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Abstract Biodiesel can be defined as fatty acid methyl
esters (FAMEs) or fatty acid ethyl esters (FAEE) obtained
from the transesterification of triacylglycerides (TAGs)
from vegetable oils and animal fats; however, oleaginous
microalgae are emerging as potential substitutes of these
feedstocks for biodiesel production. The use of the green
microalga Chlamydomonas reinhardtii P. A. Dang as a
model system for lipid metabolism studies offers the
advantage that extensive physiological and genomic data
are available. The presence of naturally occurring FAMEs
has been reported previously in plants and microalgae. In
this study, oil extracts of C. reinhardtii batch cultures at the
end of the growth phase were analyzed before and after the
transesterification reaction to investigate the presence of
naturally occurring FAMEs in this microalga. As a result,
the presence of these compounds was observed in hexane
oil extracts of C. reinhardtii before transesterification. Five
FAMEs were identified by gas chromatography-mass
spectrometry (GC-MS) before and after transesterification,
while one additional FAME appeared only after trans-
esterification. Additionally, three FAEEs were also identi-

fied before and after the transesterification reaction.
Therefore, naturally occurring FAMEs and FAEEs are
reported in C. reinhardtii. These results will pave the way
for further studies on the biosynthesis of these compounds
in green microalgae, and their potential use as biofuels.
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Introduction

Biodiesel [fatty acid methyl esters (FAMEs) or fatty acid
ethyl esters (FAEE)] is considered a very attractive,
renewable and non-toxic fuel (Meng et al. 2011), which
can be used with existing technology for diesel consump-
tion. Currently, biodiesel is produced from oil crops like
rapeseed, soybean, oil palm and Jatropha curcas (Ma and
Hanna 1999; Muniyappa et al. 1996; Myint and El-Halwagi
2009), and also from waste vegetable oils (Canakci 2007);
likewise, algal oil has proved useful for this purpose (Xu et
al. 2006). Furthermore, microalgae have been suggested as
the only option with the potential to displace petroleum
fuels without affecting food supply or the environment
(Chisti 2008). Microalgae have high photosynthetic effi-
ciencies, rapid growth, can be grown in treated waste
waters, and can be used for CO2 sequestration (Schenk et
al. 2008). Both freshwater and marine microalgae have
been reported as suitable renewable oil sources, and studies
on their fatty acid composition have been reported (Chisti
2008; Gouveia and Oliveira 2009; Rodolfi et al. 2009). To
achieve high levels of biomass and oil production from
microalgae, culture conditions must be optimized (Xu et al.
2006); many microalgae produce substantial amounts of
storage lipids [triacylglycerides (TAGs)] for energy storage
under adverse environmental conditions such as nutrient
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starvation, particularly nitrogen limitation (Khozin-Goldberg
et al. 2002; Li et al. 2008; Mandal and Mallick 2009; Widjaja
et al. 2009), or under specific conditions of salinity,
temperature, pH, light intensity, and CO2 concentration
(Herrera-Valencia et al. 2011; Hu et al. 2008; Takagi et al.
2006). In addition, it is necessary to understand lipid
metabolism and how fatty acids and TAGs are synthesized
and accumulated within the cell. In plants, lipid metabolism
is better understood (Durrett et al. 2008), while in microalgae
the metabolic routes involved in lipid synthesis are less
studied and need further investigation. Chlamydomonas
reinhardtii is a model system for biological processes, for
which extensive physiological and genomic data are avail-
able (Merchant et al. 2007; Harris 2009). Early studies in this
microalga focused on its fatty acid composition using various
culture conditions (El-Sheekh 1993) as well as the structural
role of lipids in the membranes, the genes encoding proteins
involved in membrane biogenesis and glycerolipid synthesis,
and the function of lipids in signal transduction pathways
(Riekhof et al. 2005; Guschina and Harwood 2006; Vieler et
al. 2007). Recently, the mechanisms of TAG accumulation in
C. reinhardtii have attracted more attention (James et al.
2011; Miller et al. 2010; Siaut et al. 2011) since the
knowledge generated in this microalga could be applied to
improve the accumulation of TAGs for biodiesel (FAMEs or
FAEEs) production in other green microalgae. Biodiesel can
be produced by transesterification reactions or enzymatic
methods (Meng et al. 2011). Interestingly, FAMEs can be
produced naturally by plant cells, as it has been reported for
J. curcas (Annarao et al. 2008). The lipid profiling in
developing seeds of J. curcas revealed the presence of
FAMEs in hexane extracts of very young seeds (Annarao et
al. 2008). In the case of microalgae, naturally occurring
FAMEs have been reported previously in the freshwater
green microalgae Eudorina unicocca and Volvox aureus
(Zhang et al. 2009). Therefore, the aim of this study was to
determine the presence of naturally occurring FAMEs in the
model microalga C. reinhardtii. The results revealed the
natural occurrence of FAMEs along with FAEEs at the end
of the growth phase of C. reinhardtii cultures.

Materials and methods

The microalgal strain 137c (mt+) of C. reinhardtii was
kindly donated by E.H. Harris (Chlamydomonas Center;
http://www.chlamy.org/). All reagents and solvents were
analytical grade. The culture system consisted of two 2 L
Erlenmeyer flasks containing 1,800 mL complete Tris-
acetate-phosphate (TAP) medium (Harris 1989). The flasks
were inoculated with 10,000 cells mL−1; culture conditions
were 25±1°C, under a photoperiod of 16:8 light–dark cycle
at light intensity of 20 μmol m−2 s−1. For agitation, ambient

air was pumped through a 0.7 μm sterile fiber glass disc
(Millipore), bubbled through a humidifier and sparged at a
rate of 1.1 vvm. This system proved to maintain the sterility
of the culture. For the growth curve, samples were collected
daily for 10 days. Cell concentration was determined using
a Neubauer hemacytometer. Cells were harvested by
centrifugation and dried using a freeze dryer for 24 h. The
pellet was weighted and considered as dry biomass weight.

Prior to extraction of microalgal oil, biomass was
collected on day 7; cultures were centrifuged at 4,000 rpm
for 6 min at 25°C, the pellet obtained was kept at −80°C
overnight and then freeze-dried for 24 h. The dry pellet was
used for extraction with hexane in a Soxhlet apparatus for
8 h. The solvent was vacuum evaporated to obtain the algal
oil extract.

Analytical thin-layer chromatography (TLC) was carried
out on precoated silica gel aluminum plates (60 F254, 0.2 mm
thickness, Merck, Darmstadt, Germany) using hexane: ethyl
acetate: acetic acid (90:10:1) as solvent system. Lipids were
visualized by spraying a solution prepared with 20 g
phosphomolybdic acid and 2.5 g ceric sulfate in 500 mL
5% aqueous H2SO4. Column chromatography was con-
ducted with silica gel (60–200 mesh, J.T. Baker, Phillips-
burg, NJ), and the fractions were eluted with hexane and
different mixtures of hexane:ethyl acetate (90:10, 80:20,
70:30, 50:50 v/v) and ethyl acetate alone. The fractions were
analyzed by TLC and the solvent vacuum evaporated. Gas
chromatography-mass spectroscopy (GC-MS) analysis was
carried out in an Agilent 6890 N chromatograph equipped
with an Agilent 5975B mass selective detector. Compounds
were profiled on a 30 m×0.32 mm ID×0.5 μm film Agilent
DB-5 capillary column, carrier gas was He at 1.5 mL min−1.
Temperature conditions were: 120°C for 1 min, 15°C min−1

ramp to 180°C, 7°C min−1 ramp to 230°C and 10°C min−1

ramp to 300°C and hold for 60 min. Ionization voltage was
70 eV and sample injection volume was 2 μL.

For algal oil transesterification, the hexane fraction was
dissolved in 2 mL heptane and 300 μL of a sodium
metoxide solution (0.35% w/w) were added. In order to
homogenize the reaction medium, 300 μL ethyl acetate was
added. The reaction was carried out under agitation at 45°C
for 90 min, then left to settle and biodiesel was recovered
using a Pasteur pipette from the upper phase and analyzed.

Results and discussion

The C. reinhardtii growth curve is shown in Fig. 1. The end
of the exponential phase was reached at day 7 (4.17×106

cells mL−1), thus the microalgal biomass was collected for
lipid extraction on this day. Five independent microalgae
cultures were carried out and the following data were
obtained: cell concentration at the end of exponential phase
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of the culture was 4.23×106 cells mL−1±7.88×105; dry
biomass weight was 0.3 g L−1±0.054; oil extract weight
was 18 mg L−1±8.05. A low yield in lipid extract was
observed (6% of dry biomass weight), which is less than
the 21 % of lipid content reported before for this microalga
(Griffiths and Harrison 2009) or the 15% obtained when C.
reinhardtii was cultured for hydrogen production (Torri et
al. 2011). This low yield was probably due to different
culture conditions and/or the strain used, but most likely
due to the solvent used for lipid extraction. A mixture of
chloroform-methanol (2:1 v/v) has been used in microalgae
for total lipid extraction (Griffiths and Harrison 2009; Torri
et al. 2011). This solvent mixture usually extracts all lipids
present in the microalgal biomass including non polar lipids
(TAGs) as well as membrane-related polar lipids (Cooney
et al. 2009). Although lower lipid yields have been obtained
when using hexane as solvent (Widjaja et al. 2009), we used it
for lipid extraction since this solvent was used previously
when the natural occurrence of FAMEs was reported in J.
curcas seed oil (Annarao et al. 2008). Hexane has also been
reported for microalgal oil extraction in Chlorella proto-
thecoides (Miao and Wu 2006). Additionally, since we were
investigating the natural occurrence of FAMEs in C.
reinhardtii, we wanted to avoid any artifacts that could be
produced during the extraction using methanol, since this
solvent is usually used for transesterification of TAGs to
obtain FAMEs (Casanave et al. 2007).

The crude oil extracts were analyzed by TLC. Commer-
cial canola oil and biodiesel obtained from recycled oil in
our laboratory were used as references. The algal crude oil
extract contained compounds with the same retention factor
(Rf) of biodiesel, as well as compounds with a Rf similar to
that of TAGs (Fig. 2). The plate was similar to that
presented by Shah et al. (2004), where the spot
corresponding to biodiesel had a higher Rf than that of
TAGs. The presence of putative FAMEs in C. reinhardtii
crude oil extract was further corroborated using linoleic
acid methyl ester as standard (Fig. 2).

The hexane fraction from the column chromatography
contained mainly TAGs and putative FAMEs (Fig. 3). We
used this fraction to obtain biodiesel by transesterification.
The reaction medium was sampled after 5 min and then
every 15 min. We found that the reaction was completed

Fig. 1 Growth curve of Chlamydomonas reinhardtii

Fig. 2 Thin layer chromatography (TLC) analysis of C. reinhardtii
crude oil extract showing the presence of both TAGs and putative
FAMEs. Lanes: C Canola oil, B biodiesel from recycled vegetable oil,
E C. reinhardtii crude oil extract, M linoleic acid methyl ester standard

Fig. 3 TLC analysis of the transesterification reaction for the C.
reinhardtii oil fraction. Lanes: F Hexane fraction before transester-
ification; 1–7 reaction mixtures after 5, 20, 35, 50, 65, 80 and 95 min,
respectively
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after 5 min, as it was observed by TLC (Fig. 3).
Furthermore, we were able to produce biodiesel using the
crude algal extract under the same conditions (data not
shown).

The hexane fraction was analyzed by GC-MS before and
after the transesterification reaction. Overall, our results
showed the natural occurrence of FAMEs and also FAEEs
in C. reinhardtii. Five FAMEs and three FAEEs were
identified by their MS spectra before and after the trans-
esterification reaction (Table 1). An additional FAME, 7,10-
hexadecadienoic acid methyl ester, appeared only after
transesterification, which indicates that it came from TAGs
and was not present as a free methyl ester molecule. Major
FAMEs were C16:0 and C18:1 (Table 1), in agreement with
a previous work from this microalga (Tatsuzawa et al.
1996). The natural occurrence of C16 and C18 FAMEs has
also been reported in the green microalgae E. unicocca and V.
aureus (Zhang et al. 2009). We also found FAEEs (C16:0,
C18:1 and C18:2) which have not been reported before for
C. reinhardtii (Table 1). Other compounds like methyl
branched fatty acids have been found in Botryococcus
braunii (N-836), which were identified as 16-methyl
heptadecanoic (0.1% w/w total fat) and 5,9,13-trimethyl
tetradecanoic acids (trace amounts) (Dayananda et al.
2006). Two types of C-methyltransferases that act on
lipids have been identified in plants: sterol methyltrans-
ferases (Nes 2003) and cyclopropane fatty acid synthases
(Bao et al. 2002; Bao et al. 2003). Nevertheless, to date no
report on a FAME synthetase has been reported in plants
or microalgae.

In the present study, we found the presence of FAMEs
along with TAGs in oil extracts of C. reinhardtii, while in
the case of J. curcas seeds, these compounds were found at

different stages of maturation (Annarao et al. 2008).
Naturally occurring FAMEs were reported in small amounts
at early stages of seed maturation along with sterols in J.
curcas, but they almost disappeared while TAG content
increased as fruit ripened (Annarao et al. 2008). Since the
natural occurrence of FAMEs has been reported in plants
(Annarao et al. 2008) and microalgae (Zhang et al. 2009),
several questions arise regarding these observations. For
example, what would be the biological function of FAMEs
in the plant or microalgal cells? And what enzyme would
be responsible for the synthesis of these compounds?

Regarding FAEEs, these compounds are produced as
secondary metabolites in plants and microorganisms like
bacteria and fungi (Saerens et al. 2006), and it is known
that their biosynthesis is carried out by two different
enzymatic mechanisms, esterification or alcoholysis. How-
ever, knowledge of their biological role is still limited, and
to date no enzymes involved in their biosynthesis have been
characterized in plants (Neal et al. 2006; Saerens et al.
2006) or microalgae. Since both FAMEs and FAEEs can be
used as biodiesel, further research will be necessary to
study the biosynthesis of these compounds, and to
investigate the potential to over produce, extract and use
them as biodiesel.

In conclusion, naturally occurring FAMEs and FAEEs
were detected by GC-MS in oil extracts of C. reinhardtii.
These new insights will pave the way for further research in
this model microalga regarding the biosynthesis of both
FAMEs and FAEEs, and their potential use as biofuels.
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Table 1 Composition of fatty acid methyl esters (FAMEs) and fatty acid ethyl esters (FAEE) from the Chlamydomonas reinhardtii hexane
fraction before and after the transesterification reaction. BT Before transesterification, AT after transesterification

Compound Retention time (min) C atoms: double bonds Relative abundancea (%)

BT AT

7,10-hexadecadienoic acid methyl ester 10.60 16:2 ndb 1.9

hexadecanoic acid methyl ester 10.99 16:0 8.9 22.8

hexadecanoic acid ethyl ester 11.83 16:0 6.5 2.3

9,12-octadecadienoic acid (Z,Z)-, methyl ester 13.07 18:2 7.5 14.8

9-octadecenoic acid (Z)-, methyl ester 13.14 18:1 51.7 39.1

10-octadecenoic acid methyl ester 13.20 18:1 4.7 5.7

octadecanoic acid methyl ester 13.42 18:0 6.4 7.0

9,12-octadecadienoic acid (Z,Z)-, ethyl ester 13.82 18:2 4.8 1.4

9-octadecenoic acid (Z)-, ethyl ester 13.89 18:1 9.5 4.9

a From total methyl and ethyl esters
b Not detected
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