Dell’interno) and the Netherlands (Gezamenlijke Brandw-

eer). 8 of the partners have already collaborated very

successfully in the NIFTi project.

2 The TRADR Concept

In this section we present the research challenges addressed

in TRADR in more detail and contrast the TRADR

approach with related work.

2.1 Persistent Environment Models

Low-level situation awareness of the TRADR system

requires sensory data from all involved robots registered in

space and time, to keep creating and updating robot centric

representations, and ground them into the world coordinate

frame. The obtained representations are furnished to other

parts of the TRADR system, which maintain higher level

situation awareness. Persistent multi-robot environment

models are grounded in two different aspects: environment

representation and adaptive action.

Regarding environment representation, 3D mapping has

so far essentially been studied for a single robot starting

from an empty map. In TRADR we need to develop new

data structures similar to octrees [42] and multi-resolution

surfel maps [37] but with the added capabilities to integrate

different sensor modalities from different robots, to scale to

arbitrary environment sizes, and to cope with dynamic

Fig. 1 NIFTi deployment in Emilia Romagna. Top: Structural damage on Duomo in Mirandola. Bottom (left-to-right): UGV, UAV and mobile

command post

1 Cf. the authors’ list for full names of the institutes listed here only

by an abbreviation. For more information on the partners, please visit

the project website: www.tradr-project.eu
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obstacles [34]. In order to achieve robust grounding we

fuse all available modalities (Fig. 3).

Regarding adaptive action, impressive demonstrations

of aggressive manoeuvres have shown the capabilities of

UAVs but always in a closed environment with high-pre-

cision external tracking systems [25, 27]. To replicate

these results in field experiments, it is necessary to improve

the performance of current state estimation techniques

relying on vision or laser sensors to complement IMU

measurements [1, 41]. While for UAVs the difficulty lies

often more in control since they are unstable systems,

UGVs research is more focused on path planning. A

plethora of algorithms allow robots on flat ground to find

optimal paths using robot constraints [20, 35] but few

approaches investigate moving in a rough terrain by using

flippers [8, 31] and these are not yet ready for large-scale

or dynamic environments. To this end, we develop algo-

rithms to recognize different terrains in front of the robot

and changing the morphology by adjusting the flippers

(Fig. 5) for smooth traversal (Fig. 4).

2.2 Persistent Models for Acting

Building persistent models for action in TRADR basically

corresponds to the human-robot team learning on the job.

The models for acting will obviously rely heavily on the

world models described above, but also learn from expe-

riences generated in human-robot interaction on different

autonomy levels.

Consider the following example. A UGV is sent to

explore a given part of a building and retrieve some sam-

ples. It starts off in fully autonomous mode and success-

fully passes some difficult terrain and obstacles. Then it

comes to an even more difficult area that is judged to be

beyond its current capabilities. It stops and requests human

support on a lower autonomy level. The human then guides

Fig. 2 Left: TRADR one-year-

round development cycle.

Right: TRADR UGV and UAV

Fig. 3 Data fusion for grounding robot and maps. Figure from [23]

Künstl Intell (2015) 29:193–201 195

123



the UGV across the terrain in an intelligent teleoperation

mode. The choices made by the human during the traversal

are stored and made accessible to the system. The path

chosen by the human will be a preferred option in the next

autonomous traversal attempt. Similarly, when a door

needs to be opened or a sample of a possibly toxic liquid

needs to be collected, the autonomous mode can request

help by a human and then learn from that experience.

To achieve the above, we build upon state of the art

approaches such as the intelligent teleoperation described

in [30], the Click and Grab functionality of [2], the aug-

mented virtual reality interface of [3], and the flipper

position control of [31]. But the ambition of learning action

models on the job on a team level goes beyond those

approaches. Also the ambition of developing these persis-

tent models will influence the design of the algorithms,

leading to new results across all autonomy levels.

2.3 Persistent Models for Multi-Robot Collaboration

Multi-robot collaboration presupposes intention to collab-

orate, awareness of roles, partial knowledge, distinct

beliefs, desires, capabilities and goals [4, 5, 11, 15, 29, 39].

Although significant research results have been achieved in

the last thirty years, the concept of persistent collaboration

is new in TRADR, as it requires persistence to be verified

through sorties where an enormous amount of data is col-

lected by the robot team. The challenge is to model how the

information content of the data collected is preserved, and

it is lifted to knowledge, while changing the team, chang-

ing the ways of communication and changing the experi-

ence gathered. Persistence asks for strong communication

structures at different layers for role assignment, for dis-

tributed task inference and for sharing the team members

current state. Persistence also demands consistent contin-

uous information sharing which is especially hard in

damaged environments and has never been experienced

before.

We aim to develop a statistical-logical model for flexi-

ble collaborative planning. This model exploits the pow-

erful language of the Flexible Temporal Situation Calculus

(FTSC) [13], extended with constraints specifying depen-

dencies between robot’ abilities and their spatial distribu-

tion, also accommodating statistical inference [33]. The

model includes a knowledge and memory structure which

is used, through sorties, to manage information sharing,

common plan generation and dynamic role allocation. Both

role and task allocation is based on a cost assigned to

resources, robot groups capabilities, tasks and contexts [16,

24]. A learning schema, based on a Bayesian approach to

tensor factorization is proposed to build a relation between

group composition and costs [43]. Group reconfiguration

exploits the stimulus-response framework, proposed in

[17], modeling the human inspired mechanism of task

switching in robot cognitive control. Finally, an extension

of the ACL communication language is proposed for

modeling the information flow between robots, in order to

support collaboration [14]. This language is also used for

knowledge retrieval and updating, via OWL [40].

2.4 Persistent Models for Human-Robot Teaming

As robots become more sophisticated a tendency has arisen

within HRI to perceive them as teammates rather than

tools [19, 32]; also in the context of disaster response

robotics the importance of robots capable of operating as a

(social) team-member has been acknowledged and

addressed [12, 28]. Even though in NIFTi multiple robots
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were employed, they did not necessarily partake on the

team-level; each robot was controlled by an individual

operator taking orders from the human commander. This is

similar in a number of other projects, where teams of

heterogeneous robots are employed in a collaborative

fashion, but it is human operators who provide the linkage

between the robots and the human rescue workers, e.g., [7,

9]. A stronger notion of human-robot collaboration is

developed in the alpine rescue project SHERPA [26],

employing a metaphor of the human as ‘‘busy genius’’ who

collaborates with a group of robots with different capa-

bilities (the ‘‘SHERPA animals’’) towards a common goal.

TRADR will also go beyond an approach in which robots

are mere tools, instead aiming at robots with an adaptive

level of autonomy (e.g. semi-autonomous navigation, data

gathering etc.) as members of flexible teams improving

their collaboration over time. To realize this, TRADR is

developing a framework for coordination of human-robot

teaming, which is built on agent-based technology [18].

This framework manages the different roles, objectives,

responsibilities and expectation for members of the team

(which consists of both robots and humans and which may

change over different sorties) and allows for conflict res-

olution and dynamical task-allocation depending on capa-

bilities, task-load and chances of success.

2.5 Persistent Models for Distributed Joint Situation

Awareness

Situation Awareness (SA) is paramount for a team to work

effectively in disaster response missions [36]. To achieve

robust SA on a team-level in TRADR, we are designing a

Tactical Display System (TDS) that builds on the experi-

ences gathered with the system developed to support dis-

tributed joint SA in NIFTi (Fig. 6, left) and existing end-

users systems (e.g. the system employed by the GB fire-

brigade, Fig. 6, right). The TDS will provide trustworthy

and relevant tactical information about the physical

environment and give access to a hierarchical representa-

tion of experiences to support tactical decision making

(e.g., task allocation, (re)planning and coordination). It will

be designed to support guided (a)synchronous information

exchange between distributed or co-located actors through

multi-modal interaction (graphical UI and spoken dia-

logue). This guidance needs to be personalized and con-

text-tailored. A survey [38] found that in many cases

adaptivity towards the user is realized through a custom-

izable interface that does not significantly affect the

behavior or interaction patterns of the systems. Following

in NIFTi footsteps, TRADR aims to push adaptivity

beyond simple widget placement, concretely adapting the

system’s behavior to different use contexts.

2.6 User-Centric Design and Development

TRADR adopts a scenario-based roadmap to guide itera-

tive development of the persistent models described in the

previous subsections, to drive continuous integration of the

development results into a technical system, and to allow

evaluation of the integrated system with end-users in yearly

cycles (Fig. 2).

The roadmap defines a large-scale industrial disaster

scenario. This is a kind of disaster where persistence is key

to a successful mission. We need multiple robots to

investigate the disaster from different angles (literally), and

we need to use them over a number of sorties to gradually

build up and maintain situation assessment, e.g., through

observation and sample gathering. Within the industrial

accident scenario, the roadmap then defines yearly use

cases which deal with situation assessment under increas-

ingly more complex circumstances, as described in Tab. 1.

In Fig. 7 various use case setups at the TRADR end user

training facilities are illustrated.

End users are closely involved in TRADR: each year of

the development cycle in Fig. 2 starts by a deep domain

analysis with end-users, followed by the development and

Fig. 6 Left: screen capture from the NIFTi TREX system showing a base map of the disaster area and various icons depicting location of rescue

workers, robots, warnings, notes etc. Right: screen capture from the GB fire-brigade system showing various tactical information
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integration of the components. The development cycle is

rounded off by evaluating the developed components on

system-level and performing end-user evaluations of the

integrated system.

Integration takes place in a continuous process. An (as

far as possible) automated procedure combines periodically

the latest component versions, performs a static analysis of

the code, and executes run-time tests. Reports of successes

and failures are reported to the responsible developers, who

can take the necessary actions. The components are mainly

based on the ROS framework; however, since in TRADR

more than one mobile robot is involved in the mission, we

must set up a multi-master mechanism, which is necessary

for the cooperation of multiple ROS-based systems.

2.7 Related European Projects

Several other European projects address the deployment of

(teams of) UGVs and UAVs in various disaster response

scenarios. ICARUS [9] and DARIUS [7] target the devel-

opment of robotic tools that can assist during disaster

response operations, focusing on autonomy. SHERPA [26]

is focused on the development of ground and aerial robots

to support human-robot team response in an alpine sce-

nario. None of these projects addresses the persistence

issues. In TIRAMISU [6], a toolbox is developed for

removal of anti-personnel mines, submunitions, and

Unexploded Ordnance (UXO). It includes a component

called TIRAMISU Repository Service, which provides a

centralized data-sharing platform that contains the loca-

tions of detected landmines and UXOs. The TRADR

concept of persistent situation awareness goes beyond this

in various respects as we described above. On the other

hand, the EU project STRANDS [10], aims at modeling the

spatio-temporal dynamics in human indoor 3D environ-

ments in order for a single robot to adapt to and exploit

long-term experience in months-long autonomous opera-

tion. In contrast, TRADR deals with multiple sorties into

an unstructured outdoor environment carried out by a

human-robot team.

3 Conclusions

We presented an overview of the TRADR aims and

approach. TRADR advances the use of the user-centric

methodology established in the NIFTi project, and builds

on the experience and insights obtained through the

deployment of the NIFTi system, that there is a need for

persistent, integrated situation awareness gathered over

multiple sorties during a mission, and that different kinds

of robots each play complementary roles in this process. To

this end TRADR develops the capacity for persistent

environment models, persistent multi-robot action models

and persistent human-robot teaming.
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34. Pomerleau F, Krüsi P, Colas F, Furgale P, Siegwart R (2014)

Long-term 3D map maintenance in dynamic environments. In:

IEEE International Conference on Robotics and Automation

(ICRA), IEEE, pp 3712–3719

35. Rufli M, Ferguson D, Siegwart R (2009) Smooth path planning in

constrained environments. In: IEEE International conference on

robotics and automation (ICRA). IEEE, pp 3780–3785

36. Salmon PM, Stanton NA, Walker GH, Jenkins PD (2009)

Distributed situation awareness: theory, measurement, and ap-

plication to teamwork. Ashgate, UK

37. Stückler J, Behnke S (2014) Multi-resolution surfel maps for

efficient dense 3D modeling and tracking. J Vis Commun Image

Represent 25(1):137–147

38. Van Velsen L, Van Der Geest T, Klaassen R, Steehouder M

(2008) User-centered evaluation of adaptive and adaptable sys-

tems: a literature review. Knowl Eng Rev 23(03):261–281

Künstl Intell (2015) 29:193–201 199

123

http://www.fipa.org/specs/fipa00061
http://dx.doi.org/10.1002/rob.21535
http://dx.doi.org/10.1002/rob.21535


39. Vig L, Adams JA.(2005) A framework for multi-robot coalition

formation. In: IICAI, pp 347–363

40. Wang X, Zhang D, Gu T, Pung H (2004) Ontology based context

modeling and reasoning using owl. In: Pervasive computing and

communications Workshops, 2004, Proceedings of the second

IEEE annual conference on 14–17 Mar 2004. IEEE, pp 18–22

41. Weiss S, Achtelik MW, Lynen S, Chli M, Siegwart R (2012)

Real-time onboard visual-inertial state estimation and self-

calibration of MAVs in unknown environments. In: IEEE inter-

national conference on robotics and automation (ICRA), IEEE,

pp 957–964

42. Hornung A, Wurm K, Bennewitz M, Stachniss C, Burgard W

(2013) OctoMap: an efficient probabilistic 3D mapping frame-

work based on octrees. Auton Robot 34(3):189–206

43. Xiong L, Chen X, Huang TK, Schneider JG, Carbonell JG (2010)

Temporal collaborative filtering with bayesian probabilistic ten-

sor factorization. In: SDM, pp 211–222
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