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Abstract This review focuses on phage display and its
application in vaccine design. Four kinds of phage display
systems and their characteristics are highlighted. Whole
phage particles can be used to deliver vaccines by fusing
immunogenic peptides to modified coat proteins (phage-
display vaccination), or by incorporating a eukaryotic
promoter-driven vaccine gene within the phage genome
(phage DNA vaccination). Hybrid phage vaccination results
from a combination of phage-display and phage DNA
vaccination strategies, indicating the potential for evolution
of phage vaccines. Phage vaccines could provide a key to
unlock new approaches in combating bacterial and viral
pathogens, and cancer diseases. New phage display systems
will certainly emerge because of the global abundance of
phage and our increasing ability to exploit them. The scope
of phage display applications will continue to expand. Over
the ensuing period, research should be directed toward a
better understanding of the immunization mechanisms
involved in phage-mediated immunization, and the devel-
opment of hybrid phage vaccination.
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Introduction

Bacteriophages (phages) are viruses of bacteria consisting
of a DNA or RNA genome contained within a protein coat.
Their growth and proliferation require a suitable prokary-
otic host. They either incorporate viral DNA into the host
genome, replicating as part of the host (lysogenic), or
propagate inside the host cell before releasing phage
particles either by extruding from the membrane (as with
filamentous phages) or by lysing the cell (lytic phages;
Clark and March 2006; Petty et al. 2007). Phages do not
replicate in eukaryotic hosts and act as inert particulate
antigens metabolically. Being particulate antigens, bacter-
iophages are processed by antigen-presenting cells (APC),
cleared from the circulation and targeted to the spleen and
liver Kuppfer cells. Nowadays, the applied use of bacter-
iophages is clearly visible in techniques such as phage
therapy, phage display, DNA vaccine delivery, therapeutic
gene delivery, bacterial typing, and so on (Clark and March
2006). Recently, whole bacteriophage particles have been
described as highly efficient DNA vaccine delivery vehicles
(Clark and March 2004a; Jepson and March 2004; March et
al. 2004). This review will focus on phage display and its
application in vaccine design.

Phage display

In phage display, a foreign peptide or protein is expressed
on the phage surface through transcriptional fusion with a
protein coat gene. The principle underlying phage display
technology is the physical linkage of the phenotype of a
polypeptide to its corresponding genotype. The first
report of phages displaying foreign peptides on their
surface was published in 1985 (Smith 1985). The first use
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of whole phage particles to elicit an immune response
against displayed foreign peptides was in 1988 (de la Cruz
et al. 1988). Screening phage libraries has emerged as a
powerful technology for selecting polypeptides with
desired biological and physicochemical properties.
(Paschke 2006). Somers et al. (2002) constructed a cell-
line based cDNA library for a colorectal tumor. Serolog-
ical selection based on human IgG binding revealed 13
different antigens, which may be candidates for tumor
vaccination or useful prognostic markers. In parallel, other
studies (Hansen et al. 2001; Minenkova et al. 2003;
Pavoni et al. 2004, 2006) identified a panel of tumor-
associated antigens using phage-displayed libraries of
breast cancer. Several selected autoantigens have potential
in breast cancer diagnosis.

In addition to tumor-derived antigens, peptide mimics
are also suitable candidates for the generation of epitope-
specific cancer vaccines. Riemer et al. (2005) screened a
linear 9mer phage display peptide library using the anti-
high molecular-weight melanoma-associated antigen
(HMW-MAA) monoclonal antibody (mAb) 225.28 S.
Fifteen peptides were selected in the biopanning proce-
dure. Biopanning is an affinity selection technique that
selects for peptides binding to a given target (Ehrlich et al.
2000). It involves four major steps: (1) preparation of a
phage display library, (2) conjugating the library to the
target, (3) washing away unbound phages, and (4) elution
of bound phages. In Riemer′s study, all 15 of the above-
mentioned peptides showed partial homology to the amino
sequence of the HMW-MAA core protein. One mimotope
fused to an immunogenic carrier induced epitope-specific
anti-melanoma immune responses. Up to 109 different
peptide mimics can be screened at the same time using
phage displayed random peptide libraries. Furthermore,
the optimal epitope can be selected rationally by the
choice of the screening antibody. This is an important
feature because antibodies targeting different epitopes on
the same molecule can have opposite effects on cell
growth (Ferrone and Wang 2001).

Phage display systems

Four kinds of display system have been developed so far,
namely, filamentous phage, phage lambda, T4 phage and
T7 phage. A list of phages and their genome sizes, display
sites, and advantages is given in Table 1.

In M13 filamentous phage display, several coat proteins
have been used as targets for the fusion of foreign peptides.
The first and most commonly used is the p3 coat protein
(Smith 1985; Marks et al. 1992), which is present as three to
five copies in M13. The major coat protein p8 (2,670 copies
per phage particle) is also used (Banhar 2001). Fusions to the

p3 protein seem to have few size restrictions. The p3 display
system is convenient for expression of large proteins of
about 100 kDa, but only six to eight amino acids can be
fused to the p8 protein, due to the large number of copies
present.

Phage lambda has been used to display proteins fused to
the D head protein or pV tail protein (Maruyama et al.
1994; Cicchini et al. 2002). Each phage lambda particle
contains 405 copies of D head protein and six copies of pV
protein. Of the two lambda coat proteins, the display of
peptides as D head protein fusions seems to be more
promising, because pV tail fusions express low levels of
fusion proteins, and low yields of phage, presumably due to
disruption of formation of the tail during assembly.
Compared with filamentous phage display, phage lambda
display has a number of potential advantages. First,
translocation through the Escherichia coli membrane is
not required and thus a wider variety of proteins can be
displayed. Second, the ability to display multiple copies of
the same protein on the surface of a single phage lambda
particle results in a much more effective immune response.

Phage T4 capsid is an elongated icosahedron decorated
with two non-essential outer capsid proteins (Sathaliyawala
et al. 2006; Li et al. 2007), the highly antigenic outer capsid
protein (HOC, 39 kDa, 155 copies per capsid) and the small
outer capsid protein (SOC, 10 kDa, 810 copies per capsid).
Either a single SOC or HOC site can be used to display
large foreign molecular immunogens. Furthermore, the
main advantages of the phage T4 system over other display
technologies have been substantiated by using phage T4
SOC/HOC dual sites to display antigens (Wu et al. 2007).
The phage T4 HOC/SOC bipartite display system is
attractive for the expression of cDNA, and the display of
peptides or proteins at high copy number on the phage
capsid surface.

T7 phage particles assembled in the cytoplasm of E. coli
cells and progeny phage are released by cell lysis, hence
displayed peptides do not need to be capable of secretion
through the periplasm and the cell membrane, as required in
filamentous bacteriophage (Russel 1991). The T7 capsid
protein is normally produced in two forms: 10A (344 aa)
and 10B (397 aa). The 10B form is produced by a
translational frameshift at amino acid 341 of 10A, and
normally makes up about 10% of the capsid protein
(Condron et al. 1991). However, functional capsids can be
composed entirely of either 10A or 10B, or of various ratios
of these two proteins. T7 phage has the ability to display
small peptides in high copy number and large peptides or
proteins in low- or mid-copy number. The T7 phage particle
is extremely robust, and is stable to harsh conditions that
inactivate other phage. This phage display system has been
widely used (Kang et al. 2004; McKenzie et al. 2004;
Videlock et al. 2004; Takakusagi et al. 2005a, 2005b; Tan et
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al. 2005; Ishi and Sugawara 2008; Jestin 2008). However,
like other phage display systems, T7 also has its limitations.
One limitation is that the displayed peptide will not be post-
translationally modified as in eukaryotic systems, another is
that only peptides less than 50 residues can be expressed in
high copy number.

Phages for vaccine delivery

Whole bacteriophage particles have recently been de-
scribed as highly efficient DNA vaccine delivery
vehicles. In phage-display vaccination, phages can be
reconstructed to display a specific protective antigen on
their surface. The protective antigen was transcriptionally
fused with a coat protein. Alternatively, proteins can also
be artificially conjugated to the surface of phages
particles. Many studies (di Marzo Veronese et al. 1994;
Bastien et al. 1997; Irving et al. 2001; Wang and Yu 2004)
have now indicated that immunization with whole phage
particles displaying antigenic proteins in animal models
can induce specific antibody responses. In this context, the
interesting research done by van Houten and colleagues is
noteworthy (van Houten et al. 2006). In their study, the f1.
K phage was engineered to have an additional Lys residue
near the N-terminus of the major coat protein, p8, to allow
efficient conjugation to the antigen. The f1.K phage was
derived from phage f1 by site-directed mutagenesis. The
dimeric synthetic peptide, B2.1, was conjugated to f1.K
(f1.K/B2.1) in high copy number and compared as an
immunogen to B2.1 conjugated to ovalbumin (OVA/B2.1)
and to phage-displayed recombinant B2.1 peptide in a
murine model. All immunogens elicited anti-peptide
antibody titers, with those elicited by OVA/B2.1 exceed-
ing those by f1.K/B2.1; both titers were greater than that
elicited by recombinant B2.1 phage. However, higher
peptide to carrier antibody ratios were elicited by the f1.K/

B2.1 conjugate, indicating that phage appears better at
focusing the antibody response against peptide than the
traditional carrier OVA. A weak anti-phage response was
elicited due to restricted B cell epitopes on p3 and the low
copy number of the outer immunogenic domains of p3. A
study in our laboratory has demonstrated that T7 bacte-
riophage particles displaying the latent membrane protein
1 of Epstein-Barr virus is highly immunogenic in Wistar
rats (unpublished data).

In DNA vaccination, a vaccine gene is cloned into a
eukaryotic cassette. The host is inoculated with plasmid
(naked DNA) produces an immune response to vaccine
protein synthesized in vivo (Dietrich et al. 1999). Phage
DNA vaccination is a novel strategy for DNA vaccine
administration. Rather than directly vaccinating with
phages carrying vaccine antigens on their surface, in
phage DNA vaccination, phages have been used to deliver
a DNA vaccine expression cassette (Clark and March
2004b). In this system, the gene encoding the vaccine
antigen, under the control of a suitable eukaryotic
promoter, is cloned into the phage genome (Fig. 1).
Because it is a virus-like particle, it can target the vaccine
to APC. Research has confirmed that such phage DNA
vaccination should indeed improve immune efficacies
compared with naked DNA vaccination. Long-lasting
and significantly higher antibody responses have been
observed in mice (Clark and March 2004a), and rabbits
(March et al. 2004), following phage delivery of DNA
vaccines, in some cases comparable with those produced
after vaccination with recombinant protein. In a recent
study (Hashemi et al. 2009), BALB/c mice were inocu-
lated with filamentous phage particles containing an
expression cassette for Herpes simplex virus 1(HSV-1)
glycoprotein D. A dose-response relationship was ob-
served in both humoral and cellular immune responses
induced by recombinant filamentous phage inoculation.
The results were similar to those from DNA vaccination.

Table 1 Features of phage display systems. SOC Small outer caspid protein, HOC highly antigenic outer caspid protein

Phage Genome
(size)

Display sites Advantages

Filamentous phage Single-stranded
looped DNA (6.4 kb)

N-terminal of p3 P3 can be used to screen high affinity ligands by
univalent display. P8 has the capacity to
display proteins in high copy number

C-terminal of p3-JUN/Fos

C-terminal of p6

N-terminal of p8

Lambda phage Double-stranded
linear DNA (50 kb)

N- or C-terminal of pD,
C terminal of pV

Capable of displaying complicated,
high molecular weight proteins

T4 phage Double-stranded
linear DNA (160 kb)

C-terminal of SOC Capable of displaying larger proteins in high copy
number; displaying inserts with stop codonN-terminal of HOC

T7 phage Double-stranded
linear DNA (39 kb)

C-terminal of cp10 Displaying small peptides in high copy number
and larger peptides or proteins in low or mid-copy
number; displaying inserts with stop codon
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More recently, the concept of producing a ‘hybrid
phage vaccine’ has been proposed by some researchers.
The hybrid phage delivers both protein and DNA
vaccine in one construct (Clark and March 2004b). A
eukaryotic promoter-driven DNA encoding the protective
antigen is cloned into the bacteriophage genome, and a
variant of the same antigen is present on the phage
surface. Thus, hybrid phage vaccination results from a
combination of phage-display and phage DNA vaccination
strategies, indicating the potential evolution of phage
vaccines. To date, this method of vaccine delivery
remains hypothetical, but it is expected that such a vaccine
will effectively induce both the humoral and cellular
immune responses. In addition, the displayed protein in a
hybrid phage could be a targeting molecule, aimed to
increase uptake of the phage by specific cell types. For
instance, Molenaar et al. (2002) reported that 35S-radiolabeled
filamentous bacteriophage M13 conjugated with galactose
stimulates uptake of the phage by galactose-recognizing
hepatic receptors. Dickerson et al. (2005) reported that
engineered filamentous bacteriophage displaying cocaine-
sequestering antibodies delivered into the central nervous
system are capable of treating cocaine addiction. Receptor-
targeted phage might have important implications for the
use of phage as a DNA vaccine or therapeutic gene
delivery vehicle directed to specific cell types (Barry et
al. 1996; Dunn 1996; Larocca et al. 1998, 1999; Piersanti
et al. 2004).

Advantages of phage vaccines

Whole phage particles possess many intrinsic character-
istics that make them ideal as vaccine delivery vehicles,
both for phage-display and DNA vaccines. Phage vaccines
are cheap, and can be produced easily on a large scale.
Phages are highly stable. Diluting lambda phage in water
results in only a marginal loss in titer over a 2-week period.
Phages are even stable within the pH range 3–11 over a
24 h period, thus successful oral administration of phage
vaccines might be possible (Jepson and March 2004).
Because the displayed protein is fused with a coat protein, it
is not susceptible to nuclease degradation under the
protective protein matrix. Unlike other virus vectors, phage
cannot replicate in a eukaryotic host. Phage particles are
naturally immunostimulatory (Kleinschmidt et al. 1970).
They carry sufficient CD4+ T cell epitopes to elicit immune
responses (Meola et al. 1995). Vaccination with phage
particles also induces a highly immunogenic signal against
phage coat protein, which provides an easily detectable
marker to confirm the vaccination effect in animals (March
et al. 2006). Furthermore, high phage antibody titers do not
interfere with the immune response against the expressed
DNA vaccine antigen, and, if anything, are more likely to
efficiently target the phage to APC (March et al. 2004). A
previous study had demonstrated that phage particles recruit
bystander T cells to induce a mimotope-specific humoral
response to a natural antigen (Schöll et al. 2002). Phages
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can be used to result in much better immune responses than
equivalent standard plasmid DNA vaccination at much
lower doses (Clark and March 2004a).

The safety issue of phage vaccine is an important matter
and should be outlined. Phages were shown to be safe by
the oral route in human volunteers. No adverse events
related to phage application have been reported (Bruttin and
Brussow 2005). In another study, phage lambda particles
displaying porcine Circovirus 2 caspid protein were shown
to be immunogenic in pigs (Gamage et al. 2009). No
untoward local or systemic reactions occurred following
immunization.

On the other hand, a few problems worthy of note still
remain regarding phage immunization for humans. It is
difficult to ensure that all conformationally active epitopes
will be displayed correctly on the phage surface. Since
phages require a prokaryotic host for growth, eukaryotic
glycosylation signals will be absent from the phage
vaccine, and there is a risk of filamentous bacteriophages
infecting F pilus-positive E. coli in the intestinal flora with
application via the oral route (Riemer et al. 2005).

Representative studies on phage-based vaccination

Recently, three groups of vaccine strategies have been
investigated in both animal and human clinical trials. The
first is peptide-based vaccines. The immunodominant peptide
was used for immunization either alone or in combination
with adjuvant. The second is dendritic cell-based vaccines.
Dendritic cells pulsed with MHC class I restricted peptides or
with natural peptides could induce potent antitumor immunity
(Banchereau and Steinman 1998). The last is recombinant
viruses or nucleotide acid-based vaccines. Peptide-based
vaccines and recombinant viruses or nucleotide acid-based

vaccines are limited by the lack of appropriate delivery
systems for the effective activation of an immune response.
Production of dendritic cell-based vaccines is laborious and
expensive; furthermore, it may not be optimal for migrating
to tumor sites (Kalos 2003).

Since the recognition of the potential of recombinant
phage as an immunological reagent and vaccine, there has
been a burgeoning interest in phage-based vaccine design.
Vaccines against completely different organisms can be
constructed using identical procedures, which simplifies
production and reduces costs. Phage vaccines could provide
us with the key to unlock new approaches in combating
bacterial and viral pathogens, as well as cancer diseases.
Some representative studies on phage-based vaccination in
the past 5 years are as shown in Table 2. Although results
obtained in animal models do not necessarily represent the
condition in the target species, they do demonstrate the
validity of the strategy (March et al. 2006).

Conclusion

Many different phage display systems are exploited today
and new ones will certainly emerge because of the global
abundance of phage and our increasing ability to exploit
them. To date, phage display has become a powerful
biotechnique and has been used extensively in a diverse
range of fields such as proteomics, cloning and sequencing
of unknown genes, identification of antigen epitopes,
vaccine design, etc. The scope of phage display applica-
tions will continue to expand. Over the ensuing period,
research should be directed toward a better understanding
of the immunization mechanisms involved in phage-
mediated immunization, and the development of hybrid
phage vaccination.

Phage display system Protein or peptides displayed Reference

Lambda HBsAg March et al. 2004

Lambda Porcine Circoviurs 2 capsid protein Gamage et al. 2009

M13 filamentous phage Tumor-associated antigens Fosså et al. 2004

M13 filamentous phage HSV-1 glycoprotein D Hashemi et al 2009

fd filamentous phage Melanoma-associated antigens Riemer et al. 2005

fd filamentous phage Melanoma antigen Fang et al. 2005

fd filamentous phage SE-CA-HSP90 Wang et al. 2006

T7 S-HBsAg Tan et al. 2005

T7 Ep15 peptide of West Nile virus Herrmann et al. 2007

T7 Tumor antigens Shadidi et al. 2008

T4 Anthrax antigen Shivachandra et al. 2006

T4 HIV antigen Sathaliyawala et al. 2006

T4 CSFV antigen Wu et al. 2007

T4 Foot-and-mouth disease vaccine Ren et al. 2008

Table 2 Representative studies
on phage-based vaccination.
CSFV Classical swine fever
virus
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