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Abstract
Aquaculture is an extremely valuable and rapidly expanding sector worldwide, but concerns exist related to environmental
sustainability. The sediment below aquaculture farms receives inputs of antimicrobials, metal-containing products, and organic
matter from uneaten food and fecal material. These inputs impact the surrounding marine microbial communities in complex
ways; however, functional diversity shifts related to taxonomic composition remain poorly understood. Here, we investigated the
effect of pollution from marine fish farms on sediment bacterial communities. We compared the bacterial communities and
functional bacterial diversity in surface sediments at salmon aquaculture and reference sites in Chiloé, southern Chile, using
Roche 454 pyrosequencing of the 16S ribosomal RNA (rRNA) gene and the predictive metagenomics approach (Phylogenetic
Investigation of Communities by Reconstruction of Unobserved States, PICRUSt). Bacterial diversity, measured as the inverse
Simpson index, was significantly lower at aquaculture than at reference sites, while species richness, based on Chao’s estimator,
was not significantly different. Nevertheless, community composition differed significantly between reference and aquaculture
sites. We found that Gammaproteobacteria and several taxa involved in remediating metal contamination and known to have
antimicrobial resistances were enriched at aquaculture sites. However, PICRUSt predicted functions indicated a degree of
functional redundancy between sites, whereas taxonomic-functional relationships indicated differences in the functional traits
of specific taxa at aquaculture sites. This study provides a first step in understanding the bacterial community structure and
functional changes due to Chilean salmon aquaculture and has direct implications for using bacterial shifts as indicators of
aquaculture perturbations.
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Introduction

Salmon aquaculture has rapidly expanded and Chile is the
second largest producer of Salmo salar, after Norway (Food

and Agriculture Organization of the United Nations, FAO
2016). The world population is expected to reach ~ 9 billion
by 2050, with aquaculture activities playing a key role in its
growth (Bostock et al. 2010; World Bank 2013). However,
intensive salmon production systems require exogenous feed
inputs (Buschmann et al. 2008). Uneaten fish feed, fecal mat-
ter, and excretory products accumulate in sediments below
fish cages (Carroll et al. 2003; Buschmann et al. 2006) and
form a layer of soft black sediment (Holmer et al. 2008).
These sediments have lower pH (Hargrave et al. 1993), higher
concentrations of organic matter, and greater accumulation of
nutrients, particularly phosphorus and nitrogen compounds
(Karakassis et al. 1998), than reference areas. These organic
inputs modify the physical and chemical properties of the
sediment and influence biogeochemical processes, which alter
the structure of benthic microbial communities (McCaig et al.
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1999; Asami et al. 2005; Kawahara et al. 2009; Fodelianakis
et al. 2015). Organic inputs from Chilean salmon aquaculture
also shift stream ecosystems to a more heterotrophic state,
which impairs ecosystem health (Kamjunke et al. 2017).

Bacterial communities present in marine sediments provide
the important ecological role of nutrient cycling, mineraliza-
tion, degradation, and diagenesis of organic matter (Deming
and Baross 1993; Gooday 2002; Vezzulli et al. 2002;
Buschmann et al. 2008). These communities also play a vital
role in the transformation of pollutants (Benoit et al. 2003;
Smith and Hollibaugh 1993); however, it remains unknown
how inputs from salmon farming in Chile modify these bac-
terial communities. The use of antimicrobials for preventing
and controlling pathogens in salmon aquaculture is common
in Chile, and has resulted in an increased antibiotic resistance
of bacteria in the environment (Miranda and Zemelman
2002a, b; Buschmann et al. 2012). Fish farmers also use
metal-containing products and other pharmaceuticals to pre-
vent fouling, to feed and to treat fish in order to limit the
spread of infections (Burridge et al. 2010). This has resulted
in elevated copper (O’Brien et al. 2009) and zinc (Simpson
and Spadaro 2012; Simpson et al. 2013) concentrations in
sediments. Because microbial communities respond rapidly
to environmental variation, identifying changes in sediment
microbial composition and function represents a useful indi-
cator of aquaculture impacts on coastal environments.
However, the changes in sediment bacteria communities in
and around aquaculture operations is complex and results
from the combination of heavymetals, antibiotics, and organic
depositions. Therefore, scientific attention to understand envi-
ronmental complexities and to characterize impacts is critical.

Most of our knowledge regarding the environmental im-
pact of salmon cage culture has resulted from studies on shifts
in benthic macrofaunal communities (Carroll et al. 2003;
Macleod and Forbes 2004; Tomassetti and Porrello 2005;
Hall-Spencer et al. 2006). Many of these studies used video
surveillance and identified macrofauna and meiofauna to in-
dividual species level within each sample, which requires
large monetary, time, and skill investment to provide insight
into impact (Castine et al. 2009). For the successful character-
ization of impacts, stable macrofauna distributions, low wave
and current activity, and low water turbidity are necessary.
However, macrofauna communities tend to be highly variable
in space and time. In addition, strong tidal currents, high
depths (> 60 m) and turbidity associated with the salmon-
aquaculture region can inhibit the ability to monitor macro-
fauna communities. Due to the rapid proliferation of salmon
aquaculture in southern Chile, the improvement of monitoring
programs in relation to salmon cage culture is important.
Changes in bacteria community structure and abundance have
been used as a monitoring tool to investigate the impact of fish
farms in Tanzania (Bissett et al. 2007) and in the tropics
(Castine et al. 2009). Additionally, studies of subsurface

sediments below fish cages have demonstrated increases in
bacterial abundances compared to reference sites (Mirto
et al. 2000; Vezzulli et al. 2002; Bissett et al. 2007; Castine
et al. 2009), changes in bacterial community structure (Bissett
et al. 2006, 2007, 2009; Garren et al. 2008), and functionality
(Christensen et al. 2000; Holmer et al. 2003; Bissett et al.
2009), indicating that identifying bacterial community chang-
es provides valuable insights regarding the ecosystem-wide
response to aquaculture pollution and the potential biogeo-
chemical process modifications.

In soft-bottom communities, microbes provide important
ecological services such as nutrient cycling and organic matter
mineralization, so understanding the effect of pollution from
aquaculture is critical to understanding the ecosystem-wide
response (Bissett et al. 2006; Castine et al. 2009). The re-
sponse of bacterial communities to aquaculture inputs has
remained unexplored until recent years; however, advances
in molecular techniques have enabled in-depth studies of the
response of benthic bacterial communities to organic deposi-
tions from aquaculture. To our knowledge, studies providing
in-depth analyses of microbial community composition and
metabolic function of aquaculture-exposed environments in
Chile remain scarce and require attention to target more spe-
cific and complex ecological studies. Microbes are generally
the first organisms to respond to chemical and physical chang-
es in the environment and, due to their low trophic level, can
be used as indicators of environmental change (Zak et al.
2011). Sediments under fish farms provide suitable tools to
monitor the response of bacterial communities to aquaculture
perturbations, because inputs and organic load are constantly
monitored and deposited, and the deposition site is known
(Fodelianakis et al. 2015). Furthermore, non-impacted sites
with similar physicochemical characteristics for comparison
are easy to find (Bissett et al. 2007). However, the structure of
sediment bacterial communities depends largely on the geo-
graphic region (Fodelianakis et al. 2015). In Chile specifically,
there are concerns regarding the impacts of fish farming on
previously pristine marine environments (Buschmann et al.
2006), and it remains unknown how aquaculture inputs affect
these sediment bacterial communities.

The aim of this study was to examine changes in sediment
bacterial communities associatedwith salmon aquaculture and
the potential links between functional inferences and commu-
nity structure variation.We compared sediment bacterial com-
munity compositions from reference and salmon aquaculture
sites in the coastal waters of Chiloé in southern Chile to gain
insight into the natural bacterial community composition, di-
versity, and metabolic function in southern Pacific coastal
sediments and their response to organic loading and pollution
resulting from salmon aquaculture. This study provides base-
line information on bacterial composition modifications
resulting from complex environmental modifications
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associated with salmon aquaculture; therefore, we discuss im-
portant future studies.

Materials and methods

Field site and sampling

Sediment samples were obtained in November 2012 in the
coastal waters of Chiloé, Chile (Traiguén, Quenac North,
and Quenac South; 42°32′01.3^ S, 073°23′52.8^ W)
(Fig. 1). This region of Chiloé is characterized by strong tidal
currents (up to 18–20 cm s−1), surface temperature ranges of
14–16 °C during spring, and a salinity of 30 ppt (Buschmann,
unpublished data). From each of the three locations, sediment
was collected from a commercial-scale salmon farm (> 1000
tons of production) site and a reference site. Sediment samples
were obtained as close as possible to pens (< 50 m) at a depth
of 30–45 m. The organic matter content was > 3.5%, indicat-
ing that the sediments were influenced by aquaculture (e.g.,
Carroll et al. 2003; Soto and Norambuena 2004). Chemical
changes in sediments due to aquaculture have been identified

in southern Chile (Table 1), and we, thus, infer similar condi-
tions at aquaculture sites. Reference sites were located ca.
2.5 km from salmon aquaculture sites (black symbols; Fig. 1).

At each site, the diver retrieved sediment cores (15 cm
inner diameter; N = 3). Immediately after retrieval, the surface
sediments of each core (1–2 cm) were collected using a sterile
sampling device. Collected samples were placed in tagged
plastic bags, stored in a cooler with gel packs, and brought
to the laboratory (Centro i-mar in Puerto Montt) within 6 h,
where they were frozen at − 80 °C until further analysis. Thus,
we collected nine samples from reference sites and nine sam-
ples from aquaculture sites, for a total of 18 samples from both
sites.

Laboratory and sequencing analysis

DNA was extracted using a modified version of the hot
detergent/CTAB DNA extraction protocol (Zhou et al.
1996), using 5 g of sediment, 13.5 mL of extraction buffer,
100 μL Protease K, incubating with 1.5 mL of 20% SDS, then
re-extracting with 4.5 mL of extraction buffer and 0.5 mL of
20% SDS. Extracted DNAwas verified and quantified by 1%

AQN
RQN AQS RQS

ATR

RTR

Fig. 1 Locations of aquaculture and references sites of sampling in Chiloé, Chile. The aquaculture sites sampled were Quanac North (AQN), Quenac
South (AQS), and Traiguén (ATR). Subsequent reference sites sampled were Quanac North (RQN), Quenac South (RQS), and Traiguén (RTR)
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agarose gel electrophoresis with DNA marker (100–1000 pb,
500 ng/mL Winkler). A second quantification and quality
check was performed by spectrophotometry using a Tecan
Infinite® 200 PRO (Gene X-Press, Santiago, Chile). A
Labconco CentriVap® Vacuum Concentrator was used to
dry DNA extracts.

Dried samples were sent to Macrogen, Ltd. (Seoul, Korea)
for bacterial tag-encoded FLX-Titanium amplicon pyrose-
quencing (TEFAP) on the 454 GS FLX System (Roche) using
standard protocols (Sun et al. 2011). Bacterial 16S ribosomal
RNA (rRNA) gene amplicons were sequenced on 1/8th of a
plate using Roche 454 sequencing technology with Titanium
chemistry.

The sequence processing was performed using the program
mothur v.1.31.2 (Schloss et al. 2009) with default command
parameters, unless specified. Raw sequences were processed
by barcode, primers, length, and quality, and were denoised
with the PyroNoise algorithm (Quince et al. 2009). The se-
quences were checked for chimeras using Perseus (Quince
et al. 2011) and UCHIME (Edgar et al. 2011) sequentially,
and were a l igned to the Greengenes re f e r ence
(gg_13_8_99). The cluster command was used to assign se-
quences to operational taxonomic units (OTUs) using the
nearest-neighbor algorithm. All subsequent OTU-based anal-
yses were performed using a 97% sequence similarity cutoff.
Taxonomic analysis of representative OTUs was conducted in
mothur using the Greengenes 16S rRNA gene database
(DeSantis et al. 2006). Sequences are available via the NCBI
Sequence Read Archive (http://www.ncbi.nlm.nih.gov/sra)
under accession number (PRJNA302218).

We used the bioinformatics tool Phylogenetic Investigation
of Communities by Reconstruction of Unobserved States
(PICRUSt) v.1.1.0 (Langille et al. 2013) to gain further insight
into the putative metabolic functions of bacteria enriched at
aquaculture sites. This program uses marker genes, in this
case, 16S rRNA, to predict metagenome functional content.
The metagenome gene functional content predictions are

precalculated for genes in databases including the Kyoto
Encyclopedia of Genes and Genomes (KEGG) (Kanehisa
and Goto 2000) and Clusters of Orthologous Groups of pro-
teins (COG). In the present study, we used the KEGG database
and functional predictions were assigned up to KEGG
Orthology (KO) tier 3 for all genes. To simplify analysis, only
tier 1 functions of Bmetabolism^, Bgenetic information
processing^, Benvironmental information processing^, and
Bcellular processes^ were analyzed further, as the categories
of Borganismal systems^ and Bhuman disease^ were thought
to be poorly relevant to environmental samples. The accuracy
of the metagenome predictions was evaluated using weighted
nearest sequenced taxon index (weighted NSTI) scores
(Langille et al. 2013).

Data analysis and statistics

Differences of community richness were assessed using the
Chao estimator (Chao 1984). Community diversity was ex-
amined using the inverse Simpson index (Simpson 1949),
which takes species richness and species abundance into ac-
count. To compare samples on an equal basis, all samples
were rarefied to even sampling depths prior to statistical
analysis.

The metastats command in mothur was used to detect dif-
ferentially abundant OTUs from aquaculture and reference
sites. The thetayc calculator (Yue and Clayton 2005) was used
to calculate the dendrogram describing the similarity between
the structures of reference and aquaculture communities based
on the OTUs in mothur. Non-metric multidimensional scaling
(NMDS) was performed in mothur using the Bray–Curtis dis-
tances between samples and the resulting ordination was vi-
sualized using ggplot2 (Wickham 2009) in the statistical soft-
ware R 3.1.1 (R Core Team 2016). Bray–Cutis OTU-based
analysis of similarity (ANOSIM) (Clarke 1993) was per-
formed to test for significant differences between reference
and aquaculture samples using 1000Monte Carlo permutation

Table 1 Water quality
measurements in the bottom
waters and sediments near salmon
farming on marine sediments in
southern Chile

Variables Reference Aquaculture P-value

Bottom waters

O2 (mg L−1) 8.12 ± 0.75 7.5 ± 0.75 0.06

Delta redox (mV) 2.6 ± 64.3 − 109.8 ± 24,094.2 < 0.0001

Redox (mV) 279.4 ± 3144.9 221.6 ± 28,197.2 0.75

Sediment measurements

Nitrogen (mmol k−1) 31.9 ± 14,138.1 124.1 ± 206,189 0.0001

Phosphorus (mmol k−1) 20.7 ± 1478 114.8 ± 393,529 < 0.00001

Carbon (mmol k−1) 192.2 ± 201.5 412.6 ± 557.9 0.001

Particulate organic matter (%) 2.09 ± 2.41 4.41 ± 14.20 0.017

The data presented are averages and variances from 29 active salmon farm sites with their respective reference
sites (from Soto and Norambuena 2004)
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tests in the vegan R package (Oksanen et al. 2013). t-Tests
were used to determine the minimum significant difference in
relative abundance species richness (Chao1) and diversity (in-
verse Simpson) of bacteria between reference and aquaculture
samples in R. We tested for statistical significance between
aquaculture and reference functional predictions using linear
discriminant analysis effect size (LEfSe) (Segata et al. 2011).
Spearman correlations relating inferred functional abundance
from PICRUSt and taxonomic class abundances were per-
formed for aquaculture and reference sites using R. All statis-
tical analyses were evaluated at α = 0.05.

Results

Bacterial community composition, richness,
and diversity

The final OTU dataset consisted of 43,267 reads, with a mean
of 7212 sequences per sample (Table 2). The number of ran-
domly subsampled sequences used for normalization from
each replicate sample was 1195, for a total of 21,510 se-
quences, respectively. At 97% sequence similarity, the rare-
faction curves were relatively saturated, indicating that se-
quencing effort captured a large proportion of the taxa present
in each sample (Fig. S1). The total number of OTUs observed
in each site is shown in Table 2 and the number of OTUs per
replicate is shown in Table S1. By using the most recent
Greengenes database, we demonstrated that more than 97%
of tags could be unambiguously mapped at the genus level.

The OTUs were classified into 47 bacterial classes and the
majority of these classes made up less than 1% of the bacterial
community at each site. Gammaproteobacteria was the most
abundant class at reference (29.1%) and aquaculture (51.3%)
sites and represented a greater proportion of the bacterial

community at the aquaculture sites (Table 3). The relative
abundance of Bacilli decreased at all aquaculture sites.
Pairwise comparisons between respective reference and aqua-
c u l t u r e s i t e s r e v e a l e d d i f f e r e n c e s ( F i g . 2 ) .
Gammaproteobacteria was enriched at AQN and AQS,
whereas it slightly decreased in ATR. The relative decrease
of Bacilli (28.9% to 3.1%), Gammaproteobacteria (10.7% to
24.2%), and Alphaproteobacteria (36.8% to 8.2%) was com-
pensated by the relative increase in Flavobacteriia (18.8% to
35.3%), Epsilonproteobacteria (0% to 11.1%), and
Actinobacteria (0.5% to 8.7%) at AQN (Fig. 2). The relative
decrease of Bacilli (37% to 8.7%) and Alphaproteobacteria
(23%% to 21.9%) was compensated by the relative increase
in Gammaproteobacteria (18.2% to 48.7%), Planctomycetacia
(0.5% to 1.2%), and Acidimicrobiia (0.6% to 1.2%) at AQS
(Fig. 2). The differences between ATR and RTR were less
severe and the only phyla that were slightly enriched at ATR
were Deltaproteobacteria (1.5% to 1.7%) and Actinobacteria
(0.4% to 0.8%). Within the class Gammaproteobacteria,
Psychrobacter was enriched at all aquaculture sites,
Shewanella was enriched at AQS, and Glaciecola was
enriched at RTR (Fig. 2). Within Bacilli, Exiguobacterium
d e c r e a s e d a t a q u a c u l t u r e s i t e s a n d w i t h i n
Alphaproteobacteria, Loktanella decreased at all aquaculture
sites. Within Flavobacteriia, Olleya was enriched at AQN,
AQS, and RTR (Fig. 2).

Bacterial communities were dissimilar between reference
and aquaculture sites (ANOSIM, R = 1.5, P = 0.03).
Additionally, when the bacterial community composition of
the 18 sediment samples from reference and aquaculture sites
was compared using an OTU-based approach, the results re-
vealed differences between sample types (Fig. 3, Fig. S2). The
bacteria community structure of Quenac South aquaculture 2
(AQS2) and Traiguén reference 3 (RT3) differed from all oth-
er samples and sites. All reference samples clustered together,

Table 2 Observed number of
sequences, observed operational
taxonomic units (OTUs), and
coverage for 16S ribosomal RNA
(rRNA) gene libraries of each site

Librarya No. of sequencesb Normalizationc

OTUs coverage (%) Observed OTUs Inverse Simpson Chao1

RQN 7923 93.6 133 8.9 275.4

RQS 6109 93.6 126 12.6 316.5

RTR 7923 92.3 146 6.1 321.2

AQN 7703 92.7 145 5.4 331.9

AQS 8329 93.4 124 5.3 301.5

ATR 5280 92.5 144 4.6 317.4

a RQN, reference Quenac North; RQS, reference Quenac South; QTR, reference Traiguén; AQN, aquaculture
Quenac North; AQS, aquaculture Quenac South; ATR, aquaculture Traiguén
b Total number of sequences obtained from three replicates in each sample
c Data were calculated at the 3% genetic distance level based on the same number of sequences (1195/sample)
with mothur
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with the aquaculture site Quenac South 3 (AQS3) present.
Similarly, Traiguén reference 1 and 2 (RT1, RT2) were the
only reference sites present in the second cluster among aqua-
culture sites (Fig. S2). NMDS cluster analysis revealed similar
results, with RT1 clustered among aquaculture samples and
AQN3 clustered among reference samples (Fig. 3).

Bacterial diversity (inverse Simpson) differed significantly
(P = 0.04) between aquaculture and reference sites, with
higher diversity in reference (9.48 ± 6.25) than in aquaculture
(5.32 ± 2.07) sites (Table 2). The species richness (Chao1)
ranged from 275.4 to 331.9, with no statistical differences
(P > 0.05) between salmon aquaculture and reference sites,
indicating that it is less sensitive than diversity to pressures
caused by pollution from aquaculture.

Functional characterization of bacterial communities

The PICRUSt metagenome predictions had NSTI scores rang-
ing from 0.13 to 0.14, with an overall mean of 0.14 ± 0.003,
which was lower than that reported for sediment bacterial
communities (0.17 ± 0.02; Langille et al. 2013). Lower
NSTI values indicate that microbes in each sample are more
closely related to sequenced genomes (Langille et al. 2013).
Notably, PICRUSt showed little variation in the abundances
of second- and third-tier KO functional gene annotations in
aquaculture and reference sites (Table 4 and Table S3). The
highest standard deviation observed within the tier 2 function-
al category was 0.08% of sequence reads in references sites
and 0.004% of sequence reads in aquaculture sites. When
third-tier functional categories were compared, the maximum
standard deviation for a category was 0.04% of sequence
reads in reference sites and 0.003% of sequence reads in aqua-
culture sites, suggesting similarities in the distribution and
abundance of functional traits within treatments.

To determine which bacterial classes may be contributing
to differences in functional traits among sites, correlation anal-
yses were performed using PICRUSt inferences relating bac-
terial classes and genera (occurring at > 0.01% abundance)
with second-tier functional classifications (Table S3). A great-
er number of correlations were observed between functional
and taxonomic abundance in aquaculture sites. Overall, the
majority of the correlations were negative at reference sites,
and about half were negative and half were positive at aqua-
culture sites. Positive taxonomic-functional correlations
among the PICRUSt data, however, are likely a result of au-
tocorrelations, as functional traits were predicted from taxo-
nomic information (Staley et al. 2014). In aquaculture sites,
the abundances of almost all second-tier functions were also
correlated with the abundances of at least one of the most
abundant classes identified in either dataset (Table S2), most
notably the Gammaproteobacteria and Flavobacteriia. At the
genus level, there were the greatest number of correlations at
aquaculture sites with the second-tier function of amino acid
metabolism and, notably, Shewanella was correlated with a
number of second-tier functions (Table S3). In reference sites,
only one second-tier function, Bcarbohydrate metabolism^,
w a s c o r r e l a t e d w i t h a n a b u n d a n t c l a s s
(Gammaproteobacteria), while the rare Verrucomicrobiae
was the only other order with significant correlations. At the
genus level, Oceanibulbus was correlated with several
second-tier functions, but reference sites had less correlations
overall. Interestingly, none of the functional trait abundances
differed significantly between sites.

Discussion

We found a significant difference in the bacterial community
structure between aquaculture and reference sites. Several au-
thors have reported that bacterial community changes and
respiration processes in sediments below fish farms reflect
impacts from nutrient enrichment (Christensen et al. 2000;
Holmer et al. 2003; Bissett et al. 2007, 2009; Kawahara
et al. 2009). Nutrient enrichment from fish cages causes a
significant increase in bacterioplankton abundance and het-
erotrophic production (Sakami et al. 2003; Sarà 2007;
Garren et al. 2008; Navarro et al. 2008; Nogales et al. 2011),
as well as in the abundance of virus-like particles (Garren et al.
2008). In addition, the bactericidal action of antibiotics can
lead to changes in the composition of microbial communities
by selectively inhibiting susceptible bacteria (Nogales et al.
2011). Heavy metals are highly persistent and several authors
have demonstrated that heavy metal contamination signifi-
cantly shapes bacterial community composition (Quero et al.
2015; Yao et al. 2017). Therefore, it is possible that the chem-
ical changes in the aquaculture sediments (Table 1) were
reflected by the changes in bacterial groups identified in this

Table 3 Statistical test (metastats) results for class- and family-level
relative abundances between aquaculture and reference sites

Reference Aquaculture P-value

Class

Gammaproteobacteria 29.1 51.3 0.002*

Bacilli 24.2 9.47 0.009*

Family

Moraxellaceae 19.9 36.7 0.012*

Shewanellaceae 0.019 5.36 0.06

Pseudoalteromonadaceae 1.78 2.58 1

Halomonadaceae 0.24 3.25 0.24

Exiguobacteraceae 8.06 3.76 0.37

Bacillaceae 6.06 1.33 0.12

Rhodobacteraceae 21.8 13 0.15

*Indicates significant values
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study; however, more research is necessary to test this hypoth-
esis, and to separate the importance of the different compo-
nents that may affect these bacterial communities.

We found a significant decrease in bacterial biodiversity in
aquaculture sediments compared to reference sediments. This
conclusion was also supported by bacterial composition
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Fig. 2 The average relative
abundances of bacterial classes in
reference (RQN, RQS, RTR) and
aquaculture (AQN, AQS, ATR)
sites (a). Groups accounting for
< 1% of all sequences in all sites
are summarized in the group
BOthers^. The relative
abundances of bacterial genera in
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sites (b). Groups accounting for
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analysis, which indicated a significant difference in the com-
munity structure between sites. However, pairwise compari-
sons demonstrated that bacterial composition varied between

sites, which we assume results from differences in the combi-
nations of antimicrobials, heavy metals, and organic deposi-
tions that provide the sediment an increased amount of carbon,
nitrogen, and phosphorus (Hargrave et al. 1997; Ruohonen
et al. 1999; Storebakken et al. 2000). Unfortunately, we were
unable to obtain data on the fecal microbiotas of salmon reared
at the farms and recognize that this could explain pairwise
differences between sites; therefore, future studies should in-
corporate this into analyses.

The number of OTUs was higher in aquaculture sites.
Many studies have shown that impacted sites (from different
sources of pollution) and reference sites are rich in bacterial
OTUs (Fodelianakis et al. 2014, 2015; Sanz-Lázaro et al.
2015). In addition, some have demonstrated that impacted
sites are richer in bacterial OTUs than reference sites
(McCaig et al. 1999; Powell et al. 2003; Bissett et al. 2007;
Marcial Gomes et al. 2008), while others have found no dif-
ference between the two (Torsvik et al. 1996; Bissett et al.
2006; Zhang et al. 2008; Kawahara et al. 2009; Fodelianakis
et al. 2015). The differences in these studies may be attributed
to the differing dynamics of microbial communities in varying
locations, differing geological and chemical characteristics
(e.g., Bissett et al. 2006; Tamminen et al. 2011), or due to
the varying types or severity of the disturbance in each case.

Effects of salmon farming on bacterial community
structure

The NMDS showed a difference in the bacterial community at
aquaculture sites, a trend also noted in previous studies
(Bissett et al. 2006). Although recent studies use the
UniFrac-based distance calculation (Lozupone et al. 2011)
for comparing microbial communities, we found that the
Bray–Curtis index provided sharp contrasts on the differences
in the microbial community composition of aquaculture sites
studied. One of the most notable differences among sites was
the high abundance of Gammaproteobacteria at aquaculture
sites. This result corresponds with previous research of fish
farm sediments (Asami et al. 2005); however, those within
this class were related to potential sulfate-reducing bacteria
(SRB), whereas ours were not. PICRUSt inferences indicated
that Gammaproteobacteria could potentially be involved with
several functions at aquaculture sites, but not reference sites.
Additionally, Gammaproteobacteria has been found to be the
most significant clade present in most marine sediments (Li
et al. 1999; Bowman and McCuaig 2003; Inagaki et al. 2003;
Polymenakou et al. 2005), irrespective of pollution levels. In
general, many of these studies on aquaculture-impacted sedi-
ments (e.g., Bissett et al. 2006; Kawahara et al. 2009) have
shown varying bacterial community composition among sites
of organic enrichment, highlighting the need for more local-
ized studies focusing on the various inputs from aquaculture.
Microbes are at the bottom of the food chain; thus, changes in

Table 4 Percentages of predicted sequences assigned to second-tier
KEGG Orthology (KO) categories in the metagenomics dataset

Functiona Aquaculture Reference

Metabolismb 2.99 3.28

Amino acid metabolism 11.01 9.39

Biosynthesis of other secondary metabolites 0.96 0.83

Carbohydrate metabolism 9.96 8.35

Energy metabolism 5.92 4.98

Enzyme families 1.83 1.54

Glycan biosynthesis and metabolism 2.04 1.72

Lipid metabolism 4.09 5.24

Nucleotide metabolism 3.3 3.7

Metabolism of cofactors and vitamins 4.46 4.05

Metabolism of other amino acids 1.83 1.92

Metabolism of terpenoids and polyketides 2.21 1.87

Xenobiotics biodegradation and metabolism 3.37 3.77

Genetic information processingb 2.46 2.42

Folding, sorting, and degradation 2.33 2.38

Replication and repair 6.73 5.64

Transcription 2.5 2.87

Translation 4.52 3.86

Cellular processes and signaling 3.71 3.11

Environmental adaptation 0.13 0.44

Membrane transport 10.58 8.88

Signaling molecules and interaction 0.16 0.57

Cell communication 0.001 0.09

Cell growth and death 0.54 0.99

Cell motility 3.09 3.23

The blank lines separate tier 1 KO categories
a Functional categories for which no reads were assigned or omitted
b Predicted function only assigned at the first tier

Fig. 3 Non-metric multidimensional scaling (NMDS) ordination of the
community structures calculated with Bray–Curtis distances
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their taxonomic structure and diversity would influence higher
trophic levels in coastal sediment communities. The enrich-
ment of Gammaproteobacteria and the difference in specific
microbial diversities at the different aquaculture sites may
result from biological traits to adapt, survive, and replenish
under the predation pressure, inter- and intraspecific competi-
tion resulting from temporal and spatial environmental chang-
es driven by salmon aquaculture.

The presence of metals at these sites is likely, as specific taxa
involved in remediating metal contamination were enriched at
aquaculture sites. Microbacterium, Psychrobacter, and
Shewanella were significantly enriched at aquaculture sites and
this enrichment could be explained by several reasons. Several
Microbacterium strains are tolerant to heavymetals such as nick-
el, cobalt, and cadmium (Brown et al. 2012; Iyer et al. 2017).
Psychrobacter strains can resist and accumulate several metals,
specifically cadmium, lead, zinc, and copper (Abd-Elnaby et al.
2016). Interestingly, Psychrobacter has been isolated from the
kidney of salmonids at several aquaculture sites in Scotland
(McCarthy et al. 2013) and has previously been isolated from
Chilean salmon farms (Roberts et al. 2014). Shewanella are an-
aerobic metal reducers and have been identified as a commonly
occurring intestinal bacterium for salmon (Navarrete et al. 2009).
High concentrations of metals, specifically copper and zinc, have
been found under cages at fish farms treated with anti-fouling
paints (Simpson et al. 2013; Nikolaou et al. 2014). These paints
are used in Chilean salmon aquaculture to prevent biofouling on
nets, which is critical to maintaining good water flow, ensuring
high dissolved oxygen concentrations, and maintaining fish
health. Zinc is also a lesser component of paint formulation and
is also a dietary additive in salmon feed (Maage et al. 2001).
Interestingly, copper and zinc concentrations in sediments did
not change when they were monitored over a 12-month
fallowing period (Macleod et al. 2014), which suggests that, even
if we sampled during a recovery period, the potential presence of
metals in the sediment is likely, thus affecting the bacterial com-
munities. However, further research is necessary to characterize
potential microbial remediation of metal contamination at aqua-
culture sites and the various environmental and anthropogenic
pressures at each aquaculture site.

The presence of residual antimicrobials in aquaculture sed-
iments is likely, as several genera resistant to antibiotics were
enriched at these sites. Antimicrobials used in aquaculture are
administered to fish mostly in food (Cabello 2006), which
results in increased antimicrobial concentrations in sediments
below cages (Armstrong et al. 2005), from where they can be
carried by currents to sediments at distant sites (Buschmann
et al. 2012). These antimicrobials are the principal selective
pressure for antibiotic resistance in sediment bacteria (e.g.,
Dang et al. 2007; Tomova et al. 2015), and the impact of this
process leads to changes in sediment bacteria diversity by
replacing susceptible communities of bacteria with resistant
ones (e.g., Miranda and Zemelman 2002a; Kim et al. 2004).

Tomova et al. (2015) found that bacteria from the genera
Cobetia , Pseudoalteromonas , Psychrobacter, and
Shewanella at Chilean aquaculture sites harbored multiple
antibiotic-resistant genes. These generawere enriched at aqua-
culture sites, specifically, AQS, AQN, all aquaculture sites,
and AQS, respectively. Pseudoalteromonaswas also enriched
at RTR, which may indicate that these antimicrobials are af-
fecting distant sites; however, further research is necessary to
test this hypothesis and measure antimicrobial concentrations
in sediments at Chilean aquaculture and reference sites.

One of the anomalies in our dataset was the low abundance
of Desulfobacterales at aquaculture sites (0.17% mean abun-
dance). Desulfobacterales are an order of strictly anaerobic
SRB and have been found in bacterial communities at aqua-
culture sites (Bissett et al. 2006; Dowle et al. 2015). SRB play
a significant role in the mineralization of organic matter in
anaerobic environments and in the biogeochemical cycling
of sulfur. Kawahara et al. (2009) reported a high abundance
of SRB in sediment around torafugu (Takifugu rubripes) farm
sediments (< 100 sequences per sample). Other researchers
have used quantitative polymerase chain reaction (PCR) ap-
proaches and have shown that organic enrichment associated
with marine fish farms influences the abundance of SRB
(Kawahara et al. 2008; Kondo et al. 2008, 2012). We did not
carry out chemical analysis and are unable conclude if the high
organic matter content in the sediments led to the formation of
anaerobic sediment. Additionally, we do not understand tem-
poral bacterial community changes associated with salmon
aquaculture fallowing strategies, which complicates compre-
hension of these results. Since 2010, new regulations in Chile
require area-specific fallowing periods, and this subject
requires further attention in order to understand how
bacterial community modifications affect ecosystem
functioning. Macleod et al. (2008) reported that the main eco-
logical functions in affected benthic habitats were re-
established after 12 months under Australian salmon farms,
but there was no evidence regarding bacterial community
changes. Additionally, due to logistical constraints, samples
were stored on ice for several hours prior to freezing. The
possibility that changes in bacterial community composition
occurred during this period cannot be excluded, and we rec-
ommend that direct freezing in liquid nitrogen is used for
future studies. Thus, we suggest further collection, isolation,
sequencing, and characterization, including detailed chemical
analysis of sediments, due to the importance of this group to
sulfur cycling in sediments under fish farms.

Functional changes resulting from salmon
aquaculture

Many of the predicted functional profile abundances were
redundant between bacterial communities in reference and
aquaculture sites. It is useful to supplement 16S rRNA
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analyses with metagenome studies, especially for broad sur-
veys with microbial ecology applications. Several studies
have demonstrated that this stable profile is due to the exis-
tence of functional gene redundancy among bacterial commu-
nities (Fernandez et al. 2000; Schimel et al. 2007; Fierer et al.
2012). Additionally, despite the quality of the functional pre-
dictions by PICRUSt, they are largely dependent on the avail-
ability of annotated reference genomes. These results should
be interpreted cautiously, as PICRUSt may not be useful for
high-resolution studies of functional ecology in diverse and
especially perturbed ecosystems until their accuracy is better
evaluated and/or databases are improved. A recent study
found differences in the relative abundance between
PICRUSt inferences and shotgun metagenomic data for every
second-tier functional trait (Staley et al. 2014). Although we
obtained relevant information on the functions of specific
groups through PICRUSt analysis, a shotgun metagenomic
study would be valuable to allow for an accurate quantitative
assessment of the distribution of functional traits in this
ecosystem.

Comparisons of taxonomic-functional correlations between
bacteria communities in aquaculture and reference sites suggest
less functional redundancy among specific members at each site.
Several abundant taxa were correlated with functional traits in
aquaculture sites, notably Gammaproteobacteria, Flavobacteriia,
and Alphaproteobacteria, but Synechococcophycideae also pre-
sented a high number of correlations that do not belong to one of
the most abundant groups. In reference sites, the rare
Verrucomicrobiae presented a high number of correlations.
These data point to an important role of relatively rare groups
in the community, by keeping important connections on a larger
scalewith other groups and displaying important functional traits.
A previous study characterizing functional and taxonomic diver-
sity of marine sediments found that the organic carbon content of
sediments may be important in structuring communities, more so
than geography (Kimes et al. 2013). Another recent study sug-
gested that the responses of functional traits to heavy metal con-
tamination depended more on environmental changes, while
stochasticity played an important role in the formation and suc-
cession of phylogenetic composition for microbial communities
(Ren et al. 2016). Similarly, a previous study showed that sto-
chastic processes played important roles in controlling the assem-
bly and succession of the groundwater microbial community
(Zhou et al. 2014). In this study, we provide a snapshot of bac-
terial communities at aquaculture and reference sites. We specu-
lated that selection strength, mainly changes induced by aquacul-
ture, shaped and directed the functional shift pattern of sediment
bacterial communities, but their taxonomic composition had var-
ious shift patterns to achieve the same functional shift because
similar functional genes are widely distributed. For example,
various taxa, including those enriched at aquaculture sites, were
correlated to several functional traits at aquaculture sites, but not
at reference sites. So, eachmicrobial population correlated with a

specific function at only aquaculture sites had a chance to be-
come more abundant at these sites, in theory. However, more
research is necessary to test this hypothesis using environmental
data and considering time variation of these communities.

Marine sediments are affected by the interaction of geolog-
ical, hydrological, physicochemical, and biological factors,
and function as reservoirs of absorbed nutrients, pesticides,
toxic materials, and heavy metals (Köster and Meyer-Reil
2001). The structure of bacterial communities is sensitive to
changes in environmental conditions (Danovaro et al. 2000),
especially when subjected to nutrient input related to anthro-
pogenic activity (Hansen and Blackburn 1992), such as aqua-
culture. Aquaculture affects these communities in complex
ways as a result of organic inputs, and through the use of
antimicrobials, pesticides, and anti-fouling agents.
Unfortunately, we did not measure environmental parameters
and simply provide a snapshot of these bacterial communities
at one time as a first step in characterizing changes resulting
from aquaculture. The seasonal variability in marine bacterial
communities (e.g., Fuhrman et al. 2006), their ability to re-
spond rapidly to environmental changes, the patterns they
exhibit in distribution and abundance as a result of environ-
mental variables (e.g., Du et al. 2013), and the complexities of
impacts due to aquaculture make it difficult to accurately as-
sess changes in relation to environmental variables at a single
time point. We also note the spatial and temporal variability in
environmental parameters at these locations and, therefore,
suggest that future studies incorporate multiple time points
to characterize impacts both spatially and temporally.

Bacterial communities as indicators of biotic integrity

The impacts of salmon cage farming on the surrounding mi-
crobial environments has been studied using various ap-
proaches, including physicochemical changes to sediments
(Buschmann 2002; Soto and Norambuena 2004), phytoplank-
ton and macrobenthos communities (Buschmann 2002;
Buschmann et al. 1994, 2008; Soto and Norambuena 2004;
Buschmann and Fortt 2005; Mulsow et al. 2006), and antibi-
otic resistance (Cabello et al. 2013). In Chile, research on the
environmental effects of salmon aquaculture and the impact
on adjacent environments remain scarce, especially in relation
to production level (Buschmann et al. 2009). Although valu-
able, the power of macrofaunal analyses is hindered because
these organisms vary within and among different patches at
one time, especially in temperate seasonal environments
(Zajac et al. 2013). Therefore, such analysis would require
rigorous sampling to understand changes resulting from cul-
ture cages (Fernandes et al. 2001). As microbial communities
rapidly respond to environmental changes, using differences
in benthic microbial community composition and function as
indicators of environmental perturbations represents a power-
ful monitoring tool. However, the benefits of this monitoring
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tool are limited without a proper understanding of the specific
drivers of such shifts.

Bacteria offer many advantages over other current or pro-
posed bioindicator species, as they are highly ubiquitous,
highly abundant in all sediment types (Wang et al. 2012),
small, and respond rapidly to environmental changes (Zak
et al. 2011). Thus, a minimal amount of sediment is required
for analysis. Current benthic macrofaunal techniques require
500–1000 g of sediment. In this study, we used 5 g of sedi-
ment, but this could likely be reduced further. We acknowl-
edge that this study only encompassed a small dataset and is
only representative of one type of condition, i.e., high water
flow. However, based on these preliminary findings and the
advantages conferred by working on bacteria using high-
throughput sequencing, a further spatio-temporal investiga-
tion over large sample sets to explore their potential as
bioindicators is warranted.

Although previous studies in Chile have addressed the mi-
crobial composition of bacterial mats proliferating in the sur-
face of impacted sediments (Aranda et al. 2010, 2015), studies
addressing changes in the microbial community composition
of sediments below and within proximity to salmon farms
remain absent. The physicochemical and subsequent sediment
bacteria community changes resulting from aquaculture are
complex, and it remains difficult to characterize which envi-
ronmental factors are driving such changes, as they may vary
temporally or spatially. Further investigations are needed to
elucidate how specific abiotic factors might explain variance
both temporally and spatially in bacterial community compo-
sition between aquaculture and reference sites, as well as be-
tween aquaculture sites. Additionally, a whole-genome shot-
gun (metagenomics) sequencing study would be valuable for
characterizing functional diversity and identifying rare spe-
cies. Such thorough characterization will allow for insight into
how these changes can influence other components of biogeo-
chemical processes. However, these results depend largely on
the geographic region and season, so more in-depth long-term
studies are necessary. Finally, with this understanding, the
application of this technique could be used as a monitoring
tool to understand the effects and changes and to reduce the
impact of aquaculture on coastal marine ecosystems.

Conclusion

The results of our investigation indicate that Chilean salmon
aquaculture affects taxonomic diversity, composition, and
function of sediment bacteria communities, indicating the im-
portance of understanding microbial communities and their
relevance to ecosystem functioning. This study offers a better
understanding of the relationships of salmon aquaculture and
bacteria in Pacific coastal ecosystems, and provides funda-
mental knowledge for remediating aquaculture-impacted

areas. Bacteria may be better indices of biotic integrity than
the laborious task of identifying sediment microbes, especially
with the advent of high-throughput sequencing, which enables
environmental bacterial diversity to be determined rapidly and
cost-effectively.
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