
Künstl Intell (2012) 26:61–67
DOI 10.1007/s13218-011-0155-2

P RO J E K T

PLATAS—Integrating Planning and the Action Language Golog

Jens Claßen · Gabriele Röger · Gerhard Lakemeyer ·
Bernhard Nebel

Published online: 26 November 2011
© Springer-Verlag 2011

Abstract Action programming languages like Golog allow
to define complex behaviors for agents on the basis of ac-
tion representations in terms of expressive (first-order) logi-
cal formalisms, making them suitable for realistic scenarios
of agents with only partial world knowledge. Often these
scenarios include sub-tasks that require sequential planning.
While in principle it is possible to express and execute such
planning sub-tasks directly in Golog, the system can per-
formance-wise not compete with state-of-the-art planners.
In this paper, we report on our efforts to integrate efficient
planning and expressive action programming in the PLATAS

project. The theoretical foundation is laid by a mapping be-
tween the planning language PDDL and the Situation Calcu-
lus, which is underlying Golog, together with a study of how
these formalisms relate in terms of expressivity. The practi-
cal benefit is demonstrated by an evaluation of embedding a
PDDL planner into Golog, showing a drastic increase in per-
formance while retaining the full expressiveness of Golog.

J. Claßen (�) · G. Lakemeyer
Knowledge-Based Systems Group, RWTH Aachen University,
Ahornstraße 55, 52056 Aachen, Germany
e-mail: classen@kbsg.rwth-aachen.de

G. Lakemeyer
e-mail: gerhard@cs.rwth-aachen.de

G. Röger · B. Nebel
Foundations of Artificial Intelligence, University of Freiburg,
Georges-Köhler-Allee 52, 79110 Freiburg, Germany

G. Röger
e-mail: roeger@informatik.uni-freiburg.de

B. Nebel
e-mail: nebel@informatik.uni-freiburg.de

1 Introduction

Action programming languages like Golog [14] allow to de-
fine complex behaviors for agents on top of their high-level
actions, which are expressed in some form of expressive
(first-order) logical formalism such as the Situation Calcu-
lus [17, 24]. Among other things, the logical representation
allows to model realistic scenarios of agents with only in-
complete information about the world state, where further
information has then to be gathered at runtime by sensing.

For defining an agent’s behavior, one can either use pro-
gramming, meaning the programmer completely predeter-
mines the agent’s actions, or one can resort to planning,
i.e. provide a description of a desired goal and leave it to the
system to find a suitable course of action. An advantage of
Golog is that it gives the programmer the freedom to choose
anywhere between these two extremes by freely combining
deterministic and nondeterministic parts.

As an example, consider a mobile robot in an office envi-
ronment. One of its tasks is to deliver letters between mail-
boxes in the different offices, and the procedure to take all
letters out of a mailbox m may look like this:

proc takeAllLetters(m)

while(∃l : letter. In(l,m)) do

(π l : letter) [In(l,m)?;take_out(l,m)].

It reads as follows: As long as there are objects of type letter
in m, select (π ) some letter l such that In(l,m) holds and
take it out. Note that in addition to constructs known from
imperative programming languages like sequential compo-
sition (“;”) and while loops, Golog programs may contain
nondeterministic constructs such as the pick operator π . The
program is viewed as a plan sketch where certain parts have
been left open, and it is left to the system to fill these gaps.

mailto:classen@kbsg.rwth-aachen.de
mailto:gerhard@cs.rwth-aachen.de
mailto:roeger@informatik.uni-freiburg.de
mailto:nebel@informatik.uni-freiburg.de


62 Künstl Intell (2012) 26:61–67

After taking the letters, the robot should deliver them
to their recipients. This is a typical case where planning
is needed: We know the task requires a number of move
actions (to travel between locations), interspersed with
put_in actions (to put letters in mailboxes), but narrow-
ing it further down in terms of a Golog program is difficult.
One option is the following, highly nondeterministic sub-
program:

while (¬Goal) do (πa) [φ(a)?;a].

The program says that as long as the Goal formula is cur-
rently not true, the agent has to nondeterministically choose
some action a for which φ applies and execute it. In our ex-
ample, Goal would express that letters for which the recip-
ient is known are delivered to their destination mailboxes:

∀l : letter. (∃m : mailbox Addressee(l,m)) ⊃ Delivered(l)

φ is some criterion to filter suitable actions; in the example it
may express that a is among the actions put_in and move:

∃l1, l2 : loc (a = move(l1, l2)) ∨
∃l : letter,m : mailbox (a = put_in(l,m)).

Any successful execution of the above program corresponds
to an action sequence that reaches a situation where Goal
holds, i.e. a plan. When the Golog interpreter does a looka-
head to search for such an action sequence, it thus performs
nothing else than classical, sequential planning.

Planning is hence both necessary and possible in princi-
ple, but the performance of Golog in these cases is generally
poor compared to state-of-the-art planners [2, 4]. The rea-
son is that current Golog implementations typically resort to
blind search for lookahead, while the focus of planning re-
search ever since the introduction of STRIPS [8] has been on
designing systems of high efficiency, so that a wide range of
techniques and heuristics is available today. It seems natu-
ral to ask how this progress can be exploited to improve the
performance of Golog. It is conceivable to do this by sim-
ply copying techniques from successful planners into Golog.
However, this endeavor is undesirable not only as it would
mean a pure re-implementation of existing results, but also
because it will have to be reiterated for future developments
in the area. Instead, it would be much more desirable to
plug in any existing planner by means of a simple inter-
face.

Since there is already a common interface to state-of-
the-art planning systems, namely the Planning Domain De-
scription Language (PDDL) [19], we use the following ap-
proach: Whenever the Golog interpreter encounters a plan-
ning sub-problem, we translate it into PDDL, call a PDDL

planner on it, and continue the execution with the returned
plan. Note that classical planning alone is not sufficient for

the runtime control of the agent, as there are additional im-
portant tasks. Most notably, the agent typically has only par-
tial knowledge about its environment and has to gather nec-
essary information at runtime using its sensors. For exam-
ple, before executing takeAllLetters(m), the robot has to use
the sensing action look_into(m) to learn which letters
there are in m. Golog then takes care of updating the knowl-
edge base of the agent with the results of the sensing ac-
tions.

For the embedding, two issues arise. First, we have to
ensure that the translation between Golog and PDDL is cor-
rect in the sense that the same plans are admitted. Moreover,
there is the question how the two formalisms relate in terms
of expressivity, i.e. which subset of the source formalism
is representable by the target formalism. In this paper, we
report on how we addressed these issues within the PLATAS

project (Planning Techniques and Action Languages), which
is part of the DFG-funded project cluster LogWiss.1

2 The Situation Calculus and Golog

The Situation Calculus [17, 24] is a dialect of first-order
logic for reasoning about dynamic domains. Changes in the
world are assumed to be the result of primitive actions,
which are performed by some implicit agent and modeled
by terms like move(l1, l2). Properties which are affected by
performing such actions are called fluents and can be pred-
icates like Holding(l, s) or functions like position(robot, s).
The last argument of a fluent is a situation, which should
be understood as the current history of actions that have
been executed. The constant S0 is used to denote the ini-
tial situation, and when a is an action and s a situation, then
do(a, s) denotes the situation that results from performing
a in s. For example Holding(l,do(take_out(l,m),S0))

means that the agent is holding letter l after taking it out
of m. A particular domain is described by a basic action
theory (BAT), which is a set of Situation Calculus formulas
consisting of:

1. Sentences that describes the initial situation, e.g.

¬∃x Holding(x, S0) ∧ ∀l : letter ¬Delivered(l, S0),

2. a precondition formula for each action, e.g.2

Poss(take_out(x, y), s) ≡
∃l : loc. At(robot, l, s) ∧ At(y, l, s) ∧ In(x, y, s);

3. for each fluent, a successor state axiom (SSA) encoding
how the predicate is affected by actions, e.g.

Holding(x,do(a, s)) ≡ ∃y(a = take_out(x, y))∨
Holding(x, s) ∧ ¬∃y(a = put_in(x, y)).



Künstl Intell (2012) 26:61–67 63

α primitive action
φ? test
δ1; δ2 sequence
δ1 | δ2 nondeterministic choice
πx.δ(x) nondeterministic choice of argument
δ∗ nondeterministic iteration
if φ then δ1 else δ2 conditional
while φ do δ loop
proc P(	x) δ(	x) procedures

Fig. 1 Basic set of Golog constructs

Based on the Situation Calculus, Golog allows the def-
inition of complex actions called programs. The standard
variant supports the constructs shown in Fig. 1. An impor-
tant aspect is that apart from imperative constructs such as
conditionals, loops and procedures, a program can also con-
tain nondeterministic parts, e.g. δ1 | δ2 (do either δ1 or δ2)
and δ∗ (perform δ zero or more times). A program thus rep-
resents an incomplete sketch of a problem solution, where
nondeterministic parts constitute gaps to be filled by the sys-
tem.

Variants of Golog extend this basic set of constructs by
additional functionality: ConGolog [5] adds concurrency in
form of interleaved processes, exogenous events and in-
terrupts. A problem for real-world applications though is
that programs are executed off-line in ConGolog, meaning
that the interpreter first analyzes the entire program to find
a full conforming action sequence before the first action
is actually executed. Moreover, especially scenarios where
the agent has incomplete knowledge about its environment
make it necessary to gather information at runtime through
sensing. IndiGolog [6] is an extension that tackles both is-
sues and is hence particularly suited for our purposes. Pro-
grams are generally executed on-line without lookahead,
which is only applied to subprograms explicitly marked via
the search operator �(δ). Furthermore it supports sensing
actions.

3 PDDL

PDDL [18, 19] was introduced in 1998 as the input lan-
guage for the First International Planning Competition (IPC)
[18] and has, after several revisions, by now become a de-
facto standard for the formulation of planning domains and
tasks.

In contrast to the Situation Calculus where changes to
the world are described fluent-centric by SSAs, PDDL is an
action-centric language where actions are specified by their

1www.computational-logic.org/content/projects/wisslogabc.php
2Free variables are understood as ∀-quantified from the outside.

(:action move
:parameters
(?l1 - loc ?l2 - loc)

:precondition
(and (at robot ?l1) (connected ?l1 ?l2))

:effect
(and (at robot ?l2)

(not (at robot ?l1))
(forall (?x - obj)

(when (holding ?x)
(and (at ?x ?l2)
(not (at ?x ?l1)))))))

Fig. 2 PDDL definition of action move

applicability conditions and their effect on the world. For
example, the move action from our running example could
be formulated in PDDL as shown in Fig. 2. A full PDDL

task is specified by the domain description that describes
the dynamics of the world (mostly by such actions) and a
task description that specifies task-specific aspects, e.g. ad-
ditional constants, the initial state and the goal. Note that
in contrast to BATs there is always a single, fully specified
initial state. Since actions are deterministic, PDDL planning
systems have always full information about the world state.

The development of PDDL has been strongly connected
to the IPC and, therefore, has been oriented on the capabil-
ities of state-of-the-art planning systems. At the same time,
the introduction of new language features gave impulses to
new developments. To name a few, PDDL now also covers
numeric and temporal aspects (like simple and continuous
durative actions that can be executed concurrently [9]), and
preferences [10]. Since most of these features are tackled in
special competition tracks, planning systems do not have to
support all features but can specialize on certain fragments.

4 Mapping PDDL to the Situation Calculus

In order to establish a common semantical basis for PDDL

and Golog, we show how a PDDL problem description is
mapped to a corresponding BAT. The embedding of plan-
ners into Golog actually requires a translation in the other
direction, which we obtain by taking the back-image of our
mapping. This has two advantages: First, it is simpler since
the Situation Calculus is more expressive than PDDL. Sec-
ond, the mapping can be viewed as an alternative, declar-
ative semantics for PDDL whose semantical definition [9]
extends the state-transitional one for STRIPS [15] to the ad-
ditional features of PDDL. In this definition, states are rep-
resented as sets of literals and a transition is specified by the
addition and deletion of literals. Lin and Reiter [16] identi-
fied this as problematic in particular for incomplete theories
and showed that there is an exact correspondence between
STRIPS and certain forms of BATs in the sense that adding

http://www.computational-logic.org/content/projects/wisslogabc.php


64 Künstl Intell (2012) 26:61–67

and deleting literals can be viewed as a mere mechanism
for computing the progression of such a BAT, which means
updating it to reflect the changes due to an action. We gen-
eralize this result to incrementally larger subsets of PDDL.

The mapping requires to switch from the action-centric
view of PDDL to the fluent-centric one of the Situation Cal-
culus. Pednault already sketched the general idea when he
first introduced ADL [21], and Reiter [24] formalized it in
his famous solution to the frame problem: For each fluent F ,
we collect all positive effects on it in a single positive effect
axiom, and all negative ones in a single negative effect ax-
iom. If move is the only action that affects at, we get:

γ +
At = ∃l : loc.(a = move(l, y))

∧ (x = robot ∨ Holding(x, s)),

γ −
At = ∃l : loc.(a = move(y, l))

∧ (x = robot ∨ Holding(x, s)).

Then we assume that these effects indeed describe all and
only possible changes to the fluent, yielding the SSA:

At(x, y,do(a, s)) ≡ γ +
At ∨ At(x, y, s) ∧ ¬γ −

At .

In words, At is true after executing a if it was made true
(γ +

At ) or if it was already true and not made false (γ −
At ). We

verified that a similar construction is correct for the ADL
fragment of PDDL, which extends basic STRIPS with condi-
tional effects as well as negated, disjunctive, and quantified
preconditions, but does not add higher language features like
durative actions or numeric functions: In this fragment, an
update to a PDDL state w.r.t. some action corresponds to the
progression of the constructed BAT through that action. The
progression is guaranteed to exist due to the closed-world
and domain-closure assumptions being made in PDDL [2].

We then extended these results to a fragment that includes
the temporal and numeric features of PDDL [3]. It uses an
explicit notion of time, where a plan has to specify at which
time points actions happen. In addition to simple instanta-
neous actions, it includes durative actions whose execution
stretches over some time interval. In our robot scenario, for
instance, it is reasonable to model move as durative since
the robot needs a certain amount of time to get from one lo-
cation to another. Our treatment of time and durative actions
in the Situation Calculus is based on work by Pinto [22] and
Reiter [23]: actions are extended with an additional argu-
ment for the execution time, e.g. take_out(x, y) becomes
take_out(x, y, t). Furthermore, a durative action a′ is en-
coded by splitting it into two simple actions start(a′, t) and
end(a′, t) that mark the start and end points of its execution
interval. We then have a special fluent keep track of which
durative actions are in progress, using the SSA:

Performing(a′,do(a, s)) ≡ ∃t. a = start(a′, t)∨

Performing(a′, s) ∧ ¬∃t ′. a = end(a′, t ′).

In PDDL, preconditions and effects of durative actions are
annotated with one of the time qualifiers “at start”, “at
end”, and “overall”, where the former two refer to the
start and end time points, respectively, and the latter to the
open interval between them. As long as a precondition or
an effect is only concerned with the start (end) time point,
our mapping to the Situation Calculus is straightforward:
We simply treat it as a precondition or effect of the cor-
responding start(a′, t) (end(a′, t)) action. However, there
might also be inter-temporal effects. In the example of a du-
rative variant of our robot’s move action, we may have the
effect that at the end an object arrives together with the robot
at the destination if the object is held at the beginning:

(when (at start (holding ?x))
(at end (at ?x ?l2)))).

In such cases, we introduce auxiliary fluents that “memo-
rize” whether the condition was true at the beginning:

Memstart
move(x, l1, l2,do(a, s)) ≡

∃t ′. a = start(move(l1, l2, t
′)) ∧ Holding(x, s) ∨

Memstart
move(x, l1, l2,do(a, s))∧

¬∃t. a = end(move(l1, l2, t)).

We also came up with representations of the further tempo-
ral features of PDDL such as continuous effects, invariants,
and timed initial literals. We proved correctness in the sense
that valid temporal PDDL plans correspond to sequences of
start and end actions admitted by the BAT. The remaining
features of full PDDL such as trajectory constraints, prefer-
ences and derived predicates can be mapped similarly [11].

5 Expressivity

Planners are typically designed for specific PDDL fragments
since restricting the scope of the system allows for more spe-
cialized and efficient algorithms. We are therefore interested
in using a fragment that is as small as possible when we
formulate a Golog sub-task in PDDL. To understand which
fragment of BATs corresponds to which fragment of PDDL,
we compare their expressivity using the compilation scheme
framework introduced by Nebel [20]. Compilation schemes
compare how concisely planning domains and plans can be
expressed in different formalisms, not how concisely an in-
dividual planning instance can be expressed. The intuition is
that it is justifiable to perform significant work on translating
a domain description from one formalism to another, as long
as this remains a one-off effort, and individual instances of
the domain can subsequently be transformed efficiently.



Künstl Intell (2012) 26:61–67 65

As we are measuring the expressivity of a formalism, the
mapping may use arbitrary computational resources, but we
require that the result is at most polynomially sized and that
the transformation of the domain description does not de-
pend on the initial state and goal. In contrast, the translation
of the initial state and the goal is very limited: it should be
efficiently computable and not depend on the whole speci-
fication. If such a mapping is solution preserving, i.e. there
is a plan for the original task iff there is a plan for the result
task, we call it a compilation scheme. To compare the ex-
pressivity of two planning formalisms we moreover have to
measure the size of generated plans. If it is possible to for-
mulate a compilation scheme so that the size of the shortest
plan for the result task is bounded linearly by the size of an
optimal plan for the source task, we conclude that the target
formalism is at least as expressive as the source formalism.
If plans are required to grow faster, the source formalism
is more expressive. In our project, it turned out that compi-
lation schemes always directly provided a polynomial-time
translation to PDDL and the resulting plan can directly be
interpreted as a solution situation for the source task.

A particularly interesting subset of PDDL is its ADL
fragment, which is more expressive than the rather restric-
tive STRIPS but still supported by a large number of plan-
ning systems. Based on earlier work [7], we identified a
maximal subset of the Situation Calculus that is equally ex-
pressive [25, 26]. Put shortly, we can compile all BATs that
provide full information on the initial state in an explicit
(non-compact) form into the ADL fragment. More precisely,
this Situation Calculus fragment can briefly be characterized
as all BATs whose initial database consists of exactly the fol-
lowing sentences (where ci denotes a constant):

1. For each relational fluent F there is an expression

F(x1, . . . , xn, S0) ≡
(x1 = c11 ∧ · · · ∧ xn = c1n)

∨ · · · ∨ (x1 = cm1 ∧ · · · ∧ xn = cmn).

2. There are analogous expressions for all situation-inde-
pendent predicates.

3. There are analogous expressions for all functions except
constants and action functions with object arguments.

4. There are unique names axioms ci �= cj for each pair ci ,
cj of different constants.

5. Optionally, there may be a domain closure axiom of the
form (x = c1) ∨ · · · ∨ (x = cn).

6 Experimental Results

Based on our results we extended IndiGolog with access to a
planning system that supports the ADL fragment, and con-

Fig. 3 Median runtimes in seconds

ducted experiments to assess the practical benefit of the em-
bedding. A simple simulator played the role of the agent’s
environment by generating appropriate sensing results.

In one experiment, we tested the mail robot domain of
our running example. We let the building consist of a num-
ber of locations, each of which is either an office or a hall-
way. Each office is connected to some hallway, and hall-
ways are connected to one another. Furthermore, each mail-
box serves both for incoming and outgoing mail and is lo-
cated in some office. Initially, each letter is in one of the
mailboxes. The robot executes the following program: As
long as not all letters are delivered (which we signal from
outside), randomly pick a mailbox, go to it, get all letters
from it and deliver them. In our encoding, moving to the
mailbox is one planning sub-task, getting the letters out is
achieved via the procedure takeAllLetters from the intro-
duction, and delivering the letters is another planning sub-
problem.

We randomly generated benchmark scenarios for differ-
ent numbers of offices (= number of mailboxes), hallways
and letters, with 10 instances of each combination. We then
compared the performance of two variants of our system
which differ in how planning sub-tasks are treated: In one,
the internal iterative deepening mechanism of Golog is used
to solve them. In the other one, each planning task is trans-
lated into a PDDL problem as described above, after which
an external PDDL planner is called, and execution is contin-
ued in Golog with the returned solution plan. The planner
we used is the state-of-the-art Fast Downward planning sys-
tem [12] in a configuration that guarantees optimal plans (A∗
search with the lmCut heuristic [13]). All experiments were
conducted on a 64 bit Intel Core2 Duo PC with 2.66 Ghz
and 2 GiB of main memory and a 300 seconds timeout per
task.

With the external PDDL planner, IndiGolog could com-
plete all 180 benchmark tasks within the time limit, while it



66 Künstl Intell (2012) 26:61–67

only did so for 63 with its internal search, not solving any
of the 16 letter instances. Figure 3 shows the median run-
times for both variants. The difference between the two is
considerable (note the logarithmic scale), showing that the
embedding definitely improves performance and scalabil-
ity.

7 Conclusion

The areas of planning on the one hand and action languages
on the other hand have developed largely independently for
many years. The planning community was mostly concerned
with developing efficient systems, whereas the focus in ac-
tion logics was more on formalisms of high expressivity.
The PLATAS project is a contribution to integrate both fields,
yielding results of both theoretical and practical relevance:
The mapping presented in Sect. 4 can be viewed as a declar-
ative semantics for PDDL, which facilitates the analysis of
the language through expressing its properties in terms of
entailments in a well-understood logic. The comparison of
PDDL with the Situation Calculus by means of compila-
tion schemes as described in Sect. 5 furthermore gives us
insight into how the two formalisms relate in terms of mu-
tual expressivity, and hence which subset of one formalism
can be translated into the other. Both aspects form the the-
oretical basis for the practical integration of efficient plan-
ners into a Golog system. As shown in Sect. 6, this ap-
proach enables a drastic increase in performance, while it
retains the full expressivity of the underlying action lan-
guage.

Future work will for one extend the above beyond PDDL

to other planning formalisms. For another, we aim to in-
crease the efficiency of Golog also on sub-tasks where
the agent has only partial knowledge, possibly at the cost
of losing the completeness of the underlying reasoning
method. A first step in this direction has already been ex-
plored [1].

Acknowledgements PLATAS is part of the LogWiss research clus-
ter. It is funded by the Deutsche Forschungsgemeinschaft (DFG) under
grants La 747/13-2, La 747/14-1, Ne 623/10-1, and Ne 623/10-2.

References

1. Claßen J, Lakemeyer G (2009) Tractable first-order Golog with
disjunctive knowledge bases. In: Proc Commonsense. UTSePress,
Broadway, pp 27–33

2. Claßen J, Eyerich P, Lakemeyer G, Nebel B (2007) Towards an
integration of Golog and planning. In: Proc IJCAI 2007. AAAI
Press, Menlo Park, pp 1846–1851

3. Claßen J, Hu Y, Lakemeyer G (2007) A situation-calculus seman-
tics for an expressive fragment of PDDL. In: Proc AAAI 2007.
AAAI Press, Menlo Park, pp 956–961

4. Claßen J, Engelmann V, Lakemeyer G, Röger G (2008) Integrating
Golog and planning: An empirical evaluation. In: Proc NMR 2008,
pp 10–18

5. De Giacomo G, Lespérance Y, Levesque HJ (2000) ConGolog, a
concurrent programming language based on the situation calculus.
Artif Intell 121(1–2):109–169

6. De Giacomo G, Levesque HJ, Sardiña S (2001) Incremental ex-
ecution of guarded theories. ACM Trans Comput Log 2(4):495–
525

7. Eyerich P, Nebel B, Lakemeyer G, Claßen J (2006) Golog and
PDDL: What is the relative expressiveness. In: Proc PCAR 2006.
University of Western Australia Press, Nedlands, pp 93–104

8. Fikes R, Nilsson NJ (1971) STRIPS: A new approach to the
application of theorem proving to problem solving. Artif Intell
2(3/4):189–208

9. Fox M, Long D (2003) PDDL2.1: An extension to PDDL for ex-
pressing temporal planning domains. J Artif Intell Res 20:61–124

10. Gerevini A, Long D (2005) Plan constraints and preferences in
PDDL3. Tech Rep RT 2005-08-47, Dipartimento di Elettronica
per l’Automazione, Università degli Studi di Brescia

11. Han J (2009) A declarative semantics of a subset of PDDL with
constraints and preferences. Diploma thesis, Department of Com-
puter Science, RWTH Aachen University, Aachen, Germany

12. Helmert M (2006) The Fast Downward planning system. J Artif
Intell Res 26:191–246

13. Helmert M, Domshlak C (2009) Landmarks, critical paths and ab-
stractions: What’s the difference anyway? In: Proc ICAPS 2009,
pp 162–169

14. Levesque HJ, Reiter R, Lespérance Y, Lin F, Scherl RB (1997)
GOLOG: A logic programming language for dynamic domains.
J Log Program 31(1–3):59–83

15. Lifschitz V (1987) On the semantics of STRIPS. In: Reasoning
about actions and plans: proceedings of the 1986 workshop. Mor-
gan Kaufmann, San Mateo, pp 1–9

16. Lin F, Reiter R (1997) How to progress a database. Artif Intell
92(1–2):131–167

17. McCarthy J, Hayes P (1969) Some philosophical problems from
the standpoint of artificial intelligence. In: Machine intelligence,
vol 4. American Elsevier, New York, pp 463–502

18. McDermott DV (2000) The 1998 AI planning systems competi-
tion. AI Mag 21(2):35–55

19. McDermott D, Ghallab M, Howe A, Knoblock C, Ram A, Veloso
M, Weld D, Wilkins D (1998) PDDL—The planning domain def-
inition language—Version 1.2. Tech Rep CVC TR-98-003, Yale
Center for Computational Vision and Control

20. Nebel B (2000) On the compilability and expressive power of
propositional planning formalisms. J Artif Intell Res 12:271–315

21. Pednault EPD (1989) ADL: Exploring the middle ground between
STRIPS and the situation calculus. In: Proc KR 1989. Morgan
Kaufmann, San Mateo, pp 324–332

22. Pinto J (1994) Temporal reasoning in the situation calculus. PhD
thesis, Department of Computer Science, University of Toronto,
Toronto, Canada

23. Reiter R (1998) Sequential, temporal GOLOG. In: Proc KR 1998.
Morgan Kaufmann, San Mateo, pp 547–556

24. Reiter R (2001) Knowledge in action: logical foundations for
specifying and implementing dynamical systems. MIT Press,
Cambridge

25. Röger G, Nebel B (2007) Expressiveness of ADL and Golog:
Functions make a difference. In: Proc AAAI 2007. AAAI Press,
Menlo Park, pp 1051–1056

26. Röger G, Helmert M, Nebel B (2008) On the relative expressive-
ness of ADL and Golog: The last piece in the puzzle. In: Proc KR
2008. AAAI Press, Menlo Park, pp 544–550



Künstl Intell (2012) 26:61–67 67

Jens Claßen received his diploma
degree in computer science in 2005
from RWTH Aachen University.
Since then he has been working as a
research assistant at the Knowledge-
Based Systems Group in Aachen.
His research interests include plan-
ning, reasoning about actions and
change and epistemic logics.

Gabriele Röger received her di-
ploma degree in computer science
from the University of Freiburg in
2006. Since then she has been work-
ing as a research assistant in the
research group on Foundations of
Artificial Intelligence at the Univer-
sity of Freiburg. She was awarded as
co-author with the 2008 AAAI out-
standing paper award. Her research
interests include planning and com-
binatorial search.

Gerhard Lakemeyer received his
Ph.D. from the University of Toronto
in 1990 and currently heads the
Knowledge-Based Systems Group
at RWTH Aachen University. His
research interests include knowl-
edge representation and cognitive
robotics. He has published more
than one hundred scientific papers
and has served on numerous pro-
gram committees. He is an ECCAI
Fellow and a member of the Edito-
rial Board of Artificial Intelligence
and other journals.

Bernhard Nebel is full professor
of Computer Science at the Univer-
sity of Freiburg and chair of the re-
search group Foundations of Arti-
ficial Intelligence. He was elected
as an ECCAI fellow in 2001, as an
AAAI fellow in 2010 and is mem-
ber of the German Academy of Sci-
ence Leopoldina. His research in-
terests include knowledge represen-
tation and reasoning, planning, and
robotics.


	Platas-Integrating Planning and the Action Language Golog
	Abstract
	Introduction
	The Situation Calculus and Golog
	Pddl
	Mapping Pddl to the Situation Calculus
	Expressivity
	Experimental Results
	Conclusion
	Acknowledgements
	References


