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Abstract Knowledge processing methods are an important
resource for robots that perform challenging tasks in com-
plex, dynamic environments. When applied to robot control,
such methods allow to write more general and flexible con-
trol programs and enable reasoning about the robot’s obser-
vations, the actions involved in a task, action parameters and
the reasons why an action was performed. However, the ap-
plication of knowledge representation and reasoning tech-
niques to autonomous robots creates several hard research
challenges. In this article, we discuss some of these chal-
lenges and our approaches to solving them.

1 Introduction

Arguably, AI-based robotics started with the Shakey project
at SRI as early as 1966 and the realization of an autonomous
robot with human problem-solving skills was by many con-
sidered to be the holy grail of Artificial Intelligence [20].
The research on AI methods for autonomous robot control
was framed within the so-called sense-plan-act architecture
in which a sensing module was to map a sensed scene into a
symbolic (first-order logic) representation of the scene, the
“plan” module took the scene description, inferred a goal
and generated a plan for achieving the respective goal, and
the act module took the symbolic plan and translated it into
control signals for the robot.

The research on Shakey immediately spawned seminal
research work investigating the key components of the plan
module that was considered to be the system component
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responsible for achieving “intelligent” problem-solving be-
havior. All of us have read the papers “Application of Intel-
ligent Automata to Reconnaissance” [5], “STRIPS: A New
Approach to the Application of Theorem Proving to Prob-
lem Solving” [9], “Learning and Executing Generalized
Robot Plans” [10], “Application of Theorem Proving to
Problem Solving” [12], and many others, which started
up and dominated the research directions in AI planning
and reasoning for decades. Only 15 years later the Shakey
researchers became aware that the embedding of the AI
methods into the perception and action mechanisms of the
robot might be equally important for the research commu-
nities [19]. As a result, the Shakey researchers published
edited versions of the original project proposals and progress
reports as technical reports to make them accessible.

These events within the Shakey project were later par-
alleled by the development of the whole field of AI-based
robotics. For a number of years Artificial Intelligence fo-
cused on the investigation of suitable learning, reasoning,
and planning methods that took complete symbolic repre-
sentations for granted and produced symbolic representa-
tions of action specifications. This research direction, which
failed to produce competently acting robots, was radically
challenged by Brooks who proposed to achieve intelligent
agency through control methods that do not rely on sophis-
ticated representations and reasoning [3, 4]. More recently,
the research field of developmental robotics has stressed
that competent agency requires tightly integrated data struc-
tures and computational processes, which are best real-
ized through the co-development of data structures and pro-
cesses.

Our own research approach is to take state-of-the-art and
leading-edge knowledge processing methods, i.e. methods
for knowledge acquisition, representation, reasoning and
learning, and make them work for autonomous robots by
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grounding the AI methods into the robot’s perception and
action mechanisms and the data structures of the robot and
by developing “satisficing” methods [22] that work under
reasonable assumptions about the robot’s knowledge, the en-
vironment, and the tasks [1, 2, 23].

With autonomous robots becoming skilled enough to per-
form rather complex everyday manipulation tasks, knowl-
edge processing is becoming more and more important,
since those tasks require much knowledge of different kinds
to be performed competently: The robot needs to infer the
required actions from heavily underspecified commands. It
needs to know which objects are involved, where to stand
to pick them up, which grasp type and grasp force to use,
and how to approach the objects. Moreover, different object
states (like a cup being clean or dirty, empty or filled with
coffee) influence how they are to be handled. Supplying the
knowledge and reasoning mechanisms to infer the correct
decision creates several research challenges:

• How to ground symbolic representations into sensor data
and actions to be performed? How to continually update
the knowledge to keep it consistent with the state of the
world?

• How to represent uncertain knowledge, and how to per-
form sound inference on it?

• How to acquire all the knowledge that is necessary to
competently perform everyday tasks?

• How to perform adapt to changing conditions and learn
new tasks?

• How to find suitable representations that are expressive
enough, but still allows for fast reasoning?

• How to attain action-awareness, and how to predict the
effects of actions?

• How to interact with humans, communicate with them
and interpret their actions?

In the following sections, we will discuss these challenges
which we encountered while developing knowledge pro-
cessing systems for autonomous household robots. We will
introduce the problems and outline how we addressed them
in our work.

2 The KnowRob System

A knowledge processing system serves as a common se-
mantic framework for integrating information from different
sources. Our system is built around the KnowRob frame-
work that was introduced in [23] and has since been ex-
tended. KnowRob is implemented in Prolog and uses OWL,
the Web Ontology Language, for representing knowledge.
Figure 1 gives an overview of the system structure. OWL
is a compromise between expressiveness and reasoning ca-
pabilities. Translating sensor data into this format is rather

simple, the conversion of knowledge from more expressive
sources requires specialized translation procedures.

KnowRob provides an extensible knowledge-based
framework that allows to integrate different kinds of knowl-
edge (static encyclopedic knowledge, common-sense knowl-
edge, task descriptions, environment models, object infor-
mation, observed actions, etc.) from different sources (man-
ually axiomatized, derived from observations, or imported
from the web). It supports different reasoning mechanisms
(deterministic and probabilistic reasoning), clustering, clas-
sification and segmentation methods, and provides query
interfaces as well as visualization tools.

As a knowledge processing system designed for robots,
KnowRob is working on-line during the robot’s operation,
but it can base its decisions on all information it has acquired
so far. For instance, it can learn models of human actions
from motion-capture data that has been computed off-line
and use the inferred results during on-line operation.

3 Research Challenges and Our Approaches

3.1 Symbol Grounding

When performing abstract symbolic reasoning about phe-
nomena from the outside world, the robot needs to make
sure the symbols are grounded [14]. That is, any symbol in
the knowledge base needs to be related to the corresponding
data structures in the robot’s perception and control systems.

On the one hand, this means that the robot needs mecha-
nisms to generate symbols out of its perception of the world,
and to update its belief when the observations change. For
example, the robot must be able to recognize objects and
represent them internally as an instance of the respective ob-
ject type. On the other hand, it also needs to link symbolic
action descriptions to executable procedures with the same
semantics as the action symbol.

A still open challenge is how to ensure consistency:
Much of the information in the robot’s knowledge base is
generated from uncertain sensor data, and eliminating con-
tradictions in this data using only deterministic representa-
tions is difficult. In the following sections, we present some
methods to approach this problem: To compute data on de-
mand, to store information only once, and to use probabilis-
tic reasoning methods where conflicts are likely.

Our Approach: Computables—Regard the World as a Vir-
tual Knowledge Base We extend the classical first-order
knowledge representation with computable predicates. In-
stead of being evaluated based on the axiomatized knowl-
edge in the robot’s knowledge base, they are computed by
calling external methods. This allows to generate symbolic
concepts out of observations or robot-internal data struc-
tures on demand during the reasoning process. In general,
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Fig. 1 Overview of the
KnowRob system. The
knowledge base is tightly
integrated with the robot’s
perception and planning
modules and provides query and
visualization interface, methods
for loading external information,
and several inference techniques

this method extends the robot’s reasoning capabilities from
manually stated symbolic knowledge to real world phenom-
ena.

Figure 2 illustrates the concept using the example of
robot localization. On a sub-symbolic level, the robot esti-
mates its position in the environment using a probabilistic,
multi-hypothesis localization algorithm. In the example pic-
ture, there are three peaks in the probability distribution over
robot positions, so the localization is rather uncertain. For
performing abstract reasoning, the robot needs to determine
e.g. the most likely pose or an estimation of the localization
accuracy from this continuous data. This is done by small
computational methods that are attached to the semantic
properties. These methods, like loc_estimates(L,D), per-
form the grounding by computing symbolic statements from
sub-symbolic data. The example is simplified in that it does
not take time into account; in the actual implementation, val-
ues like the pose of a robot or an object are represented as
fluents; location(R,L) thus becomes location(R,L, Time).
Through the use of computable predicates, the symbolic in-
formation is always computed from the most current data
and updated when the world changes. Computables are also
used for generating object instances based on the current
robot perception, or to compute qualitative spatial relations,
like an object being on top of another one, based on the ob-
jects’ positions.

While being a rather simple modification from a techni-
cal point of view, the use of computable predicates has sev-
eral important implications: First, the resulting representa-
tions are inherently grounded. Second, computables help to
ensure consistency with the outer world, since information
is always generated from the latest observations, and inside
the knowledge base, since information is usually stored only
once. Other views on this information, like qualitative spa-
tial relations, are computed from it on demand, which makes

Fig. 2 This example illustrates how computable predicates ground
symbolic knowledge (the location of a robot) in sub-symbolic data
(a multi-hypothesis probability distribution)

outdated information less likely. Third, the system does not
discard information: If abstract descriptions are needed, they
can be generated, but the more detailed representation is still
in the background, like for instance the robot location proba-
bility distribution. In a more traditional approach, the knowl-
edge would be described with fixed granularity and without
access to the underlying data structures. Obviously, the im-
plementations of the computable predicates have to make
sure that the computed results are consistent with the robot’s
knowledge, for example to prevent the robot from being in
multiple locations at once.
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3.2 Uncertainty

Household robots do not operate in idealized artificial
worlds that could reasonably be described in logical axioms.
Real-world environments are highly dynamic, the robot be-
ing but one of several agents, and many aspects do not fol-
low deterministic patterns but are, especially in the light of
partial observability, more adequately represented as proba-
bilistic dependencies. This is especially true for human pref-
erences and behavioral habits, which must certainly be con-
sidered in a domestic robot’s knowledge base if the robot
is to adapt its own behavior to suit the needs at hand. Also
for information obtained from noisy sensors, it is important
that the uncertainty in these observations can be represented
and, if several uncertain sources of information are com-
bined, correctly propagated.

Moreover, robots will often be instructed to perform tasks
that are not fully specified. A command pertaining to a fairly
complex task will rarely include all the information that is
necessary for the robot to derive a sequence of actions that
will achieve the implied goal, for the goal itself may be sub-
ject to uncertainty and more than one state could be con-
sidered an appropriate solution. Robot plans for such com-
plex tasks are, therefore, not completely specified—a prob-
lem that does not arise in industrial robots or in artificial
planning domains. Instead, a robot needs to infer the course
of action, the set of objects to consider, action parameters
like the right positions, suitable trajectories, correct grasps,
and many more—all of which may depend on the task con-
text, individual preferences, past experience and many other
parameters.

To address the issues named above, a robot needs rea-
soning techniques allowing it to infer information that is
missing in commands it receives, to reason about potential
effects of activities it observes and causes of situations it
observes—or, more generally, to base its decisions and up-
date its beliefs based on what can be considered to be most
(likely to be) appropriate given its past experience.

In artificial intelligence, probabilistic graphical models
provide a well-established formalism for the representation
of uncertainty. In real-world environments, however, the set
of entities we may need to reason about will vary widely;
propositional models with a fixed set of random variables do
not suffice. Furthermore, a direct coupling between the rela-
tional knowledge in our logical knowledge base and random
variables in probabilistic models is highly desirable.

Our Approach: Probabilistic First-Order Models We use
statistical relational models [11] to represent probabilistic
knowledge. These models are first-order, abstracting away
from concrete entities and representing instead general prin-
ciples about objects having similar properties (cf. universal
quantification). Viewed pragmatically, they essentially rep-
resent templates for the construction of graphical models:

Fig. 3 Example application: Inferring the objects that are missing
given a partial table setup. Left: Camera image showing objects on the
table. Right: Corresponding object instances in the knowledge base and
objects that are inferred to be missing. The hue value corresponds to
the probability

For any concrete set of objects we want to consider, the rela-
tional model generates, by repeatedly materializing its tem-
plate structures, a concrete probabilistic model. This model
is typically represented as a graphical model, which contains
as random variables logical ground atoms (i.e. instances of
predicates) that represent statements about the objects un-
der consideration. In this way, statistical relational models
can be viewed as a means of unifying statistical and rela-
tional knowledge. As concrete representation formalisms,
we use Markov logic networks [21] and Bayesian logic net-
works [15].

An example application that combines the computables
introduced in Sect. 3.1 with the probabilistic reasoning
methods is shown in Fig. 3. The task is to infer which ob-
jects need to be added to complete a partial table setup. To
solve this task, the robot needs to detect the objects and
load them into the knowledge representation using the com-
putable predicates. Using probabilistic inference and models
learned from observations of human meals and the objects
involved, the robot can conclude what meal the table is most
likely being set for, what utensils and food items are needed
for that, and thus what it should add. Figure 3 shows the
camera image of the table on the left side and the object in-
stances in the knowledge base that were created from the
detected items on the right side. The red objects on the table
were recognized and are passed as evidence to the proba-
bilistic inference engine. The results are visualized in the
upper region, with the hue value corresponding to their like-
lihood (red objects are more likely than orange, green and
blue). One can see that the system infers a plate to eat from
and a cup to drink the detected coffee from as mandatory,
and other items like a glass for the iced tea as very probably
needed.

3.3 Knowledge Acquisition

Robots that are to act skillfully in human environments need
an enormous amount of knowledge. A challenge that has
long been neglected is how to acquire this knowledge. In
small-scale laboratory settings, it is often still possible to
hand-code the knowledge required to handle a few objects
in a pre-defined way and to communicate with a human on
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a limited set of topics. This changes dramatically when the
robot comes to a real environment and is to perform several
complex tasks, acquire new tasks or new variants of known
ones, manipulate new objects, and understand human com-
mands in colloquial language.

For being accepted by humans as useful household com-
panions, robots should also quickly adapt to people’s habits
and learn from few examples. It is thus important to re-use
existing knowledge, ideally both skills and models another
robot has already learned, and information that was origi-
nally intended to be used by humans.

Our Approach: Import Knowledge from the WWW In our
ongoing research, we are investigating how information
from the Internet can be used to improve the robot per-
formance. The World Wide Web is among the largest re-
sources of knowledge of any kind: Web sites like ehow.com
or wikihow.com contain step-by-step instructions for thou-
sands of tasks. In addition, there are many sites with cook-
ing recipes. Many of these descriptions cover not only the
default version of a task, like baking normal brownies, but
also provide instructions for variations like diabetic brown-
ies, peppermint brownies, or gluten-free brownies.

More detailed information on how to manipulate objects
can be obtained from video tutorials that show how exactly a
cooking task is to be performed. Object models can be gen-
erated using image search engines like Google images or
repositories of 3D object models like the Google 3D ware-
house. These models help the robot ground the abstract de-
scriptions into its perception, i.e. to recognize and manipu-
late previously unknown objects that appear in the instruc-
tions.

A challenge is to make use of this information: Instruc-
tions are written in ambiguous natural language and need a
lot of common-sense knowledge to be understood correctly.
We developed a system to translate the instructions from nat-
ural language to a representation in description logic [25],
including semantic parsing, disambiguation, and the resolu-
tion of the corresponding concept in the ontology (Fig. 4).
Another problem is irrelevant or unrelated information. The
system presented in [16] is able to retrieve 3D object mod-
els from the web, filter out irrelevant ones, and match the
resulting model in the robot’s environment.

Other important resources are public large-scale knowl-
edge bases and the methods and resources developed as part
of the Semantic Web initiative. The Cyc ontology [17] con-
tains a huge amount of knowledge and seems to emerge as
a quasi-standard in robot knowledge representation [6, 23].
The WordNet [8] lexical database helps robots to understand
utterances in natural language. Common-sense knowledge is
collected in the OpenMind Indoor Common Sense (OMICS)
database [13].

3.4 Representation Language

In a robotic system, information has to be represented and
processed at various levels of abstraction: From raw sen-
sor measurements like the image of a camera or a distance
measurement from a laser range finder, interpreted sensor
data like clusters of point cloud data, recognized and local-
ized objects, information about properties of object types,
up to actions, action parameters, plans, and meta-knowledge
about these plans, like problems that can occur during their
execution. All these pieces of information are correlated and
describe different aspects of objects and actions with differ-
ent granularity. Since robots exist over time, they do not only
need to describe the current state of the world, but also pre-
viously perceived world states, past intentions, actions that
were performed, etc.

The task of the knowledge representation is to provide
the means to describe this information on different abstrac-
tion levels and from different sources, assign meaning to the
data, and allow to automatically combine it to perform use-
ful inference. It further needs to ensure that the same word
means the same thing in all components of the system so that
e.g. the result of an action recognition system can be related
to a similar plan in the robot’s plan library or a command a
human has given.

The choice of a knowledge representation formalism de-
termines both what the robot can describe and what it can
do with its knowledge. Davis et al. [7] give an overview over
different approaches, their representational power, the prim-
itives the representation is composed of, and the kinds of
reasoning it supports.

Our Approach: Description Logic Extended with Com-
putable Predicates KnowRob is based on description log-
ics as representation language, which is both light-weight,
structured, and still expressive enough for most applications.
The knowledge is stored in OWL, which became a common
knowledge interchange format that is supported by many
applications, loaded into Prolog, and can be accessed via
Prolog predicates.

The methods described in Sect. 3.2 can be queried from
within KnowRob and extend the system with probabilistic
inference capabilities. Using the computables described in
Sect. 3.1, the system accesses information from the outer
world, and can also include specialized powerful inference
mechanisms like clustering, classification or other kinds of
computation into the reasoning process. Computables allow
to perform complex inferences using fast procedural imple-
mentations, which can be important for robots interacting
with the real world—where results need to be found in a
short time. Memory modules for perception and a logged
belief state of the control program provide the robot with the
ability to reason about the past and to learn from experience.

http://ehow.com
http://wikihow.com
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Fig. 4 Procedure for importing
task instructions from
natural-language sources like
web sites. The descriptions are
parsed, and the word senses are
resolved to ontological concepts

3.5 Learning

Domestic robots should seek to adapt to the environments
they operate in and especially to the humans within these
environments. As a robot makes new observations pertain-
ing to properties of the environment or human preferences
and behaviors, it should attempt to incorporate these obser-
vations (or rather the abstract pieces of information that can
be derived from them) into its knowledge base. Particularly
aspects of the world that are subject to uncertainty and can-
not be fully axiomatized call for learning methods in order
to extract the latent patterns in the vast amounts of relational
data that come in via the robot’s perception system.

In particular, domestic robots should learn about the pref-
erences and habits of the individuals they are to assist and
serve. Robots should, for example, learn about the food and
drinks people like to consume, the places at which they pre-
fer to be seated, the utensils and objects they prefer to use
for particular tasks, etc. Moreover, robots should learn about
the environment, e.g. about the storage locations of partic-
ular types of objects and the roles of places, devices and
immovable objects and in activities. By learning relations
from observation, the robot can acquire much common-
sense knowledge it needs for its tasks.

Our Approach: Statistical Relational Learning The meth-
ods of statistical relational learning offer a sound way of
combining relational knowledge representation, learning
and reasoning within a single framework. By using a phys-
ically grounded perception system that abstracts away from
low-level sensory data and represents the information as re-
lational data, i.e. logical atoms with well-defined semantics,
we obtain relational databases that may serve as the inputs
to statistical relational learning problems.

3.6 Introspection and Prediction

Being able to predict which effects an action has, or how
action parameters influence the result, is highly important

for planning actions, for verifying if the chosen action pa-
rameters will have the desired effect, and for checking for
side-effects of actions. In a quasi-artificial world in which
all actions have well-defined prerequisites and effects, this
is a simple task: If the world state matches the preconditions
of an action, and if the robot performs this action, the result-
ing state can be described by the action’s postconditions.

As usual, reality looks different: Actions can easily fail,
small variations in the choice of parameters can determine
the success, for example if a glass is securely grasped, falls
out of the hand due to a too low grip force, or gets broken
by the robot. Side-effects can be inherent to the actions or
caused by failures, e.g. collisions with other objects.

Our Approach: Prediction Based on Physical Simulation
and Semantic Models of the Robot and Its Capabilities
Prediction just based on logical inference would require an
extreme amount of axiomatized knowledge including tem-
poral and spatial reasoning, kinematics, detecting collisions,
etc. Instead, we are using a realistic physical simulation [18]
that gets parametrized with the knowledge the robot has
about its environment. A detailed semantic robot model de-
scribes its size, kinematics, dynamics, and capabilities of
actors and sensors. Plans can be executed within this sim-
ulated environment, changes in the world are be logged with
a God’s eye view and translated into logical statements. Ob-
viously, a simulation is only an abstracted model of reality
and will therefore not always produce the exact result, but it
is likely to be much better than what logical inference on a
limited, axiomatized model will yield.

Based on the simulation result, the robot can answer
queries regarding the outcome of an action, e.g. if the de-
sired result has been obtained, or if unexpected events like
collisions have occurred. From these results and data col-
lected during actually performed actions, the robot can learn
models of what it can do, how fast it can do something, or
what can go wrong with which actions. It can also answer
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questions regarding why something was done, or search for
solutions why something failed.

3.7 Interaction with Humans

Interacting with humans means to communicate, verbally
and non-verbally. Verbal communication skills are impor-
tant to receive commands and to ask for more information
or confirmation. Understanding natural language is thereby
challenging, not only due to ambiguities, but also since hu-
mans are used to communicate with people that have similar
common-sense knowledge. Therefore, they convey much in-
formation with very few words that need to be interpreted in
the right context.

Another aspect is non-verbal communication, that is both
to recognize human actions and intentions and to show the
own intentions. Performing actions similar to humans, for
example using a similar sequence of actions, similar tra-
jectories, or similar arm postures, can make them easier to
understand. Though these challenges are closely related to
perception and planning, the robot also needs knowledge to
interpret observations of human actions and to parametrize
the action execution.

Our Approach: Verbal Communication and Knowledge-
Based Action Interpretation For understanding natural
language, we have the techniques that are described in [25]
in the context of importing task instructions from the WWW.
Since the methods are fast, reliable, and able to understand
reasonably complex instructions, they can also be used for
(near) real-time communication.

We consider non-verbal communication, such as non-
intrusive observation of human activities, similarly impor-
tant. The Automated Models of Everyday Activities (AM-
EvA, [2]) integrate techniques for human motion tracking,
for learning motion primitives, for motion segmentation, and
for abstracting from motions to actions and activities with
statistical relational models describing action properties in
the complete activity context. All these modules can be ac-
cessed from the robot’s knowledge base to analyze observed
activities from different viewpoints and at different granular-
ities. Parts of the system have been applied, in conjunction
with a transformational planning system, to the imitation of
observed human manipulation activities [24]. By perform-
ing tasks similar to humans, they can better be understood
by people.

4 Conclusions

On the one hand, knowledge processing is an essential re-
source for autonomous robots that perform complex tasks
in dynamic environments. Robots need advanced reason-
ing capabilities to infer the control decisions required for

competently performing complex tasks like everyday ma-
nipulation. Their knowledge processing system has to pro-
vide them with common-sense knowledge, with the ability
to reason about observations of the environment, and with
methods for learning and adapting over time. On the other
hand, though knowledge representation and reasoning are
well-established techniques in AI, their application to the
problems in robotics is anything but trivial and poses sev-
eral hard research challenges. Symbol grounding, reasoning
about complex relations while taking uncertainty into ac-
count or learning in a complex environment are only some
of the challenges. Issues like the acquisition of the large
amount of required knowledge, the prediction of the out-
come of complex actions, or the interaction with humans
also need to be tackled.

We believe that robotics can provide both an interesting
application and a set of challenging research problems to the
area of knowledge representation and reasoning.
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