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Abstract Vibrio parahaemolyticus is an important human
pathogen responsible for foodborne gastroenteritis world-
wide. In this paper, a loop-mediated isothermal amplification
(LAMP) method was developed for detection of V. para-
haemolyticus in seafood. A set of four primers, two outer
and two inner, was designed specifically to recognize the
thermolabile hemolysin gene (tlh) of V. parahaemolyticus.
The LAMP assay was capable of detecting a minimum of
900 fg test tube−1 for V. parahaemolyticus genomic DNA
and 2.4×102 CFU mL−1 for pure cultures. The detection
limit for the seeded seafood samples was 8.9×102 CFU g−1.
In addition, 42 shares of natural seafood samples were tested
and 8 samples were recorded positive for V. parahaemoly-
ticus, while 6 were positive by conventional culture
methods. In conclusion, the LAMP assay is an effective
and low-cost method with high specificity and sensitivity for
rapid detection and identification of V. parahaemolyticus
both in culture isolates and seafood samples.

Keywords Vibrio parahaemolyticus . Loop-mediated
isothermal amplification (LAMP) . Thermolabile hemolysin
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Introduction

Vibrio parahaemolyticus is a Gram-negative, halophilic
bacterium that is distributed worldwide in the estuarine and
coastal environments, especially in fish, shellfish, and
seafood products. It is a crucial foodborne pathogen that
can cause acute gastroenteritis in humans. Foodborne
illness caused by this pathogen is generally a result of
consumption of raw or undercooked seafood contaminated
with the pathogen. Clinical manifestations of V. para-
haemolyticus infections include diarrhea, headache, vomit-
ing, nausea, abdominal cramps, low fever, and chills, with
the incubation period ranging from 4 to 96 h (Wong et al.
2000; Drake et al. 2007). Foodborne outbreaks and isolated
cases of V. parahaemolyticus have occurred throughout the
world. It causes approximately half the food poisoning
outbreaks in Taiwan, Japan, and several Southeast Asian
countries and is recognized as the leading cause of human
gastroenteritis associated with seafood consumption in the
United States (Wong et al. 2000; Su and Liu 2007) and in
China(Liu 2004). Due to these facts, early, rapid and
accurate detection of this pathogen is necessary and would
provide both the seafood industry and the consumer with an
early warning of potential health risks associated with
potentially contaminated seafood and allow appropriate
measures to prevent disease outbreak to be swiftly
undertaken.

Conventional microbiological methods for detection of
V. parahaemolyticus are costly in labor, materials, and time.
Loop-mediated isothermal amplification (LAMP) was
reported as DNA amplification with high specificity,
efficiency, and rapidity under isothermal conditions
(Notomi et al. 2000). It relies on autocycling strand
displacement DNA synthesis performed by a DNA poly-
merase with high strand displacement activity and a set of
four specially designed primers (two inner and two outer)
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that recognize a total of six distinct sequences on the target
DNA. The reaction is complete within 1 h at temperatures
ranging from 60 to 65°C. Therefore, the LAMP method can
achieve high specificity in pathogen detection in a short
time without expensive equipment. The method has been
successfully applied to detect Salmonella, Shigella,
verotoxin-producing Escherichia coli and Vibrio vulnificus
(Hara-Kudo et al. 2005; Ohtsuka et al. 2005; Song et al.
2005; Hara-Kudo et al. 2007; Ren et al. 2009).

In the present study, we applied the LAMP method for
the rapid detection of V. parahaemolyticus in seafood. The
specific primers were designed to target the thermolabile
hemolysin gene (tlh) of V. parahaemolyticus. The con-
ditions of the assay were optimized and the specificity and
sensitivity of the primers in the LAMP assay for detection
of V. parahaemolyticus were determined. Finally, the assay
was applied to detect the bacterium in artificially contam-
inated and natural seafood.

Materials and methods

Bacterial strains and samples

The bacterial strains used in this study were obtained from
the Institute of Microbiology of Chinese Academy of
Science, Guangdong Institute of Microbiology of China,
and previously isolated from food, water and sediment
samples (Table 1). Sixteen strains of V. parahaemolyticus, 6
strains of other Vibrio spp. and 9 strains of 7 bacterial
species other than Vibrio spp. were used in the study. The
strains of Vibrio were grown on tryptic soy agar (TSA;
Land Bridge, China) or tryptic soy broth containing 3%

NaCl for 18 h at 37°C. The other bacteria were cultured on
TSA at 37°C or in Luria broth for 18 h. In addition,
thiosulfate citrate bile salt sucrose agar (TCBS; Haibo,
China) was used to confirm V. parahaemolyticus. Forty-two
seafood samples including shrimp, granulated ark shell,
venus clam, constricted tagelus, surf clam, Manila clam,
oyster, and hard clam were collected from seafood stores in
Shanghai and Ningbo, China (Table 2). Seafood samples
were collected during the months between September and
December.

DNA preparation

Two methods were applied in the preparation of DNA for
LAMP. In method I, DNA was extracted by using EZ Spin
Column Bacterial Genomic DNA Isolation Kit UNIQ-10
(SBETS, Shanghai, China) according to the manufacturer’s
protocol. In method II, DNA was extracted using the
boiling method. One milliliter of V. parahaemolyticus over-
night cultured in tryptic soy broth containing 3% NaCl and
non-V. parahaemolyticus in Luria broth were centrifuged at
12,000 g for 5 min. Bacteria resuspended in 100 μL of
sterile double distilled water were boiled at 100°C for
10 min and immediately ice incubated for 2 min. After
centrifugation at 12,000 g for another 5 min, the superna-
tant was used as temple DNA.

Design of LAMP primers

A set of species-specific LAMP primers comprised of two
outer and two inner primers was designed to target the
thermolabile hemolysin (tlh) gene of V. parahaemolyticus
(GenBank accession number M36437) using Primer Pre-

Bacterial species Source Number of strains tested LAMP result

Vibrio parahaemolyticus ATCC 33846 IMCASa 1 +

V. parahaemolyticus ATCC 33847 IMCASa 1 +

V. parahaemolyticus ATCC 17802 IMCASa 1 +

V. parahaemolyticus SHOUb, EIc 13 +

Vibrio campbellii ATCC 33864 IMCASa 1 −
Vibrio harveyi ATCC 33842 IMCASa 1 −
Vibrio fluvialis ATCC 33809 IMCASa 1 −
Vibrio cholerae SHOUb, EIc 3 −
Staphylococcus aureus subsp. aureus 1.1361 GDIMd 1 −
Salmonella spp. 1.1552 GDIMd 1 −
Listeria innocua 1.230 GDIMd 1 −
Listeria welshimeri 1.231 GDIMd 1 −
Listeria monocytogenes 1.228 GDIMd 1 −
Listeria monocytogenes 1.229 GDIMd 1 −
Escherichia coli O157:H7 IMCASa 1 −
Shigella spp. IMCASa 2 −

Table 1 List of bacterial strains
used in this study and specificity
results of the LAMP primers

+ Positive reaction, − negative
reaction
a Institute of Microbiology of Chi-
nese Academy of Sciences
b Shanghai Ocean University
c Environmental isolate
d Guangdong Institute of Microbi-
ology
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mier 5.0 Software (Premier, Canada) (Table 3). The forward
inner primer (FIP) consisted of the F1c sequence (comple-
mentary to F1), a TTTT spacer and the F2 sequence. The
backward inner primer (BIP) consisted of the B1c sequence
(complementary to B1), a TTTT spacer and the B2
sequence. The outer primers consisted of the forward outer
primer F3 and the backward outer primer B3. The LAMP
primers sequences and positions are shown in Fig. 1.

Optimization of LAMP reaction

For optimization of the reaction, purified DNA from V.
parahaemolyticus strains ATCC 33846 was used. One
milliliter of the overnight culture at 108 CFU mL−1 was
used to extract DNA using the EZ Spin Column Bacterial
Genomic DNA Isolation Kit UNIQ-10. The initial extracted
DNA concentration was 45 ng μL−1. Two microliters of
DNA template was added to the LAMP reaction mixture.
The LAMP reaction was carried out in a 25-μL reaction
mixture containing the following reagents and the optimal
concentrations of each reagent were determined using the
following conditions: 2–18 mM MgSO4 (SBETS), 0–
1.8 mM dNTPs (SBETS), 0–1.2 M betaine (Sigma, USA),
the ratios of outer primers and inner primers ranging from
1:1 to 1:8, 1 U Bst DNA polymerase large fragment (New
England Biolabs, USA), and 1× ThermoPol buffer (New
England Biolabs, USA) per reaction mixture. Sterile doubl-
distilled water was used to adjust the volume of each

reaction mixture to 25 μL. In addition, the LAMP reaction
time varied from 30 to 60 min and the temperatures varied
from 55 to 65°C to optimize the LAMP procedures.
Aliquots of 3 μL of the products were analyzed by 2%
agarose gel electrophoresis.

Specificity of LAMP assay

The specificity of the set of LAMP primers for the tlh gene
of V. parahaemolyticus was determined by LAMP ampli-
fication of the genomic DNA (extracted by method I) from
16 V. parahaemolyticus strains and 15 bacterial strains other
than V. parahaemolyticus listed in Table 1. The optimal
reaction conditions obtained from the previous procedures
were used.

Sensitivity of LAMP assay

The sensitivity of the assay was determined using V.
parahaemolyticus ATCC 33846 DNA extracted by method
I and II separately.

Vibrio parahaemolyticus ATCC 33846 was cultivated
overnight and extracted using method I. The DNA
concentration was estimated by UV absorption spectropho-
tometry at a wavelength of 260 nm using Ultrospec 1100
pro (GE Healthcare, USA). The DNA was then 10-fold
serially diluted in sterile double-distilled water. Aliquots of
each 2 μL dilution were amplified by LAMP using the

Table 2 The result of detection of V. parahaemolyticus in natural seafood

Sample type No. of
samples

No. of samples positive for V. parahaemolyticus by
LAMP and conventional PCR

No. of samples positive for V. parahaemolyticus by
the conventional method

Granulated
ark shell

4 0 0

Venus clam 8 2 2

Constricted
tagelus

12 4 2

Surf clam 2 0 0

Manila clam 2 0 0

Oyster 10 2 2

Hard clam 4 0 0

Total 42 8 6

Table 3 Sequences of the LAMP primers

Name Sequence (5′→3′)

FIP (Forward inner primer) GCCCATTCCCAATCGGTCG-TTTT-CTATGTTTCGCTGTTGGTATCG

BIP (Backward inner primer) GTTCTACACCAACACGTCGCA-TTTT-TCGCCAAATCTAATGTTGCTTC

F3 (Forward outer primer) CAGCACGCAAGAAAACCA

B3 (Backward outer primer) ATTGTCAGCGGCGAAGAA
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optimum reaction condition. A LAMP reaction mixture
containing 2 μL of double-distilled water instead of
genomic DNA was used as a negative control.

To determine the sensitivity of detection for pure
cultures, overnight cultivated V. parahaemolyticus ATCC
33846 was quantitated by direct plating. After 10-fold
serially dilution, a total of 2 μL template DNA (extracted
by method II) of each dilution were amplified by LAMP
using the optimum reaction condition. A LAMP reaction
mixture containing 2 μL of double-distilled water instead of
template DNA was used as a negative control.

Detection of V. parahaemolyticus in seeded shrimp

The shrimp used in this study were purchased from a local
seafood store (Shanghai, China). The shrimp were stored in
a sterile beaker on ice and exposed to ultraviolet (UV) light
to eliminate any naturally occurring V. parahaemolyticus
strains. Overnight cultivated V. parahaemolyticus ATCC
33846 were serially diluted in alkaline peptone water

(APW). The number of cells in each dilution was
quantitated by direct plating. Each of the V. parahaemoly-
ticus cultures (1 mL) were used separately to inoculate 10 g
of UV-treated shrimp. Subsequently, the seeded shrimp
were placed in a sterile stomacher bag containing 90 mL of
APW and were homogenized using a Stomacher (MIX2;
AES Laboratire, France) for 3 min. Aliquots of 1 mL of the
solution were treated using method I to extract DNA. For
LAMP amplification, 2 μL of template DNAwere used in a
25-μL reaction mixture under the optimal reaction condi-
tion as previously developed. DNA extracted from unseed-
ed shrimp homogenate was used as a negative control.

Detection of V. parahaemolyticus in natural seafood

Forty-two shares of natural seafood samples were tested in
the study (Table 2). Under aseptic condition, 25 g of the
muscles of the seafood samples were separated from the
shells, homogenized in 225 mL APW for 1 min in a
homogenizer (Binrong, Shanghai, China) and incubated at
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 181  GCCGAAGAGC CAACCTTATC ACCAGAAATG GTTTCAGCGT CTGAAGTGAT CAGCACGCAA

 241  GAAAACCAAA CCTATACCTA TGTTCGCTGT TGGTATCGCA CCAGCTACTC GAAAGATGAT

 301  CCAGCGACCG ATTGGGAATG GGCAAAAAAC GAAGATGGTA GCTACTTCAC CATTGACGGC

GCTGGCTAACCCTTACCCG

 361  TACTGGTGGA GCTCCGTTTC ATTTAAAAAC ATGTTCTACA CCAACACGTC GCAAAACGTT 

 421   ATCCGTCAGC GTTGTGAAGC AACATTAGAT TTGGCGAACG AGAACGCAGA CATTACGTTC

CTTCGTTGTAATCTA AACCGCT                                                  AAG

 481   TTCGCCGCTG ACAATCGCTT CTCATACAAC CACACGATCT GGAGCAACGA CGCAGCAATG

AAGCGGCGACTGTTA

F3

F2

F1

F1c

B1c

B2c

B2

B3c

B3

Fig. 1 a Schematic diagram showing the positions at which the
primers attach for amplification of the tlh gene. b Locations and
nucleotide sequences of the tlh gene of V. parahaemolyticus used for

designing the inner and outer primers. The DNA sequences of primer
sites are underlined. Oligonucleotide sequences in bold and listed at
the bottom were used as LAMP primers
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37°C for 10 h. A loopfull of enrichment broth was streaked
on TCBS agar (Haibo) and incubated overnight at 37°C.
Biochemical tests were done to identify V. parahaemolyti-
cus (FDA 2004). Simultaneously, 1 mL of the enrichment
broth was treated with DNA extraction method I and II. For
LAMP assay, 2 μL of the DNA were used in a 25-μL
reaction mixture under the optimal reaction condition as
previously developed. Meanwhile, the other 2 μL was used
for conventional PCR, which was carried out in a final
volume of 25 μL as follows: prior denaturation at 94°C for
3 min, then 25 cycles of denaturation at 94°C for 1 min,
annealing at 60°C for 1 min, elongation at 72°C for 2 min;
finally, elongation at 72°C for 3 min (FDA 2004).

Results

Optimization of LAMP assay

The LAMP reaction conditions were optimized using
various concentrations of MgSO4, dNTPs, betaine and
primers, as well as different amplification temperature and
reaction time. The results indicated that the reaction could
be carried out when the Mg2+ concentration is between 6
and 10 mM and the optimal concentration was 8 mM
(Fig. 2a). As shown in Fig. 2b, the ladder-like bands could

be obtained with dNTPs ranging from 1.0 to 1.4 mM while
1.0 mM is the best. The reaction could be carried out when
the betaine concentration is higher than 0.6 M and the
optimal concentration was 0.8 M (Fig. 2c). Figure 2d
demonstrates that the target gene was amplified in a primer
ratio ranging from 1:2 to 1:8 while the ratio at 1:6 (0.2 μM
each of F3 and B3, 1.2 μM each of FIP and BIP) gave the
best amplification. As shown in Fig. 2e, f, the amplification
could be detected initially at 45 min and the optimal time
was 1 h while the clearest pattern could be obtained at 60°
C. Based on the above results, the optimal LAMP assay
condition in a 25-μL reaction volume is 8 mM MgSO4,
1.0 mM dNTP, 0.8 M betaine, 1.2 μM each of FIP and BIP,
0.2 μM each of F3 and B3, 1 U Bst DNA polymerase large
fragment, and 1× ThermoPol buffer with 2 μL total DNA
as template per 25 μL reaction mixture. Besides this, the
best results were obtained with the following procedures:
incubation at 60°C for 1 h and inactivation at 80°C for
10 min.

Specificity of LAMP assay

In order to evaluate the specificity of LAMP, 31 bacteria
strains were tested for the LAMP assay. The LAMP assay
correctly detected 16 V. parahaemolyticus strains. The 6
other Vibrio species and 9 non-Vibrio bacterial species had
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1  2  3  4  5  6  7 M

3000 bp

100 bp

1  2  3  4 5  6  7 M    

(A) (B) (C)
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Fig. 2 Optimization of the LAMP reaction for the detection of V.
parahaemolyticus. M: 100 bp marker; 1: negative control. a Effect of
Mg2+ concentrations on the LAMP reaction: 2–10 Mg2+ was 2, 4, 6,
8, 10, 12, 14, 16 and 18 mM, respectively. b Effect of dNTPs
concentrations on the LAMP reaction: 2–11 dNTP was 0, 0.2, 0.4, 0.6,
0.8, 1.0, 1.2, 1.4, 1.6 and 1.8 mM, respectively. c Effect of betaine
concentrations on the LAMP reaction: 2–8 betaine was 0, 0.2, 0.4, 0.6,

0.8, 1.0 and 1.2 M, respectively. d Effect of the ratio of outer and
inner primers on the LAMP reaction: 2–6 the ratio was 1:1, 1:2, 1:4,
1:6 and 1:8, respectively. e Effect of temperature on the LAMP
reaction: 2–7 the temperature was 53, 55, 58, 60, 63 and 65°C,
respectively. f Effect of reaction time on the LAMP reaction: 2–7 the
amplification time was 15, 30, 45, 60, 75 and 90 min, respectively
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negative results (Table 1). LAMP reaction was also
negative for distilled water (negative control). The result
indicated that the LAMP assay was highly specific to V.
parahaemolyticus strains.

Sensitivity of LAMP assay

The detection limit of the LAMP assay for V. para-
haemolyticus ATCC 33846 was determined using 10-fold
serial dilutions of V. parahaemolyticus extracted DNA and
culture suspension, and 2% agarose gel electrophoresis was
used to analyze the results. The initial concentration of
bacterial inoculum was 2.39×108 CFU mL−1. The initial
DNA concentration was 45 ng μL−1. The amplification
products showed a typical ladder-like pattern on gel
electrophoresis which indicated that stem-loop DNA with
inverted repeats was formed (Notomi et al. 2000). Template
DNA ranging from 9 ng to 9 fg was used in the LAMP
reaction. The result showed that the minimum DNA
concentration required for amplification was 9 pg DNA
tube−1 (Fig. 3). In addition, 10-fold dilution of pure culture
was directly used to test the LAMP assay. Reactions
remained positive up to 2.4×102 CFU mL−1 (Fig. 4).
Furthermore, the detection limit of V. parahaemolyticus in
seafood was studied. The sensitivity of the LAMP assay for
the direct detection of V. parahaemolyticus in seeded
shrimp was 8.9×102 CFU g−1 (Fig. 5). We also compared
the detection limit between conventional PCR and LAMP.
The sensitivity of LAMP was found to be at least 10 times
more than that of the conventional PCR assay in the
detection of pure culture and 1.000 times more in the
detection of seeded shrimp (Fig. 6a-c).

In addition, our results showed that both DNA extraction
methods were suitable for LAMP detection of V. para-
haemolyticus. Since the boiling method was simple and
rapid, total detection time was reduced.

Detection of V. parahaemolyticus in natural seafood

To determine whether V. parahaemolyticus could be
detected in natural samples with LAMP assay, we examined
natural seafood. Of 42 collected seafood samples tested in
the study, 8 were detected as positive using LAMP assay,
indicating that V. parahaemolyticus was present in these
samples. We also used conventional PCR assay to amplify
the tlh gene in the natural samples. The same result that
8 were positive was obtained. Meanwhile, 6 out of 42
samples were positive for V. parahaemolyticus using the
conventional culture method according to the FDA proto-
col. Two constricted tagelus were detected positive using
LAMP and conventional PCR but negative using conven-
tional culture method (Table 2).

Discussion

Proper primer design is crucial for performing LAMP
amplification. It is known that tdh (thermostable direct
hemolysin) and trh (tdh-related hemolysin) genes are two
major virulence factors for the pathogenesis of V. para-
haemolyticus. However, most of the V. parahaemolyticus
that are isolated from the environmental and seafood
samples are reported to be tdh negative, trh negative, or
both tdh and trh negative. Therefore, a species-specific
gene was chosen to detect the total V. parahaemolyticus.
The gene for tlh encoding the thermolabile hemolysin
(TLH) has been shown to be observed in all V. para-
haemolyticus strains (Bej et al. 1999; Taniguchi et al. 1985,
1986). This gene is therefore a useful target for the
detection of total V. parahaemolyticus (McCarthy et al.
1999; Dileep et al. 2003; Kaufman et al. 2004; Ward and
Bej 2006; Su and Liu 2007). In this study, a set of four
specific primers was designed to recognize six distinct
regions on the target tlh gene of V. parahaemolyticus

M   1    2    3   4    5    6    7    8    9    

3000 bp

100 bp

Fig. 4 The sensitivity of LAMP for detection V. parahaemolyticus
ATCC 33846 in pure cultures. M 100 bp marker; 1 positive control;
2 2.39×105 CFU mL-1; 3 2.39×104 CFU mL-1; 4 2.39×103 CFU
mL-1; 5 2.39×102 CFU mL-1; 6 2.39×101 CFU mL-1; 7 2.39 CFU
mL-1; 8 2.39×10-1 CFU mL-1; 9 negative control

M   1     2     3    4    5    6    7    8    9   10 

3000 bp

100 bp

Fig. 3 The sensitivity of LAMP for detection of V. parahaemolyticus
33846 genomic DNA. M 100 bp marker; 1 positive control; 2 9 ng test
tube−1; 3 900 pg test tube−1; 4 90 pg test tube−1; 5 9 pg test tube−1;
6 900 fg test tube−1; 7 90 fg test tube−1; 8 9 fg test tube−1; 9 0.9 fg test
tube−1; 10 negative control
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(Fig. 1). The specificity of these primers was tested using
Vibrio parahaemolyticus, V. campbellii, V. harveyi, V.
fluvialis, V. cholerae, Salmonella, Staphylococcus aureus,
Listeria innocua, L. welshimeri, L. monocytogenes, E. coli,
and Shigella. The LAMP reaction was positive for all the V.
parahaemolyticus strains and negative for the other species
tested (Table 1), demonstrating that these primers were
specific for identification of V. parahaemolyticus. The
specificity of LAMP in detection of V. parahaemolyticus
was in conformity with other studies in the bacterial
detection (Han and Ge 2008; Nemoto et al. 2009; Li et al.
2009).

In our study, the sensitivity of LAMP was found to be
10 times more than that of the conventional PCR assay.
Our tlh-based LAMP assay was able to detect about one V.
parahaemolyticus cell per reaction tube, in contrast to ten
cells using tlh-based PCR. Similarly, the detection limit of
tdh-based LAMP assay for V. parahaemolyticus was
reported to one cell per reaction tube and 10-fold more
sensitive than PCR (Nemoto et al. 2009). Additionally,
several studies on the detection of other vibrios also found
that LAMP was 10-fold more sensitive than PCR (Han and
Ge 2008; Fall et al. 2008). This was also in accordance
with the results reported for the detection of vt-producing
E. coli (Yano et al. 2007) and Salmonella (Wang et al.
2008). It was also reported that LAMP was 100 times
more sensitive than PCR in detecting Yersinia pseudotu-
berculosis (Horisaka et al. 2004) and Bordetella pertussis
(Kamachi et al. 2006). The greater sensitivity was due to
the high amplification efficiency of the LAMP method.
There is no time loss for thermal change under isothermal
conditions in LAMP (Ren et al. 2009).

Our LAMP method used for the detection of V. para-
haemolyticus in seeded shrimp was found to be highly
sensitive because it could detect V. parahaemolyticus up to
8.9×102 CFU g−1, whereas the detection limit of V.
parahaemolyticus was only 8.9×105 CFU g−1 by conven-

tional PCR. Our result was comparable with the result of V.
vulnificus detection in raw oysters (Han and Ge 2008).
Food components such as organic and phenolic com-
pounds, glycogen, fats, and Ca2+ were reported to inhibit

M    1    2     3    4    5    6    7   8

3000 bp

450 bp

1000 bp

450 bp

M   1   2    3   4    5   6   7   8    9    

M   1   2    3    4    5    6   7    8   9  10

3000 bp

450 bp

b

c

a

Fig. 6 The sensitivity of PCR for detection of a V. parahaemolyticus
ATCC 33846 genomic DNA. M 100 bp marker; 1 positive control; 2
22.5 ng test tube-1; 3 2.25 ng test tube-1; 4 225 pg test tube-1; 5
22.5 pg test tube-1; 6 2.25 pg test tube-1; 7 225 fg test tube-1;
8 negative control; b V. parahaemolyticus ATCC 33846 in pure
cultures. M 100 bp marker; 1 positive control; 2 2.39×105 CFU mL-1;
3 2.39×104 CFU mL-1; 4 2.39×103 CFU mL-1; 5 2.39×102 CFU mL-1;
6 2.39×101 CFU mL-1; 7 2.39 CFU mL-1; 8 2.39×10-1 CFU mL-1;
9 negative control; and c V. parahaemolyticus ATCC 33846 in seeded
shrimp samples. M 100 bp marker; 1 positive control; 2 8.9×106 CFU
g-1; 3 8.9×105 CFU g-1; 4 8.9×104 CFU g-1; 5 8.9×103 CFU g-1;
6 8.9×102 CFU g-1; 7 8.9×101 CFU g-1; 8 8.9×100 CFU g-1; 9 8.9×
10-1 CFU g-1; 10 negative control

M   1    2   3    4   5   6    7    8   9  10 

3000 bp

100 bp

Fig. 5 The sensitivity of LAMP for V. parahaemolyticus ATCC
33846 in seeded shrimp samples. M 100 bp marker; 1 positive control;
2 8.9×106 CFU g-1; 3 8.9×105 CFU g-1; 4 8.9×104 CFU g-1; 5 8.9×
103 CFU g-1; 6 8.9×102 CFU g-1; 7 8.9×101 CFU g-1; 8 8.9×
100 CFU g-1; 9 8.9×10-1 CFU g-1; 10 negative control
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DNA amplification (Hara-Kudo et al. 2005). However, the
present study performed in seeded shrimp, which usually
contain a variety of components, did not indicate that
complex food compounds significantly inhibit the sensitiv-
ity of LAMP. This finding is similar to that in the previous
studies which showed that the LAMP method was less
affected by various components of the clinical samples than
PCR (Kaneko et al. 2007). Recently, real-time PCR was
also used to detect vibrios in seafood (Cañigral et al. 2010).
The real-time PCR assay has many advantages over the
conventional PCR, including rapidity, a low contamination
rate, a higher sensitivity and easy standardization, but it
requires fluorogenic primers and probes as well as
expensive detection equipment. The high cost of the
instruments required to perform the real-time assay restricts
the use to laboratories with good financial resources. So the
LAMP method is relatively desirable in the development of
a diagnostic system.

It was observed that the result by LAMP detection was
the same as the one by PCR amplification in the detection
of natural seafood. DNA amplification-based techniques
detected two more shares of positive samples than the
culture method. In the study, the enrichment step before
LAMP and PCR amplification was used, which excluded
the possibility of detecting dead or damaged cells along the
living cells. Compared the PCR and plate culture methods
in the detection of V. parahaemolyticus in mussels and
environmental samples, PCR after sample enrichment was
more sensitive than the conventional culture method
(Blanco-Abad et al. 2008). The same result occurred in
detecting V. parahaemolyticus from seafood harvested
along the southwest coast of India (Raghunath et al.
2008). Moreover, the LAMP assay was more sensitive than
the PCR assay. The high sensitivity of LAMP assay and
PCR was the reason why two more positive samples
appeared.

In the present study, the LAMP assay developed and
optimized is highly specific and sensitive for the
detection and identification of V. parahaemolyticus both
in culture isolates and in seafood samples. The assay
performs under isothermal conditions with a single
temperature step at 60°C for about 1 h and allows for
one-step identification of tlh gene amplification without
the use of a high-precision thermal cycler. Compared to
conventional microbiological methods and PCR techni-
ques, it is easier to perform, more effective, and lower in
cost. Therefore, the LAMP assay is expected to provide a
rapid and reliable alternative to the current V. para-
haemolyticus detection methods by reducing the analysis
time, cost, and labor. This is beneficial not only to the
seafood industry but also to the consumer by ensuring the
safety of the seafood provided for consumption.
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