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Abstract
Autophagy, a highly regulated cellular process, assumes a dual role in the context of cancer. On the one hand, it functions 
as a crucial homeostatic pathway, responsible for degrading malfunctioning molecules and organelles, thereby maintain-
ing cellular health. On the other hand, its involvement in cancer development and regression is multifaceted, contingent 
upon a myriad of factors. This review meticulously examines the intricacies of autophagy, from its molecular machinery 
orchestrated by Autophagy-Related Genes (ATG) initially discovered in yeast to the various modes of autophagy operative 
within cells. Beyond its foundational role in cellular maintenance, autophagy reveals context-specific functions in processes 
like angiogenesis and inflammation. Our analysis delves into how autophagy-related factors directly impact inflammation, 
underscoring their profound implications for cancer dynamics. Additionally, we extend our inquiry to explore autophagy’s 
associations with cardiovascular conditions, neurodegenerative disorders, and autoimmune diseases, illuminating the broader 
medical relevance of this process. Furthermore, this review elucidates how autophagy contributes to sustaining hallmark 
cancer features, including stem cell maintenance, proliferation, angiogenesis, metastasis, and metabolic reprogramming. 
Autophagy emerges as a pivotal process that necessitates careful consideration in cancer treatment strategies. To this end, 
we investigate innovative approaches, ranging from enzyme-based therapies to MTOR inhibitors, lysosomal blockers, and 
nanoparticle-enabled interventions, all aimed at optimizing cancer treatment outcomes by targeting autophagy pathways. In 
summary, this comprehensive review provides a nuanced perspective on the intricate and context-dependent role of autophagy 
in cancer biology. Our exploration not only deepens our understanding of this fundamental process but also highlights its 
potential as a therapeutic target. By unraveling the complex interplay between autophagy and cancer, we pave the way for 
more precise and effective cancer treatments, promising better outcomes for patients.
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Introduction

Autophagy is a highly regulated and essential intracellular 
pathway that plays a crucial role in maintaining cellular 
health and balance. It governs various cellular processes, 
such as cell survival, adaptability, and programmed cell 
death, and it is involved in the management of pathological 
conditions. This intricate process involves the coordination 
of multiple genes and proteins within the body (Chun and 
Kim 2018). At its core, autophagy is a catabolic process 
that facilitates the degradation of cellular components by 
delivering them to lysosomes. This degradation is achieved 

through the sequestration of these components within dou-
ble-walled lipid structures known as autophagosomes, which 
subsequently merge with lysosomes containing hydrolytic 
enzymes. The substrates or materials targeted for autophagy 
can originate from within the cell (endogenous) or from out-
side the cell (exogenous). Endogenous substrates include 
intracellular pathogens, damaged mitochondria, aggregated 
non-functional proteins, and nuclear fragments. On the other 
hand, exogenous substrates encompass extracellular patho-
gens like viruses and bacteria, as well as other molecules 
or chemicals (Galluzzi, Baehrecke, et al. 2017). Autophagy 
plays a central role in regulating the normal and healthy state 
of cells. Any disruption or impairment of this process can 
have serious implications and contribute to the development 
of various pathologies, including different types of cancers. 
Therefore, autophagy has emerged as a potential target for 
therapeutic approaches, particularly in the field of cancer 
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treatment. By understanding and manipulating the mecha-
nisms of autophagy, researchers and medical professionals 
can explore novel strategies to modulate this process to pro-
mote cell survival or induce selective cell death in cancer 
cells. By targeting autophagy, it may be possible to develop 
therapies that specifically impact cancer cells while sparing 
normal healthy cells, offering a promising avenue for future 
treatments (Galluzzi, Bravo-San Pedro, et al. 2017). Overall, 
autophagy represents a complex and interconnected cellular 
pathway that influences cell fate and contributes to the main-
tenance of cellular equilibrium. Its dysregulation can have 
profound consequences, making it a focal point for studying 
and developing therapeutic interventions, particularly in the 
context of cancer (Galluzzi et al. 2015), neurodegenerative 
disorders (Frake et al. 2015), aging (Rubinsztein et al. 2011), 
inflammation (Netea-Maier et al. 2016), immunity (Gomes 
& Dikic 2014) and genome stability (Goldsmith et al. 2014), 
and cardiovascular abnormalities (Shirakabe et al. 2016). In 
the past, this process was commonly understood as a tumor 
suppressor mechanism. However, recent studies and find-
ings have revealed a more complex picture, recognizing 
it as a “double-edged weapon” that can both impede and 
promote the onset and advancement of cancer in certain cir-
cumstances (Chavez-Dominguez et al. 2020). It is triggered 
by a range of stimuli or stresses, such as hypoxia (low oxy-
gen levels), withdrawal of growth factors, nutrient depriva-
tion, oxidative stress, and infection (Goldsmith et al. 2014). 
Autophagy, a highly complex cellular process responsible 
for the degradation and recycling of damaged or unneces-
sary cellular components, holds a multifaceted and intrigu-
ing role in the context of cancer. This intricate relationship 
between autophagy and cancer is characterized by a para-
doxical duality, as it exhibits both tumor-suppressive and 
tumor-promoting effects depending upon the stage and con-
text of the disease. In the early stages of cancer, autophagy 
often acts as a tumor suppressor, playing a vital role in 
maintaining cellular homeostasis by eliminating defective 
organelles, proteins, and mitigating oxidative stress. Key 
autophagy-related genes (ATGs), including BECN1, are 
essential for this tumor-suppressive function. However, as 
cancer progresses and becomes established, autophagy takes 
on a dual role (Verma et al. 2021; Yun and Lee 2018). It not 
only supports the survival and proliferation of cancer cells, 
helping them adapt to stressors like hypoxia and nutrient 
scarcity within the tumor microenvironment, but also fuels 
their metabolic demands by recycling intracellular compo-
nents for energy production (Zaarour et al. 2021). Moreover, 
autophagy can contribute to various hallmarks of cancer, 
including promoting epithelial–mesenchymal transition 
(EMT), sustaining proliferation, facilitating angiogenesis, 
enhancing invasion and metastasis, maintaining cancer 
stem cell properties, and orchestrating tumor metabolism 
reprogramming (Gugnoni et al. 2016). Despite substantial 

advancements in understanding autophagy’s involvement in 
cancer, numerous enigmatic facets remain to be explored 
through rigorous scientific investigation, holding the poten-
tial to uncover novel therapeutic strategies and shed light on 
the complex mechanisms underpinning cancer progression. 
The complex interplay between autophagy, inflammation, 
and tumorigenesis is a subject of intense research and has 
far-reaching implications for understanding cancer biology 
and developing novel therapeutic strategies (Patergnani et al. 
2021). In cancer development, inflammation can exert both 
promotive and inhibitory effects contingent upon contextual 
elements and molecular participants. Conversely, autophagy, 
a fundamental cellular process responsible for preserving 
cellular equilibrium through the degradation of damaged 
organelles and proteins, profoundly influences the inflam-
matory response (Yang et al. 2011). Dysregulated autophagy 
has intricate links to cancer progression. This connection 
pivots on various factors, chiefly the release of damage-
associated molecular patterns (DAMPs) from stressed 
or damaged cells. DAMPs can initiate an innate immune 
response, recruiting immune cells like macrophages to sites 
of injury or tumors (Zhang et al. 2013). While a crucial 
part of the body’s defense, this response may foster chronic 
inflammation, a recognized cancer initiation and progression 
risk. Specialized autophagic processes, such as mitophagy 
targeting damaged mitochondria, can amplify the inflamma-
tory response (Gkikas et al. 2018). Mitochondria, pivotal for 
energy generation and immune signaling regulation, release 
reactive oxygen species (ROS) and other pro-inflammatory 
molecules when dysfunctional. Impaired mitophagy sustains 
these damaged mitochondria, further fueling chronic inflam-
mation and potentially supporting tumorigenesis (Tirichen 
et al. 2021). Molecular actors, including heat shock proteins 
(HSPs) and autophagy-related genes (ATGs), serve as vital 
modulators within this intricate interplay. HSPs have the 
capacity to activate the NF-κB pathway, prompting the ele-
vation of inflammatory mediators like high-mobility group 
protein B1 (HMGB1) (Penke et al. 2018). Furthermore, 
autophagy can participate in the secretion of inflammatory 
cytokines such as IL-6 in response to certain mutations, 
intensifying inflammation and possibly enhancing cancer 
cell invasiveness.

Comprehending this multifaceted relationship between 
autophagy, inflammation, and tumorigenesis is critical for 
developing targeted therapies manipulating these processes 
for therapeutic advantage. Researchers are actively explor-
ing autophagy modulators to enhance the immune response 
against cancer. Concurrently, strategies inhibiting autophagy 
in cancer cells to heighten treatment sensitivity are under 
investigation (Amaravadi et al. 2016). This ongoing explora-
tion holds substantial promise for advancing cancer biology 
understanding and improving treatment outcomes. To gain 
a comprehensive grasp of autophagy and distinguish it from 
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other cellular catabolic pathways, like proteasomal degra-
dation, is fundamental. Proteasomal degradation involves 
the breakdown of short-lived, misfolded, damaged, or sur-
plus proteins via the 26S proteasome, a complex proteo-
lytic machinery, followed by engulfment by phagocytes like 
macrophages and dendritic cells. Conversely, autophagy pre-
dominantly revolves around lysosomal degradation, marked 
by sequestration of cellular components within autophago-
somes that subsequently merge with lysosomes for deg-
radation. A pivotal distinction lies in the fate of degraded 
material; proteasomal degradation yields short peptides for 
cellular repurposing, whereas autophagy leads to complete 
degradation into constituent molecules for recycling. These 
distinctions provide clearer insight into autophagy’s unique 
role, implications in cellular homeostasis, disease, and thera-
peutic strategies.

Sizeable literature suggests role of autophagy in cancer 
and inflammation. To talk about inflammation, this process 
is body’s response at injury site or any stimuli or patho-
gen invasion and is a complex signaling pathway involving 
whole lot of chemicals and receptors in case of continuous 
stimulus or chronic inflammation abnormal cell prolifera-
tion, damage, fibrosis etc. starts there is when autophagy 
come into play, and hence, a few factors that relate inflam-
mation to autophagy are also briefly discussed. Literature 
guides that cancer is one of the most dreadful disease of 
mankind and we apply know it all theory for this disease and 
since autophagy is like cleaning the unwanted biomolecule 
system it is unlikely they remain uninteracted. Interestingly, 
their interaction is cancer stage dependent as autophagy 
suppresses tumor at early stages but promotes the same at 
advance stages. Autophagy is also assumed to play notable 
roles in various anomalies related with brain like neurode-
generation, Alzheimer’s disease (AD), and Parkinson dis-
ease (PD) which are still a battle to win for mankind. The 
absence of autophagy leads to abnormal or harmful protein 
accumulation that leads to aggregation leads to oxidative 
stress, tau protein hyperphosphorylation, and ER stress. 
Therefore, neurodegenerative disorders also have a direct 
connection to autophagy which is an area to be explored 
(F. Guo et al. 2018). Advances in bioelectronics has shifted 
cancer therapies to target-based therapies using compatible 
nanoparticles. Multiple types of nanoparticles are now syn-
thesized in vitro for attacking specific targets in autophagic 
process or tumor biomarkers to diagnose and treat cancers 
using autophagy remodeling.

Different forms of autophagy

Autophagy can also occur in a selective manner, where 
it relies on specific autophagy receptors known as selec-
tive autophagy receptors (SARs) to facilitate the targeted 

degradation of specific autophagic substrates. These sub-
strates can include protein aggregates, pathogens, and other 
cellular components that need to be eliminated. This form 
of autophagy is aptly named “selective autophagy” due to 
its ability to specifically target and degrade particular cel-
lular materials, thereby contributing to the maintenance 
of cellular quality control and homeostasis (Galluzzi et al. 
2017). Selective autophagy is a fundamental cellular process 
that operates in both normal and induced situations, play-
ing a crucial role in maintaining cellular homeostasis. In 
non-induced or normal circumstances, selective autophagy 
serves as an ongoing mechanism for the clearance of specific 
cellular components, such as damaged organelles, misfolded 
proteins, and protein aggregates. This continuous clearance 
process helps prevent the accumulation of harmful materi-
als and contributes to the overall health and functionality 
of the cell.

In induced situations, selective autophagy is triggered 
in response to specific signals or stresses, such as nutrient 
deprivation, oxidative stress, or pathogen invasion. These 
signals activate selective autophagy receptors (SARs), which 
act as molecular adapters, recognizing and binding to the 
targeted substrates to be degraded. The selective autophagy 
receptors then recruit the autophagic machinery, guiding the 
engulfment of the substrates into specialized vesicles called 
autophagosomes. Subsequently, the autophagosomes fuse 
with lysosomes, leading to the degradation of the captured 
substrates by lysosomal hydrolases (Zaffagnini and Martens 
2016). By selectively targeting and eliminating specific sub-
strates, selective autophagy contributes to cellular quality 
control, ensuring the removal of damaged or obsolete com-
ponents. This process helps maintain cellular homeostasis 
by regulating organelle turnover, protein quality control, and 
defense against intracellular pathogens. Defects in selective 
autophagy have been implicated in various pathological con-
ditions, including neurodegenerative diseases, cancer, and 
infections. Thus, understanding the intricate mechanisms 
underlying selective autophagy is of significant scientific 
interest, as it provides insights into the fundamental pro-
cesses governing cellular health and disease (Farré and Sub-
ramani 2016).

Autophagy can also occur in a non-selective manner, 
known as non-selective autophagy, where the process oper-
ates without the involvement of selective autophagy recep-
tors (SARs) and lacks specific targeting of substrates. In 
non-selective autophagy, the engulfment of substrates into 
autophagosomes happens randomly, without any specific 
recognition or selection of cellular components. Unlike 
selective autophagy, which selectively targets specific sub-
strates such as protein aggregates or damaged organelles, 
non-selective autophagy is characterized by a more gener-
alized and indiscriminate approach. It involves the engulf-
ment of a broad range of cellular materials, including 
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various cytoplasmic components and organelles, in a some-
what random manner. This random influx of substrates into 
autophagosomes distinguishes non-selective autophagy from 
its selective counterpart. Non-selective autophagy serves 
as a vital process in cellular maintenance and adaptation, 
particularly during times of cellular stress, nutrient dep-
rivation, or energy imbalance. It plays a role in removing 
excess or damaged cellular components, recycling cellular 
building blocks, and generating energy. While non-selective 
autophagy lacks the specificity of selective autophagy, it still 
contributes to cellular homeostasis and supports the overall 
health and survival of the cell. Understanding the interplay 
between selective and non-selective autophagy is crucial for 
comprehending the diverse strategies employed by cells to 
maintain their functionality under various physiological and 
pathological conditions. Both selective and non-selective 
autophagy mechanisms work in concert to ensure cellular 
quality control and adaptability, highlighting the complexity 
and importance of autophagy as a fundamental cellular pro-
cess (Gatica et al. 2018). Major forms of autophagic process 
seen inside cells are as follows:

Chaperone‑mediated autophagy (CMA)

This unique form of autophagy, known as chaperone-
mediated autophagy, represents a distinct variation in the 
autophagic process. Unlike the traditional pathways that 
involve autophagosome formation and vesicular engulfing, 
chaperone-mediated autophagy operates through a different 
mechanism. It does not require these conventional steps for 
the transfer of cargo or targets to the lysosomes for degrada-
tion. Instead, targets are directly translocated to the lumen 
of the lysosome utilizing a protein-translocation complex 
present on the lysosome membrane. Chaperone-mediated 
autophagy primarily focuses on targeting soluble proteins 
rather than other macromolecules or organelles. Within 
this process, heat shock proteins, specifically HSC70 and 
HSPA8, play a crucial role. They recognize and interact with 
a specific pentapeptide motif found on the target proteins, 
facilitating their translocation (Kaushik and Cuervo 2012), 
the KFERQ sequence in the target (Vakifahmetoglu-Norberg 
et al. 2013). According to Cuervo et al. (Cuervo and Dice 
1996), interaction of target protein with HSC protein causes 
a little misfolding in the target protein before its direct trans-
portation to the lysosome, and transport into lysosome is 
facilitated by lysosome-associated membrane protein 2A 
(LAMP2A). LAMP-2A levels and assembly/disassembly on 
the lysosomal membrane are rate-limiting steps for CMA. 
Several chaperones, including HSP90, HSP40, Hop, Hip, 
and BAG-1, facilitate substrate unfolding, enhance binding 
to LAMP2A, and stabilize LAMP2A during multimeriza-
tion. CMA regulation involves phosphorylation and dephos-
phorylation events, with factors like AKT and PHLPP1 

affecting CMA activity. Various transcription factors, such 
as NFAT, NRF2, and TPD52, can modulate CMA expres-
sion (Arias et al. 2015; Tekirdag and Cuervo 2018). Stud-
ies have shown that macroautophagy switch-off also serves 
as an inducer for CMA. Recent studies have proven that 
CMA might be a reason for some neurodegenerative disor-
ders (Orenstein et al. 2013) and its progression, oncogen-
esis (Kon et al. 2011), and preservation of genome integrity 
(Park et al. 2015).

Macroautophagy

Macroautophagy is a distinct form of autophagy that differs 
from other types, such as chaperone-mediated autophagy 
(CMA) and microautophagy. It involves the formation of 
specialized lipid-based double-membrane vesicles known 
as “autophagosomes,” which serve as crucial structures for 
the process. The process involves the intricate coordination 
of proteins and lipids from various cellular membranes, 
including the endoplasmic reticulum (ER), ER/mitochondria 
contact sites (MAM), ER exit sites, recycling endosomes, 
Golgi, and the plasma membrane. Over 40 autophagy-related 
proteins (ATGs), initially discovered in yeast, play pivotal 
roles at different stages of macroautophagy. A crucial step 
involves the conjugation of ATG8 family members like LC3 
and GABARAP to phosphatidylethanolamine in precursor 
membranes. Autophagosomes are sealed with the help of 
the ESCRT machinery and released, a process mediated by 
DNM2 (Kohler et al. 2020).

In recent years, macroautophagy has become a subject 
of extensive scientific investigation due to its pivotal role in 
safeguarding cellular health. It functions as a quality control 
mechanism, specifically targeting and eliminating damaged 
or dysfunctional organelles, aggregated proteins, and other 
molecules that have the potential to induce severe patho-
logical conditions, including cancer. Researchers are actively 
exploring the intricate workings of macroautophagy, seeking 
to unravel its molecular mechanisms and decipher the intri-
cate interplay between ATG genes and protein products. By 
elucidating these processes, scientists aim to gain a deeper 
understanding of how macroautophagy can be harnessed to 
prevent and treat various diseases. The scientific commu-
nity’s focus on macroautophagy underscores its significance 
in cellular homeostasis and disease prevention. The knowl-
edge gained through ongoing research efforts holds prom-
ise for the development of innovative therapeutic strategies 
that leverage the potential of macroautophagy to combat a 
wide range of debilitating conditions, ultimately leading to 
improved health outcomes for individuals affected by such 
diseases (Kaur and Debnath 2015). Autophagy serves as a 
critical mechanism that helps cells maintain their internal 
balance, known as homeostasis. It plays a crucial role in ena-
bling cells to adapt and withstand a wide range of stressors, 
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including hypoxia (oxygen deprivation), intracellular or 
extracellular pathogens, starvation, deficiency in growth fac-
tors, and various other factors. By engaging in autophagy, 
cells are empowered to efficiently deal with these stressors, 
ensuring their survival and overall health (White 2015). 
Autophagy has a very controversial role when it comes 
to cancer as it has experimentally proved that it promotes 
tumor initiation and survival and metastasis depending on 
the context, but in some cases, at earlier stages, it also helps 
as tumor suppressor (Onorati et al. 2018).

Selective macroautophagy (mitophagy, ER‑phagy, 
pexophagy, aggrephagy, and lysophagy)

Selective macroautophagy targets specific cellular compo-
nents for degradation, including damaged organelles and 
aggregate-prone proteins. Adapter proteins bridge the tar-
geted substrate, often ubiquitinated, and components of the 
nascent autophagosome, typically LC3 (Gatica et al. 2018). 
Macroautophagy can be induced by various stresses, includ-
ing nutrient depletion, growth factor deprivation, oxidative 
stress, and protein aggregation. While macroautophagy stud-
ies have predominantly been conducted in fibroblasts and 
cancer cell lines, the fundamental principles likely apply 
to all cell types, with potential adaptations in neurons and 
glial cells.

Mitophagy  It is a special kind of autophagic process that 
maintains the pool of mitochondria that somehow became 
mangled and useless (Fivenson et al. 2017). Mitochondria 
also called the “powerhouse of the cell” maintains ATP 
level and is the location of oxidative phosphorylation inside 
a cell, but mitochondrial dysfunctioning causes some disor-
ders–neurodegenerative disorders like Alzheimer’s disease 
(Ye et  al. 2015), Parkinson’s disease (Ryan et  al. 2015), 
Huntington’s disease (Khalil et al. 2015), and is considered 
to be one of the hallmarks of aging (López-Otín et al. 2013). 
PINK1/Parkin is a common and understood pathway for 
sweeping off damaged mitochondria in mammalian cells 
(Pickrell and Youle 2015). Intense studies on drosophila 
for PINK1/Parkin pathway have reported that knockout of 
Pink1 causes sterility, mitochondrial abnormalities, and 
stress sensitivity along with defects in locomotion and neu-
ronal injury (Clark et al. 2006). Mitophagy could be PINK1-
Parkin-dependent wherein a decline in mitochondrial mem-
brane potential causes activation of protein kinase-ubiquitin 
kinase (PTEN)-induced kinase 1 (PINK1) due to damaged 
mitochondria. This activation of PINK1 then prompts ubiq-
uitin ligase PARKIN; moreover, PARKIN polyubiquitinates 
other proteins of mitochondria. This process facilitates the 
interaction of the ubiquitin-binding domains of autophagy 
receptors and further initiation of the formation of phago-
phores followed by autophagosomes (Fig.  1). However, 

autophagy receptors can directly be recruited by PINK1 
irrespective of PARKIN (Fivenson et  al. 2017). Studies 
revealed that mutations in PINK and PARKIN also contrib-
ute to Parkinson’s disease (Pickrell and Youle 2015) and 
aging (Fivenson et  al. 2017), the reason being mitochon-
drial dysfunctioning. Multiple mitophagy-related proteins 
are found to perform in a Parkin-independent manner, like 
Bcl2-L-13, FUNDC1, MUL1, and Nix/BNIP3L, AMBRA1 
(Fivenson et  al. 2017).Mitophagy, a process critical for 
maintaining healthy mitochondria, primarily relies on the 
recruitment of Parkin to damaged mitochondrial membranes 
by elevated PINK1 levels. This initiates the degradation of 
dysfunctional mitochondria through autophagy (Wang et al. 
2019). Several receptors, including OPTN, NDP52, and 
TAX1BP1, aid in recruiting the autophagosome machinery 
to mitochondria.

Macroautophagy also encompasses several distinct selec-
tive processes in cellular maintenance. ER-phagy involves 
receptors like FAM134B, which interact with LC3 or 
GABARAP, enabling the targeted degradation of specific 
regions within the Endoplasmic Reticulum (ER) (Ferro-
Novick et al. 2021). Pexophagy, on the other hand, relies on 
the ubiquitination of peroxisomal proteins, recognized by 
autophagy adapters, such as P62 and NBR1, leading to the 
degradation of peroxisomes (Cho et al. 2018). In the context 
of neurodegenerative diseases, aggrephagy plays a crucial 
role by selectively eliminating misfolded, ubiquitinated pro-
teins with the assistance of adapters like P62, NBR1, OPTN, 
and TAX1BP1 (Lamark and Johansen 2012). Additionally, 
lysophagy ensures the clearance of damaged lysosomes 
through ubiquitination and involves canonical autophagy 
receptors like TAX1BP1 and TBK1 (Hoyer et al. 2022). 
These diverse selective autophagic processes are vital for 
preserving cellular health by eliminating damaged or dys-
functional cellular components.

Microautophagy

Microautophagy, a lesser-explored cousin of macroau-
tophagy, differs significantly in its mechanisms. While 
macroautophagy has garnered substantial attention, micro-
autophagy remains relatively uncharted territory. One of 
the notable distinctions is the absence of double-walled 
autophagosome formation in microautophagy. Instead, 
it directly includes cargos, either selectively or non-
selectively, into lysosomes or endosomes. Subsequently, 
autophagic bodies or luminal bodies are formed, which are 
then degraded by hydrolytic enzymes. The core autophagy 
machinery comprises a set of complex and conserved pro-
teins involved in this process.

The first evidence of microautophagy emerged in the 
1960s when rat liver analysis revealed invaginations 
of lysosomal membranes degrading soluble abnormal 
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proteins (Ahlberg and Glaumann 1985). Since then, sig-
nificant research has been conducted on microautophagy 
involving various cargos, including mitochondria, cer-
tain cytosolic enzymes, parts of the nucleus, pigment 
aggregates, and chloroplasts in plants (Ding et al. 2022; 
Stefaniak et al. 2020). It degrades the cellular compo-
nents via membrane invaginations in compartments of 
the endolysosomal system. In mammals, microautophagy 
pathways target cargo to late endosomes/multivesicular 
bodies (LE/MVBs). Endosomal microautophagy (eMI) 
refers to the degradation of cytosolic proteins in LE/
MVBs, and it can be selective or non-selective (Krause 
and Cuervo 2021; Mejlvang et al. 2018). Selective eMI 
involves recognition of a KFERQ-like motif by HSC70, 
similar to CMA, followed by internalization into LE/
MVBs in an ESCRT-dependent manner. Non-selective 
eMI, induced by amino acid starvation, targets several 
macroautophagy receptors and contributes to the regula-
tion of selective macroautophagy. eMI’s regulation and 
functional implications are still not fully understood in 
mammals, but it appears to respond to stress and nutrient 
availability (Gautreau et al. 2014).

Microautophagy occurs through several 
approaches:

(A) Lysosomal invagination: This process involves the 
canonical fusion by the invagination of the membrane of 
apical vacuoles (lysosome-like organelles) and endosomes. 
This fusion plays a crucial role in nutrient and signaling 
pathways, particularly in the presence of GTPase Rab7 
(GTP-dependent rab7) (Huotari & Helenius 2011). A third 
pathway resembles the formation of tiny luminal vesicles 
in endosomes, similar to microautophagy. The Endosomal 
Sorting Complex Required for Transport (ESCRT) is a 
vital protein complex that plays a crucial role in organelle 
membrane remodeling, including invagination and bud-
ding. Some studies have shown promising binding between 
ESCRT proteins and ubiquitylated cargos for selective 
microautophagy (Gautreau et al. 2014; He et al. 2021).

(B) Endosomal invagination: Also known as endoso-
mal microautophagy, this has been studied in Drosoph-
ila melanogaster and dendritic cell lines. This approach 
recruits ESCRT proteins and accessory proteins like Nbr1 
and Hsc70, providing selectivity to the process (Schnebert 
et al. 2022). Multivesicular bodies or intraluminal vesicles 
are formed inside endosomes. In D. melanogaster, which 
lacks Chaperone-Mediated Autophagy (CMA), Hsc70 

Fig. 1   “Diverse Forms of Autophagy and Cargo Selectivity”. This 
figure illustrates the various forms of autophagy, each with distinct 
functions and mechanisms. The selectivity of autophagic cargos is 

regulated by specific cargo receptors or adaptors, which recognize 
and sequester target substrates for degradation
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protein is recruited via electrostatic interactions with 
phosphatidylserine, deforming the endosomal membrane, 
a requirement for autophagy. Nbr1, in conjunction with 
ESCRT-0, aids cargo targeting and the ubiquitination of 
cytoplasmic proteins on the endosomal surface for deliv-
ery into the vacuole (Schnebert et al. 2022; Tekirdag and 
Cuervo 2018).

(C) Lysosomal protrusion: In this form of microau-
tophagy, membranous or arm-like protrusions arise from lys-
osomes, as observed in mouse liver cells. These protrusions 
play a role in maintaining protein homeostasis. While the 
molecular understanding of this approach in mammals is still 
under research, in yeast, the extension of these protrusions 
involves Vac8 and various ATG proteins (Oku et al. 2018).

Various types of microautophagy are observed depend-
ing upon the cargo or organelle involved. One example is 
Micro-ER-phagy, which includes ESCRT-dependent micro-
autophagy and the scission of ER stacks within the vacuole. 
In this process, excess or misfolded ER stacks and abnor-
mal proteins are converted into spherical whorls, which are 
subsequently degraded in the vacuole (Schäfer et al. 2020).

Autophagic pathway

Autophagy operates through a highly efficient and tightly 
controlled pathway or mechanism, characterized by its 
robustness, sequential nature, and organized regulation. Each 
form of autophagy follows a multistep process, with multiple 
genes and their corresponding protein products orchestrating 
the intricate machinery responsible for degradation. These 
genes and proteins work in harmony, meticulously monitor-
ing and maintaining the degradation mechanisms involved in 
autophagy. This well-coordinated process ensures the proper 
execution of autophagy, allowing cells to effectively elimi-
nate unwanted or damaged components while upholding 
cellular health (Nakatogawa et al. 2009). CMA, mitophagy, 
and macroautophagy cycle through different paths, but they 
all reach a common destination of lysosomal degradation, 
where different cytotoxic substrates are fed, and after their 
digestion, the constituents are resupplied for energy replen-
ishment. Term autophagic flux is defined as the rate at which 
the autophagic machinery spots, characterizes, separates, 
and dumps off the target (via lysosomal trashing).

Initiation and phagophore formation

Macroautophagy or autophagy pathway begins with the ini-
tiation and formation of autophagosome, a double-layer vesi-
cle, and multiple ATG genes are needed for the origination 
of the autophagosome. In yeast, autophagy have initiation 
sites called phagophore assembly site (PAS). Stressors like 
(cytotoxic stressors, nutrient deprivation, hypoxia, oxidative 

stress, etc.) are responsible for initiating autophagy. Mecha-
nistic target of rapamycin (mTOR) complex I (MTORCI) 
and AMP-activated protein kinase (AMPK) are two major 
modulators of the autophagic pathway, where inhibition of 
(MTORCI) and activation of (AMPK) are considered major 
stimulators of the process (Huang et al. 2018). Activators or 
triggering molecules of autophagy inactivate (MTORCI) by 
signal transduction. (MTORCI) and (AMPK) sense a rela-
tive difference in concentrations of AMP and ATP. This ratio 
gets imbalanced during starvation conditions (nutrient defi-
ciency) (Inoki et al. 2012). (MTORCI) regulates a very cru-
cial complex called unc-51-like autophagy-activating kinase 
1 (ULK1, considered as a mammalian ortholog of gene 
Atg1 present in yeast), by phosphorylating the inhibitory 
sites of ULK complex. At the time of nutrient deficiency, 
(MTORCI) dissociates from inhibitory sites and this causes 
phosphorylation of the active sites and causes activation of 
the ULK complex (Egan et al. 2011). Moreover, AMPK also 
stimulates the ULK1 complex by phosphorylating variable 
locations in the core intrinsically disordered region (IDR), 
in autophagy and mitophagy Additionally, AMPK inhibits 
mTORC1 through phosphorylation of the regulatory-asso-
ciated protein of mTOR (RAP-TOR). ULK1 complex now 
further activates phosphatidylinositol 3-kinase, catalytic 
subunit type 3 (PIK3C3, aka VPS34), and BECLIN 1 (Kim 
et al. 2013). These 2 proteins are part of a multi-protein 
complex called phosphatidylinositol 3-phosphate (PI3P); 
this complex synthesizes lipids and hence causes nuclea-
tion and biogenesis of autophagosomes (Zhao and Klionsky 
2011). PI3P recruitment more of autophagy-specific PI3P 
effectors, like WD-repeat domain PI-interacting protein-2 
(WIPI2). WIPI2 then interacts with ATG12–ATG16L com-
plex to accomplish the expansion of the phagophore (Dooley 
et al. 2014) (Fig. 1).

Nucleation

The final formation of a mature autophagosome involves 
several distinct stages, with four functional units playing 
essential roles in these intricate processes. First, multiple 
Atg proteins converge at a site known as the pre-autophago-
somal structure (PAS), kickstarting the formation of a pha-
gophore, which is the initial isolation membrane (Parzych 
and Klionsky 2014). The PAS acts as a nucleating site, 
recruiting various Atg proteins to initiate this crucial step. 
The process is set in motion by the ULK1/Atg1 complex 
(Mizushima 2010). In response to nutrient deprivation, 
ULK1/Atg1 associates with Atg13, FIP200/Atg17, Atg29, 
and Atg31, forming a complex that acts as the foundation 
for the PAS scaffold complex. Subsequently, the PI3K com-
plex is recruited to the PAS, facilitating phagophore forma-
tion through the interaction between ATG14L and ATG13. 
Additionally, ATG9A-positive membrane vesicles are 
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brought to the PAS through their interaction with FIP200, 
anchoring them to this pivotal site. These concerted actions 
of multiple Atg proteins orchestrate the generation of the 
isolation membrane (Hitomi et al. 2023). The formation 
of autophagosomes, crucial components of the autophagy 
process, involves a series of intricate steps and regulatory 
complexes. The class III phosphatidylinositol 3-kinase 
(PtdIns3K) complex, featuring ATG14, is a pivotal player 
in this process, generating PtdIns3P, essential for macro-
autophagy in both yeast and mammals. In mammals, this 
complex can participate in macroautophagy or the endo-
cytic pathway, depending upon its association with ATG14 
or UVRAG, respectively (Itakura et al. 2008). Regulation 
of PtdIns3K complex activity is multifaceted, involving 
proteins that interact with BECN1, a critical component. 
BCL2 inhibits macroautophagy by binding BECN1, while 
KIAA0226/Rubicon suppresses PIK3C3 activity. Positive 
regulators include AMBRA1 and SH3GLB1/Bif-1. In yeast 
and mammalian cells, proteins like Atg18, WIPI1, WIPI2, 
and ZFYVE1 bind to PtdIns3P, playing roles in macroau-
tophagy, though their precise functions are still under inves-
tigation (Polson et al. 2010). Understanding the complex 
regulation of these processes provides valuable insights into 
the intricacies of autophagosome formation.

This step requires the assembly of phosphatidylinositol 
3-phosphate by the activity of class III phosphatidylinosi-
tol 3-kinase (PI3K), VPS34 (Goldsmith et al. 2014). After 
conjugating with VPS34, Beclin 1 complex associates 
with UV irradiation resistance-associated gene (UVRAG) 
(Itakura et al. 2008), ATG14L (Matsunaga et al. 2009), 
and AMBRA1 (Maria Fimia et al. 2007). VPS34 complex 
relocation is associated with phagophore nucleation. The 
flexibility of the phagophore is facilitated by the interaction 
between UVRAG and Bif1 (domain protein). Autophagy is 
repressed by BCL-2, BCL-xL, Rubicon, AKT, and EGFR 
by having a negative effect on BECLIN1/VPS34 autophagy-
promoting complex (Wei et al. 2013), (Zhong et al. 2009), 
(Wang et al. 2012a, b).

Elongation and cargo targeting

Next comes the elongation of the phagophore before it 
matures into autophagosome and becomes fully functional 
which requires two conjugation systems called LC3 complex 
(microtubule-associated light-chain B LC3B, the mammalian 
orthologue of Atg8 gene in yeast) and the ATG16L complex 
(Goldsmith et al. 2014). ATG16L complex is a multimeric 
protein complex formed from the ATG5–ATG12 complex 
binding ATG16 complex. ATG5–ATG12 complex also con-
sists of covalent binding between ATG5 and ATG12 aided 
by enzymes like ATG7 and ATG10 (Nakatogawa 2013). 
LC3 complex couples with lipid phosphatidylethanolamine 

(PE) in the presence of E2-like ATG3 enzyme and ATG7. 
LC3 along with Atg8 protein complexes facilitate tethering 
and fusion of the outer membrane followed by the inner one 
aka hemifusion, indicating importance in closing the phago-
phore membrane into a functional autophagosome (Fig. 1).

Fusion and feed degradation

The outer membrane of a fully functional autophagosome 
is formed its merges with that of the lysosome. This fusion 
yields autolysosome and requires the interference of three 
families of protein namely—soluble N-ethyl maleimide-
sensitive factor attachment proteins (SNAREs) and Rab 
GTPases, membrane-tethering factors (such as HOPS and 
EPG5) (Goldsmith et al. 2014). It is seen that autopha-
gophores can either fuse with endosomes or produce an 
“amphisome”; this amphisome then merges with the lyso-
some to carry out degradation (Nakamura and Yoshimori 
2017) or can directly fuse with the lysosome. After fusion, 
the feed is digested by the enzymes in lysosomes. Rab7 
GTPase links mature autophagosomes to a microtubule 
motor through FYCO1 [FYVE and Coiled-Coil Domain 
Autophagy Adaptor 1] to facilitate kinesin protein-mediated 
movement to the periphery or boundary of the cell (Kriegen-
burg et al. 2018). Moreover, according to studies ATG8 has a 
special role in the planting of autophagosomes (Kriegenburg 
et al. 2018) (Fig. 1).

Role of autophagy

In angiogenesis

It is the process of the formation of novel vessels/capillaries 
out of existing vessels/capillaries. This process has a role to 
play in organ development, wound healing, and any patho-
logical conditions (like cancer metastasis). In a similar pro-
cess called vasculogenesis where endothelial precursor cells 
from bone marrow are responsible for vessel formation while 
in angiogenesis endothelial cells in the vicinity form the ves-
sel, but the purpose remains the same supplying nutrients 
and oxygen. Angiogenesis supports cancer cells in surviving 
the problem of high energy demand, hypoxia, and nutrient 
deficiency (Kardideh et al. 2019). Equilibrium between anti- 
and pro-angiogenic factors drives the process of new vessel 
formation; moreover, around the tumor area, endothelial 
cells experience high Vascular Endothelial Growth factor A 
(VEGF-A), hypoxia, and nutrient deprivation (Schaaf et al. 
2019). Hypoxic conditions stimulate cells in the TME to 
release (VEGF-A) in abundance and the receptor of EC cells 
after receiving it causes capillary formation in the presence 
of matrix metalloproteins in the matrix. In addition, hypoxic 
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conditions stabilize HIF-1α which otherwise gets hydroxy-
lated and degraded under normoxia (Masoud and Li 2015). 
Autophagy drives homeostasis in cells. Experiments suggest 
that rapamycin-induced autophagy promotes angiogenesis 
by altering AMPK/Akt/mTOR signaling. Autophagy can 
have an angiogenic effect as seen in the acute myocardial 
infarction (AMI) mice model through increased Vascular 
Endothelial Growth Factor (VEGFA) (Zou et al. 2019), 
although autophagy can have an anti-angiogenic effect also 
as seen by applying mebendazole in endothelial cell (Sung 
et al. 2019). Proteoglycan-like decorin has both pro-angio-
genic and anti-angiogenic effects via interacting with differ-
ent molecules and factors; likewise, another proteoglycan 
perlecan also exerts dual effects on endothelial cells (Kardi-
deh et al. 2019). Tumor vasculature has a crucial part in two 
aspects of cancer cell growth that is hypoxia and invasive 
metastasis. Hypoxia promotes angiogenesis and provides 
chemoresistance; hence, controlling hypoxia or maintaining 
normoxia has proven effective in controlling cancer vascu-
lature via autophagy according to recent studies. Example 
chloroquine not only controls lysosomal inhibition but also 
controls tumor vasculature. Another molecule triptolide is 
anti-cancerous against osteosarcoma cells and also restricts 
angiogenesis and promotes apoptosis through the Wnt/β-
catenin pathway mediates processes like angiogenesis, cell 
proliferation, and cell death (Li et al. 2018).

In inflammation

Inflammation, a complex and vital response triggered by 
the body in the face of various stimuli, is influenced by 
a range of cellular and molecular factors. Immune cells, 
such as macrophages, monocytes, and neutrophils, are 
recruited to the site of injury or insult and initiate a sophis-
ticated repair mechanism. Within this intricate process, 
autophagy plays a crucial role in regulating inflammation 
and promoting tissue homeostasis. Autophagy, the cellu-
lar process of self-digestion and recycling, intersects with 
inflammation at multiple levels. It influences the activa-
tion and function of immune cells involved in the inflam-
matory response. Autophagy promotes the clearance of 
intracellular pathogens and damaged organelles, reducing 
the burden on immune cells and preventing the release 
of pro-inflammatory signals. Furthermore, autophagy 
contributes to the regulation of cytokine production and 
secretion. It helps maintain a balanced cytokine profile 
by selectively degrading excessive or pro-inflammatory 
cytokines, thus preventing exaggerated immune responses. 
Autophagy also modulates the activation and function of 
immune cells by fine-tuning signaling pathways involved 
in inflammation. In addition to its role in immune cell 
regulation, autophagy aids in tissue repair and the resolu-
tion of inflammation. It facilitates the removal of cellular 

debris and damaged components, promoting the regen-
eration and restoration of healthy tissue. Autophagy also 
contributes to the clearance of apoptotic cells, preventing 
the release of inflammatory mediators from dying cells 
(Fig. 2).

By orchestrating these diverse functions, autophagy acts 
as a critical modulator of inflammation. It helps maintain 
immune cell homeostasis, regulates cytokine production, 
promotes tissue repair, and aids in the resolution of inflam-
mation. The dynamic interplay between autophagy and 
inflammation highlights the intricate nature of these pro-
cesses and their significance in maintaining tissue integrity 
and overall immune function (Fig. 2) (Singh et al. 2019). 
Inflammation could be acute if the damage gets controlled 
or the stimulation stops after a time; otherwise, it could 
turn chronic if the damage is not controllable or stimu-
lation persists. In that condition, inflammation becomes 
devastating and it initiates other processes like cell prolif-
eration or tissue damage, mutation, and fibrosis (Germolec 
et al. 2018). Experiments have proved the involvement of 
chronic inflammation in multiple diseases, to name some 
are diabetes, atherosclerosis, arthritis, asthma, autoim-
mune diseases, cancer, and to aging (Monkkonen and 
Debnath 2018). There are a few factors that relate inflam-
mation to autophagy and these are the following:

Innate immune receptors

Toll-like receptors—endosomal membrane, retinoic acid-
inducible gene-I- (RIG-I-) like receptors (RLRs), nod like 
receptors—cytosol (Dambuza and Brown 2015), etc. The 
interaction between autophagy and pattern recognition 
receptors (PRRs) is a complex process that plays a crucial 
role in identifying and eliminating pathogens. PRRs rec-
ognize specific patterns or structures known as pathogen-
associated molecular patterns (PAMPs) and danger-asso-
ciated molecular patterns (DAMPs). When PRRs detect 
these patterns, they signal autophagic proteins to initiate 
the degradation of the foreign bodies through lysosomal 
pathways. This interplay is highly intricate and varies 
across different cell types. Autophagy enhances pathogen 
recognition, promotes immune activation, and contributes 
to pathogen clearance and tissue integrity. Dysregulation 
of this interaction can have detrimental effects on pathogen 
elimination and inflammation. Understanding the inter-
play between autophagy and PRRs is essential for compre-
hending innate immune responses and developing targeted 
interventions against infectious diseases (Lapaquette et al. 
2015).
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Cytokines

Cytokines, a class of chemical mediators, play a signifi-
cant role in inflammation and autophagy modulation. Some 
cytokines, such as Interleukin-1, TGFβ, Interleukin-2, 
Interleukin-6, Tumor necrosis factor-α, and Interferon-γ, 
induce autophagy, promoting pathogen clearance and cel-
lular remodeling. Conversely, Th2 cytokines like Inter-
leukin-4, Interleukin-10, and Interleukin-5 have limited 

impact on autophagy or suppress its induction, focusing 
on immune regulation and tissue repair. Achieving a bal-
anced cytokine profile is crucial for coordinated immune 
responses and inflammation resolution (Harris 2011). 
Research has demonstrated that autophagy plays a signifi-
cant role in pathogen elimination, particularly in the cases 
of Mycobacterium tuberculosis and Chlamydia trachomatis. 
The induction of the cytokine IFN-γ has been associated 
with autophagy-driven killing of these pathogens. IFN-γ 

Fig. 2   The multistep process of autophagy and its regulatory compo-
nents. Autophagy involves several stages: initiation, nucleation, elon-
gation, fusion, and degradation. AMPK and mTOR serve as major 
modulators of autophagy, while ATGs (autophagy-related genes) are 
closely associated with the process. During initiation, ULK (Unc-51-
like kinase) phosphorylates ATG13 and FIP200, leading to their acti-
vation. In nucleation, ULK1 phosphorylates Ambra1, which interacts 
with Beclin-1. Beclin-1 then forms a complex with other proteins, 
called the PI3KC3 complex. The phagophore is formed, enclosing 
cytoplasmic components during the elongation stage. The phago-

phore expands to form autophagosomes. Subsequently, autophago-
somes fuse with lysosomes, forming autolysosomes. Within the 
autolysosomes, various cytoplasmic components are degraded by 
enzymes. AMPK AMP-activated protein kinase, mTOR mammalian 
target of rapamycin, ULK Unc-51-like kinase, FIP200 Focal adhesion 
kinase family interacting protein of 200-kDa, PI3KC3 Class III phos-
phatidylinositol 3-kinase. (The image legend clarifies that autophagic 
cargos are represented by purple and green colors, while red and yel-
low colors symbolize lysosomal enzymes. In the lower corner of the 
image, it is explained that the light green color corresponds to LC3.)
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promotes the activation of autophagic pathways, enhanc-
ing the degradation of intracellular pathogens and con-
tributing to their elimination. These findings highlight the 
importance of autophagy as a defense mechanism against 
specific pathogens, with IFN-γ playing a key role in induc-
ing autophagy-mediated pathogen clearance (Al-Zeer 
et al. 2009). Pro-inflammatory cytokine TNF-α works as 
an autophagy inducer in T-lymphoblastic leukemic cells, 
osteoclasts bone cells, and Ewing sarcoma cells (Lin et al. 
2013). IL-4 and IL-13, anti-Th2 and anti-inflammatory 
cytokines, negatively regulate autophagy by suppressing its 
induction during nutrient deprivation. They achieve this by 
activating the PI3K/Akt pathway, which inhibits the initia-
tion of autophagy in response to cellular starvation. This 
mechanism helps maintain cellular resources and homeo-
stasis under nutrient-deprived conditions. Moreover, IL-4 
and IL-13 also function as inhibitors of IFN-γ-induced 
autophagy. IFN-γ is known to induce autophagy in different 
cellular contexts, but these cytokines act as counteractive 
factors, dampening the autophagic response triggered by 
IFN-γ. By inhibiting IFN-γ-induced autophagy, IL-4 and 
IL-13 contribute to immune regulation and the maintenance 
of immune homeostasis. (Lapaquette et al. 2015). Therefore, 
it is very clear that cytokine and cell type may drive the 
autophagic process.

Reactive oxygen species

Defined as unstable oxygen radicals or associated oxygen 
compounds when reacts with DNA, RNA, proteins dam-
age their structure. Under nutrient deprivation, these spe-
cies induce autophagy and this process is reversed in the 
presence of antioxidants as shown by several studies (Lev-
onen et al. 2014). During nutrient deprivation, reduced 
glutathione (GSH), which serves as a potent antioxidant, 
is expelled from the cytosol of cells through a membrane 
translocator called ABCC1MRP1. This expulsion alters the 
cellular redox conditions, creating an oxidizing environment 
that can impact redox-sensitive proteins. Under starvation 
conditions, mitochondria generate reactive oxygen species 
(ROS), including superoxide and hydrogen peroxide. These 
ROS play a role in inducing autophagy through two distinct 
mechanisms. First, they oxidize cysteine residues in ATG4, 
an autophagic cysteine protease, which enhances overall 
autophagic activity. Second, the increased production of 
ROS can serve as a signaling cue for autophagy induction 
(Scherz-Shouval et al. 2007). AMPK, short for 5′-adenosine 
monophosphate-activated protein kinase, can be activated 
through a process known as S-glutathionylation. This activa-
tion occurs when cysteine residues within AMPK undergo 
post-translational modification. Upon activation, AMPK 
initiates a cascade of events that lead to the phosphoryla-
tion of TSC2, a gene associated with tumor suppression. 

Phosphorylation of TSC2 triggers the activation of ULK1 
through phosphorylation and simultaneously inhibits 
mTORC1, a complex involved in regulating autophagy 
(Fig. 2).

Inflammation and transcriptional factors

Certain transcription factors, including HIF-1, NF-κB, 
STAT3, and STAT1, have been found to regulate the 
expression of genes associated with autophagy. HIF-1 is 
involved in sensing and responding to low oxygen levels 
and influences the cellular autophagic response. NF-κB, a 
central player in inflammation, also modulates autophagy 
through its transcriptional activity. Similarly, STAT3 and 
STAT1, known for their involvement in signaling pathways 
and inflammation, impact the expression of genes critical 
for autophagy. These transcriptional factors highlight the 
interconnectedness between inflammation and cellular self-
degradation processes (Füllgrabe et al. 2014). Hypoxia-
inducible factor-1 (HIF-1) and nuclear factor-κB (NF-κB) 
are transcription factors that regulate autophagy. HIF-1 acti-
vates autophagy by increasing the levels of pro-autophagic 
proteins and inhibiting anti-autophagic proteins. NF-κB 
activates autophagy by up-regulating the expression of two 
key genes: BECN1 and SQSTM1. BECN1 is involved in ini-
tiating autophagosome formation, while SQSTM1 facilitates 
the degradation of ubiquitinated proteins through autophagy. 
Both HIF-1 and NF-κB play important roles in the regulation 
of autophagy and the cellular response to stress (Bellot et al. 
2009). STAT1 and STAT3 are transcription factors that neg-
atively regulate autophagy. When these factors are repressed, 
it leads to an increase in autophagy through the stimula-
tion of specific genes, such as Atg12 and Beclin1. Atg12 is 
involved in the formation of autophagosomes, while Beclin1 
plays a critical role in initiating autophagy. The repression 
of STAT1 and STAT3 allows for the up-regulation of these 
autophagy-related genes, promoting the activation and pro-
gression of the autophagic pathway (Mccormick et al. 2012). 
FXR activation suppresses autophagy, while the inflamma-
tory state can affect the activity of TFEB, a transcription 
factor responsible for regulating genes involved in lysoso-
mal function and autophagy. This interplay between nuclear 
receptor proteins, inflammatory signals, and cellular self-
degradation processes is complex and regulates the expres-
sion of genes related to autophagy and lysosomal function 
(Settembre et al. 2011).

Tumor microenvironment (tme)

The tumor microenvironment (TME) consists of a diverse 
range of cells, including fibroblasts, mesenchymal stem cells, 
immune cells, and endothelial cells. Within this complex 
environment, autophagy plays a crucial role in supporting 
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tumor progression by facilitating the recycling of biomol-
ecules. However, the interplay between autophagy and the 
tumor microenvironment is highly intricate and depends 
upon the specific context. Numerous interactions have been 
observed in the TME that involve autophagy. These interac-
tions are influenced by various factors and can have diverse 
effects on tumor growth and survival. A typical niche or 
place hosting crosstalks among tumor cells and resident cells 
in that environment takes place (Folkerts et al. 2019).

Stromal fibroblast cells

Induction of autophagy in fibroblast cells has emerged in 
enhanced growth rates in numerous cancers like colon, 
breast carcinoma, head, and neck squamous-cell carcinoma 
(New et al. 2017). This was validated by observing enhanced 
LC3II vesicles and co-culturing of fibroblast cells with 
respective cancer cells (New et al. 2017) (Zhou et al. 2017). 
To confirm cells when treated with autophagy inhibitors 
like chloroquine and 3 methyl adenine resulted in reduced 
proliferation and growth in these cancer cells. Moreover, 
autophagy in fibroblasts cell variants also known as pancre-
atic stellate cells (PSC) also promotes protein catabolism the 
resultant alanine helps surrounding tumor cells to survive by 
pushing the TCA cycle, and lipid synthesis and also helps 
in overcoming chemotherapy in pancreatic ductal adenocar-
cinoma (PDAC) (Mowers et al. 2018), (Von Ahrens et al. 
2017). Cancer cells co-cultured with fibroblasts depicted a 
reduction in apoptotic levels, study showed a 40% reduction 
in apoptotic levels when co-cultured as compared to their 
monocultures (Ko et al. 2011). Fibroblasts or MSCs also 
enhance oxidative stress resistance as seen in ovarian can-
cer cells, knockout of specific autophagy genes like Beclin1 
or Atg5 brought back the sensitivity to stress (Wang et al. 
2016).

Endothelial cells

Endothelial cells make the cellular bed in vessels and are 
primarily associated with the vascular repair, healing, and 
formation of new blood vessels. Tumor cells stimulate angi-
ogenesis in endothelial cells to deal with multiple stressors. 
Hypoxic conditions stimulate tumor cells to release excess 
VEGF factor along with low glucose and increased blood 
flow around the tumor microenvironment, and endothelial 
cells are subjected to stimulate rigorous vessel sprouting, 
vessel maturation, and differentiation (Mowers et al. 2018). 
These tumor vessels seem to be structurally weak. Enhanced 
overall autophagic flux is seen in the tumor microenviron-
ment due to stressful conditions as compared to normal 
endothelial cells. It is yet to be fully explored whether 
autophagic process in these cells should be promoted or 
repressed to stop angiogenesis. In human dermal endothelial 

cells, rapamycin activated angiogenesis, while autophagy 
blockers like chloroquine and 3-MA terminated angiogen-
esis (Sachdev et al. 2012).

Immune cells

Autophagy plays a crucial and critical role in the develop-
ment of adaptive immunity, antigenic presentation. During 
T-cell maturation into circulating T cells, this process drives 
mitochondrial abundance and checking self-reactive T cells 
(Mizushima and Levine 2010). Apart from this failure in 
the autophagic process resulted in a defective cross-pres-
entation in ATG-5 deleted dendritic cells during HSV and 
Listeria infections in mice model, where mice were found 
to be more prone to lethal infection (Lee et al. 2010). Addi-
tionally, autophagy gifts cancer cells the power to evade 
lysis by T lymphocyte cytotoxicity and Natural killer cells 
in multiple ways playing a dual role in this context too. 
Autophagy regulates the connexin‐43 protein, necessary 
for forming a gap junction between target and effector cells 
also required for NK lysis (Tittarelli et al. 2014). Autophagy 
degrades the connexin‐43 protein which also affects gran-
zyme B-mediated NK cell and CTL killing (Tittarelli et al. 
2014). Autophagy degrades MHC-1 molecules resulting 
in decreased antigenic presentation; moreover, autophagy 
is up-regulated in both hypoxic and normoxic conditions 
overall decreasing the efficacy of CTL-NK cell-mediated 
execution of cancer cells (Khazen et al. 2016).

Role of autophagy in cancer

Autophagy, a cellular process involved in the degradation 
and recycling of damaged or unnecessary cellular compo-
nents, possesses intriguing and enigmatic implications in 
the realm of cancer. Numerous protein kinases have been 
identified as key regulators of autophagy, dictating its con-
tribution to cancer progression and regression. Extensive 
experimentation has consistently revealed that during the 
early stages of cancer, autophagy acts as a suppressor of cell 
proliferation, thereby facilitating cancer regression. How-
ever, as the disease advances, autophagy assumes a dual role, 
actively supporting cellular proliferation while simultane-
ously enabling tumor cells to withstand various stressors, 
thereby enhancing their malignant potential. Despite signifi-
cant progress, there remain unexplored facets of autophagy’s 
intricate involvement in cancer, which warrant further sci-
entific investigation.

Tumor suppression

Autophagy has an important part in clearing inoperative 
organelles, proteins, and regulating reactive oxygen species 



3 Biotech (2024) 14:87	 Page 13 of 30  87

(ROS). For maintenance of homeostasis working of all 
ATG genes including BECN1 (encoding Beclin1 involved 
in phagophore formation) is required. It has been seen that 
depletion or deletion of this gene is associated with prostate, 
breast, and ovarian cancers in humans enlightening its role in 
tumor suppression. Decreased Beclin 1 levels have resulted 
in cervical squamous-cell and hepatocellular carcinomas 
(Yue et  al. 2003). Factors like Bax-interacting factor-1 
(BIF-1) and ultraviolet radiation resistance-associated gene 
(UVRAG) positively regulate BECLN 1 via increasing its 
interaction with VPS34 (Y. Takahashi et al. 2007). Negative 
effects on both UVRAG and BIF1 lead to cancer progression 
as evident in different cancers (Liang et al. 2006). Increased 
ROS and damaged mitochondria are prominent stimulators 
of autophagy and the reason for their increase could be the 
deletion or knocking out of autophagic core proteins like 
ATG5, ATG7, ATG3, ATG9, or induction of mitophagy by 
PINK1 and PARK2 pathway through mitochondrial dam-
age. Abnormality in the PARK2 gene results in pathologi-
cal conditions like hepatocellular carcinoma; therefore, both 
mitophagy and oxidative stress play important roles in tumor 
suppression (Goldsmith et al. 2014).

Tumor progression

Autophagy hampers tumor initiation and cancer develop-
ment as evidenced by studies, but once a tumor has been 
established, autophagy supports cancer cell survival and 
proliferation by dodging stressors like hypoxia present in 
the central core of solid tumors, nutrient deprivation, and the 
reduced blood supply in solid tumors. Moreover, autophagy 
serves their metabolic and energetic requirements by recy-
cling intracellular components to supply energy; in fact, can-
cer cells express autophagy more than normal cells (Huang 
et al. 2018). Induced deficiency of autophagy in tumor cells 
resulted in ATP limitations, toxic ROS accumulation, pile up 
of dysfunctional mitochondria, absence of TCA cycle inter-
mediates, and overall metabolic crisis. Autophagic tumor 
cells overcome main metabolic and physiological stressors 
like hypoxia and nutrient limitation by entering the quies-
cent stage and thereby feeding on whatever glucose or other 
nutrients are available in the tumor microenvironment, this 
prolongs the survival and expansion of cancer cells. Apart 
from this autophagy maintains stem cell properties in cancer 
cells, it maintains a constant balance in cancer stem cells 
(White 2012). Oncogenes like RAS and BRAF when acti-
vated depend highly on autophagy to support, and sustain 
the expansion and progression of cancer cells. K-RAS is a 
protein member of the RAS/MAPK pathway encoded by 
the K-RAS gene when activated inhibits complex1 inside 
mitochondria. Moreover, it affects mitochondrial respiration 
in cancer cells and thus acetylcholine production, this pushes 
cancer cells to use autophagic mode to provide ingredients 

for acetyl-CoA biosynthesis and sustain the tricarboxylic 
acid cycle (Guo et al. 2011). Autophagy and combination 
with certain drugs in RAS-activated cancer cells could 
be very effective in tumor regression. The function of 
autophagy in cancer had been debatable for a long. Litera-
ture suggests that autophagy maintains all the hallmarks of 
cancer listed below.

Promoting epithelial–mesenchymal transition (EMT)

EMT transition occurs thrice in the body first during embry-
onic development, second during adult tissue regeneration, 
and third during cancer development. In this process, epithe-
lial cells lose contact inhibition and become invasive mesen-
chymal cells. The relationship between autophagy and EMT 
transition is not clear, because their effect on each other is 
context-dependent, there are studies where autophagy pro-
motes EMT transition as seen in hepatocellular carcinoma 
(HCC) at the same time autophagy inhibition by silencing 
ATG genes or using inhibitors (chloroquine) prevented 
EMT transition (Li et al. 2013a, b). In a similar experi-
ment, the knockdown of the BECN-1 gene extinguished the 
EMT transition in colon cancer cells (Shen et al. 2018). In 
opposition, a few studies indicated toward the suppression 
of autophagy (silencing of BECLIN 1) have led to EMT 
activation by up-regulation of two regulators of EMT transi-
tion like zinc finger protein SNAI1 (SNAIL and SLUG). In 
addition, ATG5 and ATG7 deletion increased the metastatic 
nature of glioblastoma cells (Catalano et al. 2015). Mul-
tiple studies highlight direct crosstalk between autophagy 
and EMT transition. P62 an autophagy adaptor protein sup-
ports EMT transition by appearing in different roles like 
NF-κB transcription enhancement, thereby increasing p65 
translocations. Moreover, p62 stabilizes junctional proteins 
like SMAD4 and TWIST required in EMT transition (Ber-
trand et al. 2015). Another important modulator is TGF-β 
(transforming growth factor beta), this factor promotes EMT 
transition by inducing autophagy in various human cancers 
like hepatocellular carcinoma (Li et al. 2013a, b), by activat-
ing autophagy proteins (like ATG5, ATG7, and BECLN1) 
(Kiyono et al. 2009) to support these experiments showed 
that autophagy blockage by knocking of ATG5 or treating 
with chloroquine repressed TGF-β-mediated EMT transition 
(Dash et al. 2018).

Sustained proliferation

Every normal cell favors controlled proliferation by pass-
ing through checkpoints of the cell cycle. TP53 and retino-
blastoma are two well-studied tumor suppressor genes; any 
mutation in these genes would lead to disorders like can-
cers giving them the power of limitless replication. At the 
early stages of tumor initiation autophagy represses tumor 
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growth. Abnormality in autophagy genes ATG5 and BECLN 
1 resulted in increased chances of liver cancer (Takamura 
et al. 2011). Autophagy turn off by up-regulated mTOR 
signaling/AKT pathway, and PTEN deletions are some fac-
tors reflecting the role of autophagy in the initial restriction 
of tumors (Shen et al. 2008). In the case of mature tumors, 
role of autophagy is case-dependent it has been general-
ized to increase autophagic levels to meet increasing nutri-
ent demands, overcome apoptosis, etc. BRAF and KRAS 
mutations are commonly observed mutations in carcinomas, 
ATG7 deletion prevented autophagy in the BRAF lung can-
cer model and reflected positive results by restricting the 
progression of the tumor (Singh et al. 2018). Therefore, 
autophagy process regulates this hallmark in a context-
dependent manner.

Supporting angiogenesis

This process is defined as the sprouting of novel vessels from 
the existing vessel, this process is extremely important for 
tumor cells to grow and reach distant tissues, absorb maxi-
mum nutrition, and surpass hypoxic stress. Angiogenesis 
is needed for invasive and metastatic behavior. When such 
cells do not get the vascular supply they get into the hypoxic 
mode and starve; moreover, apoptosis starts within the cells. 
However, in this situation, they switch to autophagy via HIF-
1α-mediated signaling to help them survive this starvation 
[91] and also adapt to the restricted blood supply and resist-
ance to chemotherapy [91].

Invasion and metastasis

These are two lethal properties of cancer cells by which after 
entering blood or lymphatic vasculature they start invad-
ing new tissues and reach to multiple locations. Tumor 
cells face numerous challenges like facing immune cells, 
and fighting starvation, and hence, they have a tendency to 
leave the source tumor microenvironment. They form small 
colonies at multiple sites and remain dormant for little time. 
Autophagy helps them tackle all the stress in a new environ-
ment to maintain stemness. This activation is induced by a 
tumor suppressor gene called aplasia Ras homolog mem-
ber I (ARHI gene), which increases dormancy during this 
period (Lu et al. 2008). To add to the survival and invasion 
of these cells autophagy prevents anoikis and suppresses 
macrophagic intrusion in the primary site to avoid inflamma-
tion, which further increases the metastatic abilities (Guad-
amillas et al. 2011).

Maintaining stemness in cancer stem cells

Like normal stem, tumor colony also contains cancer stem 
cells carrying the self-renewal capability, chemoresistance, 

irradiation resistance, and formation of heterogeneous line-
age, and overall a resistant tumor core. Experiments sup-
port a strong relationship between ATG genes and cancer 
stem cell markers. Autophagy induction in glioma cells 
enhanced stem cells marker CD133 and in an experiment 
where autophagy was inhibited it resulted in reduced cancer 
stem cell population in breast cancer [33].

Tumor metabolism reprograming

Tumor cells tend to behave in a unique way when they divert 
the route from oxidative phosphorylation as an energy gen-
eration pathway to aerobic glycolysis, an effect known as 
the “Warburg effect’. This reprogramming of the meta-
bolic pathway depends upon the cell’s microenvironment 
(Heiden et al. 2009). After effects of this change cause the 
conversion of pyruvate to lactic acid instead of acetyl-CoA, 
which further deficits TCA substrates to fuel ATP produc-
tion. However, here comes the protective role of autophagy; 
here, autophagy recirculates biomolecules present in the cell 
to activate the TCA cycle and fuel ATP production. This 
enables cells to survive starvation, and due to mitochon-
drial dysfunction also helps them thrive with low blood and 
oxygen supply. RAS-mutated cancers increase glucose and 
glutamine intake by increasing receptors to run the TCA 
cycle (Huang et al. 2018), (Singh et al. 2018). Autophagy 
clearly has some role to play in cancer, but its role is very 
complicated.

Autophagy and its role in other diseases

Neurodegeneration

The autophagy process has a key role in maintaining proper 
functioning and homeostasis of the nervous system as 
clearly depicted by whole-body knockout mouse models. 
Gradual motor and behavioral abnormality were seen after 
3 weeks of age in mouse pups delivered from mother mice 
having deleted autophagy-related 5 (Atg5) or Atg7 in the 
CNS during embryogenesis. Impairment of autophagic flux 
or any mutation in autophagy-related genes (ATGs) can 
result in deadly neurodegenerative disorders like Hunting-
ton’s disease (HD), Alzheimer’s disease (AD), amyotrophic 
lateral sclerosis (ALS), Parkinson disease (PD), dementia 
with Lewy bodies (DLB), and Lafora disease (Menzies 
et al. 2015). Neuronal function is hampered in the major-
ity of these disorders, neurons exhibit an inflated require-
ment for ATP indicating the need for sustaining axonal 
transport, formation of synaptic vesicles, functioning and 
maintenance of ionic gradients, and balancing membrane 
potential. As a result, there should be a balance in mitophagy 
too. Dysfunctional mitophagy is responsible for various 
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neurodegenerative disorders mentioned above. Moreover, 
mitophagy also affects aging (Fivenson et al. 2017).

Alzheimer’s disease (ad)

Most studied neurological disorder characterized by loss of 
cognitive functions, the presence of amyloid (Aβ) plaques, 
and neurofibrillary tangles caused by aggregation of the pro-
tein tau and shrinkage in brain tissues, Amyloid precursor 
proteins (APPs) are precursors of these plaques, APPs are 
cleaved by two enzymes initially by β-secretase called β-site 
APP-cleaving enzyme 1 (BACE1) and then by γ-secretase 
producing Aβ aggregation which causes plaque formation 
in the extracellular matrix. This aggregation leads to oxida-
tive stress, tau protein hyperphosphorylation, and ER stress 
[94]. This cellular situation ultimately induces autophagy 
and mitophagy. As understood autophagy has a role in elimi-
nating protein aggregates (here Aβ and tau aggregates), but 
unlike the early stage of AD at a later stage, autophagy 
fails to compensate for the disposal of aggregated protein 
and gets side-lined along with other cellular pathways like 
PI3K/Akt/AMPK and MAPK/ERK (Zare-Shahabadi et al. 
2015). Accumulation of vesicular structures, Aβ toxicity, 
and plaque formation are very well seen in the later stage of 
AD along with dysfunctional regulatory mechanisms.

Parkinson’s disease (pd)

Another neurological abnormality involves cognitive loss. 
Seen more commonly among old age (80 years) as com-
pared to younger group. The pathology behind PD is the loss 
of dopaminergic neurons (neurons or collection of neurons 
responsible for the synthesis of neurotransmitter dopamine) 
in the central nervous system (CNS), sometimes also seen 
inside the gastrointestinal tract of the patients and there is 
seen the presence of Lewy bodies (protein body inclusions 
comprised of aggregates of misfolded α-synuclein protein, 
ubiquitin, and other proteins) (Stefanoni et al. 2012). A 
PD patient experiences posture instability, muscular stiff-
ness, distorted speech, loss of smell, frequent tremors, and 
bradykinesia (sedate movements) (Stefanoni et al. 2012). 
Impairment of autophagy, mitophagy, and CMA along 
with mutations in some genes like SNCA gene-encoding 
α-synuclein protein (failure of CMA is considered to be a 
major reason for stacking up of soluble, detergent-insoluble, 
high-molecular-weight α-synuclein protein, because it con-
tains CMA targeting motifs for heat shock 70KD protein and 
this α-synuclein is one of prime component of Lewy bod-
ies) (Xilouri et al. 2016), LRRK2 gene-encoding leucine-
rich repeat kinase 2, recent studies have shown the effect 
of silencing of LRRK2 on increased macro-autophagy, but 
controversial results have been seen in fibroblasts of some 
PD patients showing lower autophagic induction (Manzoni 

et al. 2013), VPS35 gene-encoding vacuolar protein sorting 
35 in endosomes and vesicles involved in protein trafficking 
in the cytoplasm), CHCHD2 (gene coding a mitochondrial 
protein) and DNAJC13 (gene-encoding REM-8, a chaperon 
involved in protein trafficking) leads to an autosomal domi-
nant form of Parkinson’s Disease.

An autosomal recessive form of PD occurs due to the 
mutations of ubiquitin kinase (PTEN)-induced kinase 1 
(PINK1), DJ-1 or PARK7 (codes a mitochondrial protein 
dealing with oxidative stress), and PARKIN (Phosphoryla-
tion of PINK1 activates Parkin). PARKIN/PINK1 is asso-
ciated with ubiquitin-binding domains of autophagy or 
specifically mitophagy (Pickrell and Youle 2015). The fre-
quency of mutation in the PARK2 gene responsible for cod-
ing PARKIN protein is very high. Mutations in both genes 
hamper mitochondrial protein function and cell response to 
oxidative stress and cause mitophagy failure. Other muta-
tions include GBA (glucocerebrosidase β acid, an autophagy 
regulator), ATP13A2 gene (ATPase 13A), SCARB2 (cod-
ing lysosomal integral membrane protein-2 (LIMP-2), 
required for the functioning of lysosome/autophagosome) 
(Stefanoni et al. 2012). Both AD and PD are characterized 
by protein aggregation and plaque deposition which affects 
dopaminergic neuronal function; autophagy and mitophagy 
regulation might serve as effective solutions in clearing this 
aggregation.

Cardiovascular diseases

Autophagy is one process that affects every cell of the body 
including cardiac cells; this should be regulated to maintain 
cardiac homeostasis. It has been proved in mice models with 
deleted LAMP 2 gene (Bravo-San Pedro et al. 2017) which 
hampers CMA development cardio skeletal myopathy. Also, 
the deletion of some of ATGs leads to cardiac hypertrophy 
and the accumulation of atherosclerotic plaques. Specifi-
cally, Atg5 − / − mice lead to complications like contractile 
dysfunction, cardiac hypertrophy, dilatation in the left ven-
tricle, and in some also caused premature death (Bhandari 
et al. 2014). In the park − / − flies (Drosophila) model, it 
caused Dilated cardiomyopathy (Taneike et al. 2010). The 
heart employs intracellular processes like autophagy and 
mitophagy (mitochondrial autophagy) as adaptive mecha-
nisms to deal with situations like energetic stress, enhanced 
oxidative stress, and cell death. Earlier studies have directed 
that autophagy is activated during cardiac hypertrophy and 
heart failure, here also then autophagy plays a dual function 
of guarding and damaging (Bravo-San Pedro et al. 2017). 
However, although cardiac hypertrophy and HF are com-
monly accompanied by general and non-specific autophagy, 
the presence of organelle-specific mitochondrial autophagy 
and its role during pathological hypertrophy have not been 
well characterized. The heart experiences hypertrophy 
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during hemodynamic overloads, such as pressure overload 
(PO), initially with the purpose of reducing wall stress.

Autoimmune disorders

Autophagy happens to interact with immune cells and 
inflammatory molecules leading to processes like lympho-
cyte development, secretory pathways, killing of intracel-
lular pathogens, etc (Table 1).

Killing of intracellular pathogens

Autophagy performs pathogen degradation by two pro-
cesses (Fig. 3): (a) Xenophagy—autophagy machinery 
specifically degrading bacteria or other pathogens is 
termed as xenophagy, wherein the pathogen is targeted and 
after trapping in autophagolysosomes gets dumped in the 
lysosome (Levine 2005). (b) LC3-associated phagocytosis 
(LAP)—sometimes, pathogens get trapped and killed in a 
single-walled phagophore coated with a Toll-like recep-
tor (TLR).

Lymphocyte development

Apart from innate immune response autophagy also medi-
ates adaptive immune response by regulating T and B 
cells. During viral infection, autophagy enhances MHC 
class I and II presentation. Studies have shown its value 
in generating MHC class II specific CD4 ( +) T cells, 
failure of which might cause self-reactive T cells (Nedjic 
et al. 2008). Moreover, autophagy is sincerely required 
in plasma B-cell homeostasis and protects antibodies 
from apoptotic damage and for their sustained production 
(Pengo et al. 2013).

Secretory pathways

As discussed earlier autophagy abnormalities increase pro-
inflammatory cytokines. Experiments, where autophagy 
deficiency was produced, resulted in the up-regulation of 
cytokines like IL-1α in macrophages causing increased inflam-
matory response (Castillo et al. 2012) and increased IL-1β 
secretion (Harris et al. 2011) (Fig. 3).

Unraveling the impact: impaired crosstalk 
between autophagy and immune cells fuels 
the onset of multifarious diseases

Autophagy is a crucial process that safeguards cellu-
lar health and sustains life by selectively packaging and 
degrading components of the cytoplasm within double-
membrane vesicles called autophagosomes. This cellular 

self-digestion mechanism acts as a protective response 
against stress, ensuring the removal of damaged organelles 
and proteins that could jeopardize the cell’s survival. A 
key benefit of autophagy is the generation of energy and 
the recycling of metabolic precursors. In the realm of the 
immune system, autophagy plays a pivotal role in regu-
lating various processes. It oversees the uptake and pres-
entation of antigens, the elimination of pathogens, and 
the survival of both short- and long-lived immune cells. 
Additionally, autophagy influences cytokine-dependent 
inflammation, acting as a crucial mediator. Maintaining 
an optimal level of autophagic activity is vital to strike a 
balance between catabolic processes, cellular repair, and 
the induction of inflammation. However, when autophago-
some formation and the subsequent flux of autophagic 
activity become dysregulated, it can lead to detrimental 
consequences. Such dysregulation may result in a failure 
to efficiently "clean house," leaving damaged components 
unaddressed. Conversely, it can also trigger autophagy-
induced cell death, a process in which excessive autophagy 
contributes to cell demise. The autophagic pathway’s 
abnormalities have been implicated in numerous autoim-
mune diseases, highlighting its significance in maintaining 
immune system homeostasis. These conditions arise when 
the delicate equilibrium of autophagy is disrupted, further 
emphasizing the crucial role of autophagy in ensuring cel-
lular well-being and defending against autoimmune disor-
ders. The table below covers four autoimmune disorders, 
pathology, the role of autophagy, and related workout with 
resultant outcomes (Table 1).

Novel approaches to target autophagy

Enzyme‑based autophagy modulation

L‑asparaginase (l‑asp) and chloroquine (CQ)‑based therapy

Multiple studies showed that L-Asp causes deamination 
of L-asparagine (Asn) dedicated amino acid deprivation. 
L-asp resulted in mitochondrial dysfunctioning and ROS 
generation evolving in cytoprotective autophagy. At this 
point, treatment with chloroquine (CQ) seized autophagy 
and increased ROS levels, DNA damage, and p53 expres-
sion leading to up-regulation of pro-apoptotic proteins and 
down-regulation of hexokinase 2 resulting in apoptosis-
driven lymphoblastic leukemia tumor cell death (Taka-
hashi et al. 2017). FDA has approved L-asparaginase in 
the treatment of leukemia and other cancers. The use of 
L-asparaginase and autophagy blockers (like chloroquine) 
can modulate autophagy by regulating AKT/mTORC1 
in laryngeal squamous-cell carcinoma (LSCC) (Ji et al. 
2017).
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Arginase‑based therapy

Arginine deficiency due to hydrolysis by arginase, its dep-
rivation causes autophagy induction. Recombinant human 
arginase (RhArg) is one approach that is used in different 
lymphoma, melanomas and is currently under clinical tri-
als. In a study carried out on non-small-cell lung cancer 
H1975 cells, recombinant human arginase was served 
that induced cytoprotective autophagy via phosphorylat-
ing Mtorc1/AKT pathway, ROS generation and ERK1/2 
(extracellular signal‑regulated protein kinase). Here also 
the use of autophagy blockers enhanced tumor cell death 
by apoptosis (Shen et al. 2017).

Arginine deiminase‑based therapy

This enzyme converts arginine to citrulline, arginine 
deiminase (ADI) along with autophagy inhibitors has 
shown positive results in Argininosuccinate Synthase 1 
(ASS1)-deficient sarcoma cells by enhancing cytotoxic-
ity (Bean et al. 2016). Prostate cancer cells (CWR22Rv1) 
found to be deficient in ASS1, showed ADI-dependent 
autophagic cytotoxicity, and this activation was regulated 
through the Mtorc1/AKT pathway and activation of the 
AMPK, ERK pathway. Autophagy inhibitors multiplied 
cytotoxicity due to apoptosis (Kim et al. 2009).

MTOR inhibitors

The regulation of autophagy is a highly complex and finely 
tuned process involving intricate interactions between 
key proteins and cellular signaling pathways. One critical 
player in this regulation is the mammalian target of rapa-
mycin complex 1 (mTORC1), which exerts both positive 
and negative control over autophagy. AMP-activated pro-
tein kinase (AMPK) negatively regulates mTORC1, lead-
ing to the inhibition of mTORC1 and the promotion of 
autophagy (Dossou and Basu 2019). AMPK also directly 
interacts with and phosphorylates Unc-51-like kinase 
1 (ULK1), a key initiator of autophagy. However, there 
are controversies regarding how mTORC1 influences the 
interaction between ULK1 and AMPK, with some stud-
ies, suggesting that mTORC1 can either promote or pre-
vent this interaction (Alers et al. 2012). Various factors, 
including differences in nutrient availability and experi-
mental conditions, can influence the outcomes of these 
interactions. Additionally, mTORC1 and AMPK can also 
regulate autophagy initiation by phosphorylating other 
autophagy-related proteins, such as Atg13 (S. Wang et al. 
2022). Moreover, mTORC1 plays a role in the nucleation 
and expansion of autophagosomes by phosphorylating pro-
teins like Atg14 and p300 acetyltransferase. Furthermore, Ta
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mTORC1 regulates the transcription of autophagy-related 
genes through its control of transcription factors, such as 
TFEB, TFE3, and MITF. These transcription factors can 
modulate autophagy by promoting the expression of genes 
involved in autophagosome formation, lysosome biogene-
sis, and nutrient sensing. This intricates interplay between 
mTORC1 and various autophagy regulators underscores 
the complexity of autophagy regulation and its importance 
in cellular homeostasis (Di Malta et al. 2019).

Nutrient deprivation, such as amino acid depletion, inhib-
its MTORC1 and induces autophagy. Small molecules like 
rapamycin, Torin 1, and niclosamide are known to inhibit 
MTORC1 and induce autophagy (Tan & Miyamoto 2016).

Lysosomal inhibitors

Autophagy, a crucial cellular process, facilitates the trans-
port and degradation of various materials in lysosomes. 
It plays a vital role in nutrient provision during cellular 
stress and the removal of unnecessary cellular components 
(Murrow and Debnath 2013). Recently, the lysosome has 
been found to play a significant role in MTORC1 activa-
tion, particularly through the Rag/RRAG GTPase family 
located on the lysosomal membrane (Li et al. 2013a). Rag 
proteins, when GTP-loaded, recruit MTORC1 to the lyso-
some, enabling its activation. Inhibition of lysosome func-
tion, either by interfering with v-ATPase, LAMTOR, or Rag 
interactions, or using lysosome inhibitors like bafilomycin 
A1 and concanomycin A, leads to MTORC1 inhibition and 
autophagy activation(Sancak et al. 2010). The link between 
lysosome functionality and the signaling pathway involving 

Fig. 3   “The Intricate Interplay of Autophagy, Inflammasome Acti-
vation, and Cancer”.The figure illustrate the intricate relationship 
between autophagy, inflammasome activation, and cancer. Dysfunc-
tional autophagy and mitochondrial impairment culminate in height-
ened oxidative stress, triggering autophagic cell death, inflammasome 
activation. Elevated levels of mitochondrial reactive oxygen species 
(ROS) further promote oncogenesis, chemoresistance, and metasta-

sis. Autophagy serves a dual role in cancer and inflammation, both 
supporting tumor growth and orchestrating immune responses. This 
reciprocal interaction between cancer, inflammation, and autophagy 
involves the activation of oncogenic pathways, metabolic alterations, 
and the modulation of the tumor microenvironment. This complex 
crosstalk holds significant implications for disease progression and 
potential therapeutic strategies
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Rag GTPases underscores the lysosome’s involvement in 
both the activation of autophagy and its conventional role 
in the degradation process (Li et al. 2013b).

Nanoparticle‑based autophagy targeting for cancer 
therapy

Nanosciences (especially nanobiotechnology) are cur-
rently treated as the best alternative therapeutic approach as 
compared to the conventional/traditional methods for drug 
delivery, tissue remodeling, and cytotoxicity. It deals with 
engineered devices designed in nanodimension with spe-
cial chemical, mechanical, biological, and physical prop-
erties. Nanobiotechnology in combination with chemistry 
and material sciences offers efficient and safe solutions to 
deal with diseases even at complex locations of the body in 
addition to decreasing side effects and increasing the efficacy 
of standard chemotherapies. Unique biological, physical, 
chemical, optical, mechanical, and properties make them 
novel and powerful therapeutic tools. Characteristic proper-
ties of nanocarriers include higher surface-to-volume ratios, 
high bioavailability, appropriate drug release capability, 
and biodegradability along with flexibility in designing and 
targeting (Sinha et al. 2006). Nanocarriers show increased 
permeability and retention effect making them suitable for 
controlled drug release (Albanese et al. 2012).

Nanoparticles can be categorized into: Lipid-based NP 
(E.g., Liposome, Solid lipid NP), Polymer-based (E.g., Poly-
meric NP, Polymeric Miscelle), Inorganic NP (E.g., Metallic 
NP, Silica NP), and Conjugated NP (E.g., Antibody–Drug 
conjugate, Polymer–Drug conjugate).

Microenvironmental stimuli can trigger the release ensur-
ing toxicity to the target tissue, and keeping the healthy tis-
sue safe. Internal stimuli include alterations in pH, ionic 
strength, redox state, and other stress around target sites that 
serve as internal stimuli. External stimuli are temperature, 
ultrasound, radiation, magnetic, and electric forces (Wicki 
et al. 2015). Magnetic hyperthermia is one approach where 
local heating is used to achieve desired chemotherapeutics, 
and local heating is given by radiation, laser (Bañobre-López 
et al. 2013).

Silver‑based nanoparticles

Silver-based nanoparticles used in combination with dif-
ferent agents has shown promising results by inducing 
autophagic and apoptotic pathways, thereby killing cancer 
cells by cellular damage. Ag-NP along with radiotherapy 
showed toxic effects on mouse brain tumor model and U251 
glioblastoma cells, results of LC3-II protein level, staining 
by nucleic acid binding dye acridine orange and monod-
ansyl cadaverine (MDC) showed enhanced autophagy (Liu 
et al. 2016). The reduced form of graphene oxide–silver 

nanocomposite and cisplatin combination (rGO–Ag-NPs) 
proves effective against cervical cancer cells in combination 
with chemotherapy as experiments direct that this compos-
ite induces cytotoxicity by apoptosis and autophagy evident 
by increased expression of ATG genes (Yuan and Guruna-
than 2017). Salymicin (Sal) in combination with Ag-NPs 
displayed a significant collaborative cell killing and collec-
tion of autophagolysosomes in A2780 ovarian cancer cells 
(Zhang and Gurunathan 2016), elevated levels of LC3-II 
(protein complex) were seen in adenocarcinoma pancreatic 
cancer cells when these tumor cells were treated with Ag-
NPs, reduced tumor viability, and increased autophagy and 
apoptosis were observed (Zielinska et al. 2018). SKBR3 
cells experienced high ROS levels, increased autophagy, and 
apoptosis when cells were treated with Ag-NPs, enclosed 
into a specific exopolysaccharide (EPS), validation of the 
study was done by western blot and fluorescence micros-
copy, and this depicted increased cell death/necrotic cell 
death (Buttacavoli et al. 2018).

Gold‑based nanoparticles

There are multiple studies that conclude that Gold nanopar-
ticles (Au-NP) can be conjugated with different molecules 
like drugs, proteins, different chemicals, oligonucleotide 
sequences, etc. Au-NP is a successful drug carrier because 
of properties like good biocompatibility and, low toxicity 
and immunogenicity. Au-NP when assembled with SMI-9 
in SUM1315 triple-negative breast cancer (TNBC) cell, 
using the approach for its slow release inside the cells. This 
SMI-9 acts as an inhibitor of Rad6; this protein has a role to 
play in mitochondrial stability, DNA damage maintenance, 
and DNA repair mechanism. Researchers found enhanced 
autophagy and autophagy markers (Haynes et al. 2016).

Snake venom toxin (NKCT1) when conjugated with 
Au-NP and tested in K562 and human leukemic U937 
cell lines. There was an increase in apoptotic levels and 
autophagy levels because of alteration in mtorc1 and AKT 
signaling pathways; this could be an effective approach as 
therapy (Bhowmik and Gomes 2016).

Tethering of (TRAIL—tumor necrosis factor (TNF)-
related apoptosis-inducing ligand) with Au-NP prompted 
a Drp1-mediated mitochondrial fault causing induction of 
mitophagy, along with apoptosis and autophagy (Ke et al. 
2017). Activation of autophagy and mitophagy (evident by 
PINK1 and PARKIN markers) helps to overcome TRAIL 
resistance often seen in tumors (Ke et al. 2017). Another nat-
ural compound called Quercetin, a type of flavonoid found 
in plants, is a molecule that restricts cellular growth and 
tumor progression, Au-NP and Quercetin when stabilized by 
PLGA resulted in autophagy, apoptosis, and deregulation of 
many signaling pathways in cancer cells (Ren et al. 2017).
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Silica‑based nanoparticles

Silica-based nanoparticles are popular therapeutic nano-
particles because of their established role in cancer treat-
ment through autophagy induction. Studies suggest that 
silica nanoparticles (Si-NPs) activate this self-degradative 
process by Reactive Oxygen Species (ROS) accumulation, 
generating ER stress, and creating oxidative stress; moreo-
ver, Si-NPs display positive properties with high surface 
area, biocompatibility, and flexible pore size making them 
idle drug delivery candidate, gene transfection agent, suit-
able for bio-imaging. Si-NPs showed anticancer properties 
by activating autophagy along with mitophagy and apopto-
sis in target LBC3 and LN-18 glioblastoma (brain tumor) 
cells. These highly aggressive and invasive tumor cells 
were exposed to silver nanoparticles and research finding 
through quantitative RT-PCR showed higher expressions 
of apoptotic (like Bax, BIM) and autophagy-related genes 
(ATG5, high LC3-II/LC3-I ratio) (Krętowski et al. 2017). 
In another study where colorectal cancer cells in humans 
were exposed to Genistein corporated with PEGylated silica 
hybrid nanomaterials results favored that genistein imposed 
anti-proliferative and antioxidant actions on colorectal cells 
(HT29 colon cancer cells); moreover, it activated apoptotic 
and autophagic pathways to stop cancer growth (Pool et al. 
2018). Si-NPs have also been found to cause endoplasmic 
reticulum (ER) stress-mediated autophagy in colon cancer 
HCT-116 cells (Wei et al. 2017). Si-NP sometimes also 
cause autophagy failure by down-regulating lysosomal pro-
tease enzyme, but the dosage remains a key factor (Wang 
et al. 2017). Therefore, usage of silica nanoparticle in cancer 
treatment through the autophagy process is worth exploring.

Metal oxide‑based nanoparticles

There are a lot of metal oxides that have found their way into 
medical and research fields:

Iron oxide nanoparticles

These nanoparticles are widely researched nanoparticles 
with the capability of treating multiple types of cancers by 
inducing autophagy and producing endoplasmic reticulum 
stress. Iron adds super-paramagnetism to the nanoparticle 
that makes them a bio-imaging tool and biocompatibility 
makes them a drug carrier. Multi-drug resistant gastric can-
cer cell lines were targeted using chitosan chloride alginate 
encapsulated magnetite nanoparticles (HTCC–MNPs) in 
an experiment. Results revealed autophagy-mediated cell 
cytotoxicity in both gastric cancer cell line and variant 
one (SGC7901 & SGC7901/ADR, respectively); this was 
proved by increased LC3 localization with LAMP 2 protein, 
high LC3-II/LC3-I ratio. Therefore, these nanoparticles 

were effective in cancer regulation (Li et  al. 2016). In 
research carried out using iron oxide nanoparticles on 
MCF-7 cancer cells and the xenograft model, the photo-
thermal effect of NP created an autophagic response in dose 
dependence fashion, and in the same model, inhibition of 
autophagy resulted in apoptotic cell killing by photothermal 
effect (Li et al. 2016).

Cuprous and copper oxide nanoparticle (Cu-NP and 
C0-NP) are another class of autophagy-promoting metal 
oxide nanoparticles. CO-NP is reported to stimulate 
autophagy in the breast cancer cell (MCF7 cell lines) by 
switching off apoptotic response and vice versa (Laha et al. 
2014), and also Cu-NP seems to work in cervical cancer cell 
line by activating autophagy by reduced phosphorylation of 
mTOR and AKT (Xia et al. 2017). Cuprous nanoparticles 
have been found to be effective in treating leukemia, and 
lung and breast cancer (Wang et al. 2012a, b)

Zinc oxide (ZnO) is a widely studied metal oxide that is 
found to be effective in multidisciplinary areas of science. 
Some of the useful properties include antibacterial, ability 
to perform photocatalytic degradation, UV absorber, and 
photoluminescence. Zinc oxide nanoparticles can stimulate 
mitophagy (PINK/Parkin-mediated) in tongue squamous cell 
carcinoma (CAL 27 human tongue cancer cell) (Wang et al. 
2018) and targeted cytotoxicity was produced in SKOV3 
ovarian cancer cells using autophagy (Bai et al. 2017). ZnO-
NP conjugated with meso-tetra (4-carboxyphenyl) porphy-
rin (MTCP) showed autophagy-mediated cytotoxicity inside 
MDA-MB-468 and MCF-7 breast cancer cells (Mozdoori 
et al. 2017).

Crosstalk between autophagy, 
inflammation, and tumorigenesis

Inflammation poses a high risk of cancer initiation and pro-
gression. The relationship between autophagy and inflam-
mation is quite complex. Any stress or trauma causes the 
release of DAMPs (damage-associated molecular pat-
terns), a signal of innate immune response. These signals 
are released from damaged or affected cells which attracts 
macrophages inviting an inflammatory response for repair 
and digesting dead cells. However, an increased inflamma-
tory response may pose complications of hyperplasia and 
tumor. To regulate this mitophagy comes into the picture. 
This interaction causes mitochondrial stress, and mitophagy 
releases mitochondrial reactive oxygen species and other 
immunopathies.

Heat shock proteins (HSP70) were used to give extracel-
lular stress to tumor cells, causing NF-κB pathway activation 
resulting in up-regulation of high-mobility group protein 
B1 (HMGB1) expression (refer Fig. 2). In addition, HSP70 
enhanced the sustainability of H22 hepatocarcinoma cells 
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by activating Jun N-terminal kinase (JNK), thereby increas-
ing BECLN1 expression and ejection of HMGB1 protein. 
HMGB1 phosphorylates NF-κB and further activates TLR-2 
and TLR-4 receptor signaling to promote invasive behav-
ior of hepatocarcinoma cells (Gong et al. 2013). ATG5, 
ATG7–ATG12-mediated release of HMGB1 protein in 
tumor cells killed by Epidermal Growth Factor Receptor 
(EGFR)-targeted diphtheria toxin (DT-EGF) (refer Fig. 2). 
(Dupont et al. 2011). Autophagy guided the secretion of 
inflammatory cytokine IL6 inside cells hit by RAS muta-
tion. Mutated epithelial cells showed enhanced invasive-
ness due to autophagy-backed IL6 secretion, and to support 
this, reverse behavior was seen in autophagy-deficient cells 
(Lock et al. 2014). Tumor cells having Ras mutation lead to 
(OIC) oncogene-induced senescence (Fig. 4). Measured by 
increased LC3-II, ULK, and CXCL8 expression in fibro-
blast co-cultured with breast cancer cells (Young et al. 2009) 
(Fig. 5).

Conclusion

Autophagy is a cellular process that plays a vital role in 
maintaining normal cell functioning and overall cellular 
balance, known as homeostasis. It involves the degradation 

and recycling of cellular components to provide the cell 
with the necessary nutrients and energy. Extensive research 
has been conducted on autophagy, leading to the identifica-
tion of various substrates and protein complexes involved 
in this pathway. Disruptions in autophagy can lead to 
various abnormalities, including cancer and inflamma-
tion. In the context of cancer, autophagy can confer sev-
eral advantages to mature cancer cells. It enables these 
cells to obtain nutrients, survive chemotherapy, and adapt 
to low oxygen conditions, thereby enhancing their abil-
ity to invade multiple tissues and metastasize. Different 
protein complexes, such as MTORC1, BECLN1, ULK1, 
and AMBRA1, are potential targets for manipulating 
autophagy through appropriate therapeutic interventions. 
By modulating the activity of these protein complexes, it 
is possible to regulate autophagy and potentially impact 
cancer progression. Furthermore, autophagy assists can-
cer cells in performing critical processes like angiogen-
esis (formation of new blood vessels), metabolic repro-
gramming, epithelial–mesenchymal transition (a process 
involved in metastasis), and overall immune evasion. These 
functions support cancer cells’ ability to adapt to their 
environment and evade immune responses. Autophagy’s 
role in cancer progression can be assessed through vari-
ous direct and indirect pathways. Researchers use these 

Fig. 4   Autophagy and its role in different aspects of the immune sys-
tem. Autophagy serves as a crucial mechanism in various facets of 
the immune system, contributing to immune cell development, func-

tion, and regulation, while also playing a pivotal role in host defense 
against intracellular pathogens and maintaining immune system bal-
ance
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pathways to measure autophagic activity and evaluate its 
impact on cancer development and treatment outcomes. In 
recent years, novel approaches utilizing nanoparticles and 
enzymes have emerged as potential strategies for targeting 
autophagy. These approaches are currently being evalu-
ated in different phases of clinical trials, aiming to develop 
therapies that can selectively manipulate autophagy in can-
cer cells. It is important to note that autophagy’s impact on 
cancer is highly context-dependent. While it can promote 
cancer progression in mature cancers, its effects may vary 
depending upon the type and stage of cancer. Therefore, the 
manipulation of autophagy in cancer therapy requires care-
ful consideration and a personalized approach to ensure 
optimal outcomes while avoiding potential risks.
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Fig. 5   Crosstalk between autophagy, inflammation, and tumorigen-
esis in the context of RAS-mutated and tumor cells. This diagram 
illustrates the intricate interplay between autophagy, inflamma-
tion, and tumorigenesis, with a particular focus on the role of high-
mobility group protein B1 (HMGB1), interleukin-6 (IL-6), and inter-

leukin-8 (IL-8) in promoting increased invasion and tumorigenesis. 
Additionally, these factors contribute to heightened inflammation, a 
phenomenon prominently observed in RAS-mutated cells and various 
tumor cell types
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