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Abstract
The non-structural protein 5 (NS5) is the most conserved protein among flaviviruses, a family that includes the dengue virus. 
It functions both as an RNA-dependent RNA polymerase and an RNA-methyltransferase and is therefore essential for the 
replication of viral RNA. The discovery that dengue virus NS5 protein (DENV-NS5) can also localize to the nucleus has 
resulted in renewed interest in its potential roles at the host-virus interface. In this study, we have used two complementary 
computational approaches in parallel – one based on linear motifs (ELM) and another based on tertiary structure of the pro-
tein (DALI) – to predict the host proteins that DENV-NS5 might interact with. Of the 42 human proteins predicted by both 
these methods, 34 are novel. Pathway analysis of these 42 human proteins shows that they are involved in key host cellular 
processes related to cell cycle regulation, proliferation, protein degradation, apoptosis, and immune responses. A focused 
analysis of transcription factors that directly interact with the predicted DENV-NS5 interacting proteins was performed, 
followed by the identification of downstream genes that are differentially expressed after dengue infection using previ-
ously published RNA-seq data. Our study provides unique insights into the DENV-NS5 interaction network and delineates 
mechanisms whereby DENV-NS5 could impact the host-virus interface. The novel interactors identified in this study could 
be potentially targeted by NS5 to modulate the host cellular environment in general, and the immune response in particular, 
thereby extending the role of DENV-NS5 beyond its known enzymatic functions.

Keywords Host-virus interactions · Nuclear localization · Eukaryotic linear motifs · DALI server · Transcription factors · 
Protein–protein interaction

Introduction

Dengue is a global public health concern. It is estimated 
that over 390 million people are infected by the dengue 
virus each year (Guzman et al. 2010; Bhatt et al. 2013; 
WHO 2022, Jan 10). Dengue is caused by any of the four 
genetically related serotypes of the dengue virus (DENV-1, 
DENV-2, DENV-3, DENV-4) that belong to the genus Flavi-
virus which includes other human-infecting arthropod-borne 
viruses such as Zika, Japanese encephalitis virus (JEV), 
tick-borne encephalitis (TBE), West Nile virus (WNV), and 
yellow fever virus (YFV). DENV is a positive-strand RNA 
virus with an approximately 11-kb long genome comprising 
10 genes – three encoding structural proteins (Env, PreM, 
Capsid) and seven encoding non-structural proteins (NS1, 
NS2A, NS2B, NS3, NS4A, NS4B and NS5), all of which 
are initially translated as a single polyprotein. NS5, the 
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largest and the most conserved of non-structural proteins 
is the replicase comprising of two functional domains—an 
RNA-dependent RNA polymerase (RdRp) domain at its 
C-terminus, required for replication and RNA-methyltrans-
ferase (MTase) domain at the N-terminus. The RNA MTase 
activity ensures the capping of the viral RNA, enhancing 
its stability and facilitating polyprotein translation (Liu 
et al. 2010; Klema et al. 2016; El Sahili and Lescar 2017). 
DENV-NS5 elicits a strong T cell response indicating its 
immunogenicity, making it an important target for both drug 
discovery and vaccine design (Duangchinda et al. 2010). 
Furthermore, the NS5 proteins of other flaviviruses such 
as Japanese encephalitis virus (JEV), tick-borne encephali-
tis (TBE) and West Nile virus (WNV) have been shown to 
inhibit type I interferon (IFN) signaling by interfering with 
the activation of the transcription factor STAT1 by Janus 
kinase (JAK) (Laurent-Rolle et al. 2010). One study dem-
onstrated that DENV-NS5 could bind to STAT2 and target 
it for proteasomal degradation (Morrison et al. 2013) sug-
gesting a role in immune-modulation. These reports suggest 
that the flaviviral NS5 protein is capable of manipulating 
host cells and the immune environment to promote viral rep-
lication and survival justifying efforts to better understand 
DENV NS5’s ability to interact with, and probably influence 
host cellular processes.

Previous studies using either computational or experimental 
approaches have shown that NS5 of DENV (and Zika virus) 
interacts with numerous host proteins. DenvInt (https:// denvi 
nt. 000we bhost app. com/) is a dengue-specific database of sero-
type-related experimental evidence of protein–protein interac-
tions (PPIs) (Dey and Mukhopadhyay 2017) that curates’ data 
from yeast-two-hybrid (Y2H), bacterial two-hybrid, pull-down, 
and co-localization experiments (Khadka et al. 2011, Le Breton 
et al. 2011; Mairiang et al. 2013). Another database, HVPPI 
(Human-virus PPI) provides a comprehensively annotated data-
base of human-virus PPIs as well as online tools for their func-
tional analysis (Li et al. 2022). Some pull-down studies using 
human cell lines such as HEK293T and Huh7 cells either by 
infecting or transfecting the cells with DENV-2/DENV-2 NS5 
(Carpp et al. 2014; De Maio et al. 2016; Poyomtip et al. 2016, 
Shah et al. 2018) have identified important proteins such as 
those of the spliceosome complex and Golgi network as inter-
actors of NS5. Much of this data has been compiled in a recent 
review (Bhatnagar et al. 2021).

Our interest in re-visiting the protein–protein interaction 
(PPI) landscape stemmed from the finding that DENV-NS5 
encoded a nuclear localization signal (NLS) (Brooks et al. 
2002) and that it accumulates in the nucleus of DENV-
infected cells in a serotype-specific manner (Hannemann 
et al. 2013). This information implied that NS5 protein 
functions were more complex and encompassed both the 
cytoplasmic and nuclear compartments. There is a formal 
possibility that nuclear NS5 could modulate host gene 

expression by directly binding to the upstream regulatory 
regions of host genes or via interactions with nuclear tran-
scriptional complexes and/or factors. Thus, in addition to its 
primary function as the viral replicase and the RNA capping 
enzyme, DENV-NS5 is a pleiotropic effector that may inter-
act with host proteins participating in a variety of biologi-
cal pathways. Therefore, identifying NS5-interactors among 
host proteins can greatly enhance our understanding of the 
mechanistic bases of the co-option or subversion of host 
cellular processes by DENV.

While the list of physiological processes likely influenced by 
NS5 is both large and diverse based on available experimental 
and computational interactomes, it is of interest to determine 
the effect of NS5 on molecular processes within specific host 
cellular compartments. In this study, we have used a combina-
tion of both linear motif-based and three-dimensional structure-
based bioinformatic tools to identify a common, core set of host 
proteins that DENV-NS5 could potentially interact with. Based 
on these findings, we have further identified the transcription 
factors (TFs) that these DENV-NS5 interacting proteins could 
directly interact with. Finally, using publicly available transcrip-
tomics data obtained from naïve and dengue-infected patient 
samples, we have identified certain downstream genes that are 
differentially expressed, indicating that these are very likely 
modulated by DENV-NS5 in accordance with our prediction 
of interactors. Our study, therefore, identifies novel interactors 
that could be targeted by NS5 to potentially modulate the host 
cellular environment in general and the immune response in 
particular. Identification of these interactors also provides likely 
and testable mechanisms underlying the observed effects of 
dengue infection on host cells.

Materials and methods

Data sources

NS5 protein sequences for all four Dengue serotypes 
(DENV-1, 2, 3, 4) were retrieved from NCBI (DENV-1 
WP74, DENV-2 S16803, DENV-3 CH53489, DENV-4 
TVP360). Protein sequences of the dengue NS5 protein for 
all the sequenced isolates were downloaded from the VIPR 
database (https:// www. viprb rc. org) (Pickett et al. 2012). We 
used only those sequences for which the complete genome 
sequences were available to ensure the surety of the sero-
type. Serotype-wise multiple sequence alignment was per-
formed using Clustal-ω (https:// www. ebi. ac. uk/ Tools/ msa/ 
clust alo/) (Sievers and Higgins 2014). 

The crystal structure of full-length DENV-3 NS5 pro-
tein complexed with S-adenosyl-L-homocysteine (SAH) is 
available in the worldwide Protein Data Bank (http:// www. 
wwpdb. org/ (Berman et al. 2003); PDB ID: 4V0Q; Resolu-
tion 2.30 Å (Zhao et al. 2015). Using this as a reference, 

https://denvint.000webhostapp.com/
https://denvint.000webhostapp.com/
https://www.viprbrc.org
https://www.ebi.ac.uk/Tools/msa/clustalo/
https://www.ebi.ac.uk/Tools/msa/clustalo/
http://www.wwpdb.org/
http://www.wwpdb.org/
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three-dimensional (3D) structures of NS5 protein for sero-
types 1,3 and 4 were modelled using i-TASSER (https:// 
zhang lab. ccmb. med. umich. edu/I- TASSER/) (Zhang 2008). 
The crystal structure of DENV-2 NS5 is also available 
(PDB ID 5ZQK; Resolution 2.30 Å) (El Sahili et al. 2019). 
It was used to model the structure of the NS5 protein of 
serotype 2. Interaction networks were created and visual-
ized using Cytoscape (version 3.9.0) (Shannon et al. 2003). 
Pathway analysis was done using WebGestalt (WEB-based 
Gene SeT AnaLysis Toolkit) (Liao et al. 2019). The bioin-
formatics pipeline for the analysis performed in this work 
is depicted in Fig. 1.

Eukaryotic linear motifs (ELM) analysis 

Eukaryotic Linear Motifs (ELMs) of the DENV-NS5 were 
predicted using the Eukaryotic Linear Motif resource 

server (ELM) (http:// elm. eu. org) (Dinkel et al. 2016). The 
motif probability cut-off was taken as 100 (default value) 
and Homo sapiens was selected as the preferred species to 
predict the conserved human peptide linear motifs in DENV-
NS5 protein for all four serotypes separately. Since the NS5 
protein shuttles between the nucleus and cytoplasm, the 
motifs were not filtered based on cell compartmentaliza-
tion. After the multiple sequence alignment step (performed 
on the isolated sequences downloaded from the VIPR data-
base) using Clustal-ω (Sievers and Higgins 2014), only those 
ELMs that were > 95% conserved in all the available strains 
and had a p-value of ≤ 0.05 were considered for further 
analysis. 

NetSurfP 2.0 predicts the surface accessibility of amino 
acids (https:// servi ces. healt htech. dtu. dk/ servi ce. php? NetSu 
rfP-2.0) (Klausen et al. 2019). This was used to identify 
buried and exposed residues in DENV-NS5 protein (all 
serotypes). The motifs that were found to lie entirely in bur-
ied stretches were removed from further analysis (ELMs 
selected for further analysis are listed in Supplementary 
table 1). Using the list of all domains annotated as inter-
acting with one or more ELM class, available on the ELM 
server, protein domains interacting with the predicted 
ELMs were identified. Protein domain/ superfamily data 
from NCBI-CDD was used to extract the human proteins 
that could be possible interacting partners of DENV-NS5 
proteins (Marchler-Bauer et al. 2015). 

Tertiary protein structure prediction using i‑TASSER

3D protein structures of NS5 were obtained from i-TASSER 
(Zhang 2008) for all four dengue serotypes. I-TASSER is 
a widely used, freely available tool used for protein 3D 
structure prediction that was ranked as the no.1 server for 
protein structure prediction in recent community-wide 
CASP15 experiments (https:// predi ction center. org/ casp15/ 
zscor es_ inter domain. cgi). The crystal structure of DENV3-
NS5 protein (PDB ID 4V0Q) (Zhao et al. 2015) was used 
as a reference for modelling the structure of NS5 from sero-
type 1, 3 and 4. DENV-2 NS5 crystal structure (PDB ID 
5ZQK) (El Sahili et al. 2019) was used as a reference to 
model DENV-2 NS5. (Supplementary Fig. 1 contains high-
resolution 3D protein structures modelled using i-TASSER 
along with the C-scores, TM-score and estimated RMSD 
values). The modelled structure selected for further analy-
sis have C-score > 1.5, TM-score > 0.9 and Z-score align-
ment > 1. Ramachandran plots were plotted for all four mod-
elled NS5 structures using PROCHECK (Laskowski et al. 
1993). A few amino acids were found to lie in the disallowed 
regions. Therefore, we undertook energy minimization using 
GROMACS (Pronk et al. 2013). Thereafter, Ramachandran 
plots were plotted again to determine if most amino acids 
fell within the acceptance region (Supplementary Fig. 2).

Fig. 1  Bioinformatics pipeline for prediction of human interacting 
partners of DENV-NS5 protein and downstream analysis for iden-
tification of differentially expressed genes: Both sequence-based 
(ELM) and structure-based (DALI) analysis was done to predict the 
human proteins that are potential interacting partners of DENV-NS5 
protein. A total of 42 proteins were common to predictions made 
by both approaches. Transcription factors that could directly inter-
act with these 42 proteins were identified using JASPAR and The 
Human Transcription factors database. The downstream target genes 
regulated by these transcription factors were identified using the 
DoRothEA database, and their differential expression during dengue 
infection was verified using published RNA-seq data (described in 
materials and methods)

https://zhanglab.ccmb.med.umich.edu/I-TASSER/
https://zhanglab.ccmb.med.umich.edu/I-TASSER/
http://elm.eu.org
https://services.healthtech.dtu.dk/service.php?NetSurfP-2.0
https://services.healthtech.dtu.dk/service.php?NetSurfP-2.0
https://predictioncenter.org/casp15/zscores_interdomain.cgi
https://predictioncenter.org/casp15/zscores_interdomain.cgi


 3 Biotech (2023) 13:180

1 3

180 Page 4 of 16

Structural similarity prediction of host proteins 
by DENV‑NS5 

We investigated protein mimicry using structural similari-
ties detected by the DALI server (Holm 2020). DALI com-
pares the 3D structural coordinates of two PDB entries by 
alignment of alpha carbon distance matrices, allowing for 
differences in domain order, and produces a structural simi-
larity score. For this study, we ran the modelled DENV-NS5 
protein structures from each serotype through an exhaustive 
PDB25 search that compares one query structure against a 
representative subset of the Protein Data Bank for structur-
ally similar proteins. A z-score above 2.0 and default settings 
of a score cut-off of 40 bits and sequence overlap cut-off of 
50% were used. Out of these results, only protein structures 
from Homo sapiens were retained. The human interacting 
partners of these structurally similar proteins so identified 
were extracted from BioGRID (Stark et al. 2006), a database 
that curates protein–protein interactions based on experi-
mental evidence.

Pathway analysis for the protein interacting 
partners of DENV‑NS5 predicted commonly 
through ELM and DALI

Only those human proteins predicted as DENV-NS5 inter-
actors by both ELM and DALI were considered for further 
analysis. The 42 proteins are common to both predictions 
were fed into the STRING database, with the selected organ-
ism as Homo sapiens, to identify the degree of interaction 
of these proteins within the reconstructed network (Mering 
et al. 2003). Pathway analysis was done using WebGestalt 
(WEB-based Gene SeT AnaLysis Toolkit (Liao et al. 2019). 
The bubble plot depicting the different enriched pathways 
was made using R studio (Allaire 2012) (Fig. 2).

Identification of downstream transcription factors 
and differentially expressed genes potentially 
modulated by DENV‑NS5

Transcription factors (TFs) were identified from the set of 
proteins belonging to the first interactors of the 42 DENV-
NS5 interacting proteins predicted by both ELM and DALI 
(first interactors were identified using BioGRID). Each TF 
was then queried in the DoRothEA database (Garcia-Alonso 
et al. 2019) to identify their downstream gene targets. Only 
interactions with the highest number of supporting evidence 
(wherein evidence ranged from A (high quality) to E (low 
quality)) were selected. Subsequently, the gene expression of 
each gene of interest was examined in previously published 
gene expression data sets from dengue patients presenting 
with different degrees of disease severity (dengue fever – DF 
or dengue haemorrhagic fever – DHF) (Banerjee et al. 2017, 

Poonpanichakul et al. 2021). Only those studies were cho-
sen for which raw read counts were available. The genes 
that showed significant differential expression between DF/
DHF and naïve were selected and further evaluated using a 
manual literature search on PubMed. The list of differen-
tially expressed genes (DEGs) obtained is shown in Sup-
plementary table 7. Pathway enrichment of these DEGs was 
performed using pathfindR (https:// cran.r- proje ct. org/ packa 
ge= pathfi ndR) (Ulgen et al. 2019). 

Results

Inferring the NS5‑human protein interactome

In the present study, both ELM and DALI were used for the 
prediction of human proteins that could interact with DENV-
NS5. In our work, we have restricted our analysis to a set 
of 42 human protein interactors predicted in both analyses 
(Fig. 1, Fig. 3A, Supplementary table 2). ELM which detects 
linear motifs yielded 153 interactors that were common to 
all four serotypes (Supplementary table 3) whereas DALI 
which detects 3D structures yielded 2630 protein interactors 
(Supplementary table 4). Thus, ours is a stringent approach 
focused on potential protein interactors that are predicted by 
both linear motif and 3D structural analyses. We explored 
the level of overlap between our approach and previously 
published yeast 2-hybrid screen (compiled in (Dey and Muk-
hopadhyay 2017)) and bioinformatic analysis (Lasso et al. 
2019) (total 177 proteins were identified from these studies 
and are listed in Supplementary material of (Bhatnagar et al. 
2021)), and found an overlap of 8 proteins (p-value 0.0038, 
Fisher’s exact test) validating our approach. These eight pro-
teins are WW domain-containing E3 ubiquitin protein ligase 
1 (WWP1); three tyrosine 3-monooxygenase/tryptophan 
5-monooxygenase activation proteins– YWHAB, YWHAE 
and YWHAZ; exportin1 (XPO1), the DNA repair-associ-
ated protein BRCA1; catenin beta 1/β-catenin (CTNNB1) 
and growth factor receptor bound protein 2 (GRB2). These 
eight proteins are highlighted in Supplementary table 2. The 
remaining 34 proteins are novel that have been identified in 
this study. Interestingly, we did not identify any significant 
overlap between proteins predicted by our approach and 
those identified by previous pull-down studies (Carpp et al. 
2014; De Maio et al. 2016; Poyomtip et al. 2016, Shah et al. 
2018). This difference is probably likely because, while Y2H 
and PPI prediction studies take into account only the direct 
interaction, pull-down studies can result in the isolation of 
entire protein complexes even if only a subset of components 
interact directly with the protein of interest.

Our analysis showed that amongst the 42 proteins we 
identified there were some proteins that are known to be 
directly involved in immune responses indicating the 

https://cran.r-project.org/package=pathfindR
https://cran.r-project.org/package=pathfindR
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ability of DENV-NS5 to influence host anti-viral responses. 
Noteworthy amongst these are proteins such as CISH and 
SOCS5, that form a part of classical negative feedback 
of cytokine signaling (Yoshimura et al. 2018); NEDD4L, 
a ubiquitin ligase that inhibits TGF-β signaling through 
proteasomal degradation of its receptor TGFBR1 and a 
downstream adaptor SMAD2/3 (Gao et al. 2009); XPO-1, 
which is known to regulate NFAT-AP1 transcriptional com-
plex (Gruffaz et al. 2019) that has a pivotal role in a T cell 
activation during a productive immune response (Macian 
et al. 2001). GRB2 provides a critical link between the RAS 
and the EGFR signaling pathway (Rozakis-Adcock et al. 
1993), and thus is potentially impeded by the binding of 
NS5. STAT5A is a very well-established downstream effec-
tor for cytokines IL-2, IL-7 and GM-CSF, and also many 
growth hormones. STAT5A also induces anti-apoptotic 
proteins such as BCL2L1/BCLXL (Socolovsky et al. 1999; 
Lin and Leonard 2000). TRAF5 is a key molecule in the 
tumor necrosis factor receptor family that is central to both 
the innate and adaptive immune response (Hildebrand et al. 
2011). Another protein, AP4M1, a part of the endosomal-
lysosomal system involved in the recognition and sorting 
of cargo proteins with tyrosine-based motifs (Hirst et al. 
1999) needed for cytotoxic responses was also identified as 
an NS5 interactor (Repnik et al. 2013). AP4M1 RNA was 
earlier found to be upregulated in DENV-2-infected ECV304 
endothelial-like cells suggesting utilization of the AP-4 com-
plex by the virus for its release from the infected cells (Liew 
and Chow 2006). 

Other notable interactors identified by our analysis were 
proteins such as WWP1, WWP2, NEDD4, USP7, SMURF1, 
COP1 that ubiquitinate to degrade proteins involved in key 
cellular processes. Ubiquitin-mediated proteolysis is known 
to regulate multiple events such as viral entry, viral replica-
tion, cell cycle and apoptosis, essential for viral infection 
and survival (extensively reviewed in references Isaacson 
and Ploegh 2009; Gustin et al. 2011)). Proteins involved in 
cell cycle regulation (CDC20, CCNB1, CCNE1), apopto-
sis (YAP1), and metabolism (RAPTOR) were also identi-
fied. Finally, three NS5 interactors were vital components 
in the WNT signaling pathway – FBXW11 and APC that 
ubiquitinate beta-catenin, a key downstream component of 
WNT signaling (Rao and Kühl 2010) and CTNNB1 were 
also identified. Thus, NS5 possibly interacts with multiple 
host proteins that are involved in the key cellular processes 
of proliferation, apoptosis, protein degradation, and immune 
responses. Key proteins along with the pathways they regu-
late are summarized in Table 1 (with references). 

All the predicted DENV-NS5 interactors were analyzed 
using the STRING database to identify the degree of inter-
action based on the central rule that the higher the degree, 
the more central the protein is in its interaction with other 
proteins. We found that proteins CTNNB1, XPO1, CCNB1, 

USP7 and YWHAB were among the top five with the high-
est node degree, implying that there is a high probability 
that DENV-NS5 on interaction with these proteins would 
perhaps lead to greater control over associated cellular 
pathways. Supplementary table 5 lists the 42 DENV-NS5 
interactors along with the degree of interaction as obtained 
from STRING.

Pathway analysis for the 42 identified DENV‑NS5 
interactors

Pathway-based enrichment analysis using WebGestalt 
(WEB-based Gene SeT AnaLysis Toolkit) (Liao et al. 2019) 
revealed 12 pathways within which these 42 host proteins 
participated (Fig. 2). Supplementary table 6 lists the results 
of the KEGG pathway enrichment along with the enrichment 
scores, p-values and false discovery rates (FDRs). Notable 
amongst these was the PI3K-Akt signaling pathway that reg-
ulates fundamental functions such as cellular proliferation, 
growth, transcription, and protein translation – all of which 
are heightened during an anti-viral response. The cell cycle 
and the Hippo signaling pathway which contain many genes 
that support cellular proliferation and growth were found 
to be significantly enriched. Prolactin acts both as a hor-
mone as well as a cytokine (Harvey et al. 2015), stimulating 

Fig. 2  Pathway enrichment of human interacting partners of DENV-
NS5 protein: KEGG pathway enrichment of interacting proteins 
of DENV-NS5. The Y-axis shows all enriched pathways with 
FDR < 0.05 and the X-axis shows enrichment ratios representing the 
number of proteins present in the reference gene set. The size of the 
dot shows the size of the gene set. The intensity of the color of the 
nodes is inversely proportional to the p-value i.e., the more intense 
the color, the lower the p-value and the greater the significance
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the secretion of other cytokines and expression of cytokine 
receptors including IFN-γ, IL-1, and IL-10 (Enninga et al. 
2014). In our analysis, it was notable that the prolactin sign-
aling pathway that activates many other signaling cascades 
containing Src, PI3K-Akt, and MAPK kinases, was also sig-
nificantly enriched. In summary, our analysis revealed that 
DENV-NS5 is capable of interacting with host proteins that 
participate in key cellular processes that are vital to a suc-
cessful anti-viral immune response.

Identification of downstream transcription 
factors and differentially expressed genes (DEGs) 
potentially modulated by DENV‑NS5

Cellular pathways are defined as sequential events that ulti-
mately result in a phenotypic or functional consequence. There-
fore, we were curious to understand the ripple effects of these 
42 direct interactions to truly appreciate the overall impact of 
predicted DENV-NS5- host protein interactions. We, therefore, 
mapped the interaction network of DENV-NS5 protein and the 
42 human proteins (orange circles in Fig. 3A) along with all 

Fig. 3  Predicted DENV-NS5 interactome: A  Schematic representing 
the proteins predicted to be interacting with DENV-NS5 and their 
first interactors. Direct DENV-NS5 interactors are shown in orange 
circles. Transcription factors (TF) present in the first interactors of 
DENV-NS5 interacting proteins are shown in pink and the genes reg-
ulated by them are shown as a TF network. The genes identified to 
be differentially expressed in previously published dengue RNA-seq 
data  (described in methods) have  been shown in light green. Genes 

in dark green are DEGs additionally reported in other studies relevant 
to dengue.  Some of the edges between nodes have been removed 
to improve readability.  B  Transcriptional profile of genes shown 
in dark green in A. Normalized  read counts  of selected DEGs have 
been shown in dengue vs naïve subsets. B-H (Benjamini-Hochberg) 
adjusted p-values are shown and indicated by *p < 0.05; **p < 0.01; 
***p < 0.001; ****p < 0.0001
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potential downstream interactions. We then focused on tran-
scription factors among the downstream interactors (pink circles 
in Fig. 3A) in order to identify key transcriptional programs that 

would be potentially affected by NS5-host protein interactions 
and found five well-studied transcription factors. These were 
– STAT1 (directly downstream of SOCS5), ETS1 (downstream 

Fig. 3  (continued)
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of BRCA1), RelA (downstream of CTNNB1), E2F1 (down-
stream of CCNE1) and SP1 (downstream of BRCA1).

One of the 42 interactors of DENV-NS5 was USP7 
(orange circle with a blue ring at around 4 o’clock in 
Fig. 3A). This protein has been reported to directly ubiq-
uitinate, and thereby target for degradation, proteins such 
as (a) FOXO4 (part of the PI3K-Akt pathway) (b) p53 (an 
important tumor suppressor that ensures genome stability) 
(c) MDM2 (a p53 antagonist whose gene is transcription-
ally inhibited by p53 and which, in turn, is a p53-specific 
ubiquitinase that targets p53 for degradation) (d) ERCC6, 
a chromatin remodelling factor, (e) DNMT1, a DNA meth-
yltransferase responsible for de novo DNA methylation (f) 
UHRF1, an E3 ubiquitin-protein ligase regulating the G1/S 
transition (g) PTEN, a tumor suppressor and a key modula-
tor of the mTOR signaling pathway and (h) DAXX, a pro-
apoptotic protein that often functions with Fas (reviewed 
in (Van der Horst et al. 2006)). Therefore, it is likely that 
the ability of DENV-NS5 to cause pleiotropic effects may 
be attributed to its interaction with host proteins situated at 
hubs that are common to several physiological pathways.

Transcription factors affected by DENV-NS5 that have 
immunological relevance (pink circles in Fig. 3A) are briefly 
discussed below. A few of the key interactors downstream 
of these TFs have been highlighted in light green if they 
were identified previously through RNA-seq studies, or in 
dark green if they were also validated in dengue infection. 
The DEGs additionally reported in other studies relevant to 
dengue (dark green circles in Fig. 3A) have been shown in 
Fig. 3B. Pathway enrichment analysis of these DEGs showed 
that there were genes identified that are in involved in cel-
lular processes like apoptosis and cell death (like BCL2L12, 
TLR3, CDK5), protein metabolism (like PAX6, FGFR1) and 
protein phosphorylation (like AURKA, DKK1), indicating 
that DENV-NS5 can potentially modulate several cellular 
pathways via its interaction with upstream proteins that are 
vital for its own propagation (Supplementary table 8). A list 
of key downstream effectors potentially impacted by DENV-
NS5 have been tabulated in Table 1 and briefly discussed 
below.

STAT1 (pink circle at around 4 o’clock in Fig. 3A) is a 
part of the family of signal transducer and activator of tran-
scription (STAT) proteins that mediate cellular responses 
downstream of interferon signaling pathways. After Type 
I IFN signaling, STAT1 is phosphorylated, translocate to 
the nucleus as part of a larger complex to induce the tran-
scription of interferon-stimulated genes (ISGs) such as Inter-
feron gamma (IFN-γ) to drive an anti-viral immune response 
(Ramana et al. 2002). Dengue infections are often accompa-
nied by cytokine storms (Srikiatkhachorn et al. 2017), and 
the binding of NS5 to SOCS5, a suppressor of cytokine sign-
aling probably enhances interferon related events besides 
resulting in runaway cytokine expression.

ETS1 is known to induce the expression of some 
cytokines (IFN-γ, IL-5, TFN-α) and repress the expression 
of others (IL-2, IL-4, IL-10)(Russell and Garrett-Sinha 
2010). It is tempting to hypothesize that ETS1 downregula-
tion via direct interaction of BRAC1 with NS5 results in 
poor Th1 cytokine production, thereby inhibiting the process 
of viral clearance, and increased production of cytokines 
such as IL-10 that have been associated with severe dengue 
manifestations. Further, ETS1 is also known to directly con-
trol the expression of certain chemokines (CXCL4, CCL2, 
and CXCL8) either by direct gene regulation, coopera-
tive gene regulation or regulation of calcium flux (Russell 
and Garrett-Sinha 2010). Thus, NS5, through BRCA1 and 
ETS1, could be responsible for disrupting the cell-mediated 
immune response (Th1) that is key in antiviral response.

RelA is a subunit of NF-κB that, along with other NF-κB 
subunits such as p52, p50, p105 or RelB, can act as a tran-
scriptional activator or repressor (Hiscott et al. 2001). Since 
its presence is probably regulated via ubiquitin degradation 
directed through CTNNB1, binding of NS5 to CTNNB1 
could affect this regulation. There is then a possibility that 
RelA upregulates genes such as EGR1 that in turn can 
increase the expression of cytokines and chemokines such as 
IL-1β and CXCL2. It is interesting to note that EGR1 tran-
scription is upregulated during dengue infection (Fig. 3B, 
top row, middle panel), and so is its downstream target IL-1β 
during dengue disease. Another protein of interest that we 
identified was TNFRSF10b (alternative name – DR5, encir-
cled with a red circle at approximately 9 o’clock in Fig. 3A), 
which is a receptor for TRAIL that results in caspase-8-me-
diated apoptosis.

E2F1 is a transcription factor that plays a crucial role 
in processes such as cell cycle progression, proliferation, 
and microtubule formation (Wu et al. 2001) (pink circle at 
approximately 11 o’clock in Fig. 3A). We identified eleven 
E2F1-regulated downstream effectors whose genes are 
upregulated when analysed by RNA-seq in dengue disease 
(see Fig. 3A).

SP1 is a transcription factor downstream of MAPK and 
PI3K-Akt signaling pathways and controls many cellular 
processes that involve differentiation, apoptosis, immune 
responses and chromatin remodelling (Black et al. 2001) 
(pink circle at approximately 1 o’clock in Fig. 3A). Genes 
regulated by SP1 encode proteins such as Pax6 (an NFATC1 
repressor), LDLR (receptor for the endocytosis of choles-
terol-rich LDL), LRP5 (associated with Wnt signaling) and 
FASLG (mediator of apoptosis). Transcriptional upregula-
tion of LCAT and LDLR is confirmed by prior RNA-seq 
studies and dengue infection-related studies as well (LCAT 
– row 2, column 1 and LDLR – row 3, column 3 in Fig. 3B). 
Thus, the cell-to-cell spread of DENV may be enhanced by 
the regulation of LDLR that has been found to bind LDLR 
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ligand-like motifs in the dengue envelope and capsid pro-
teins (Guevara et al. 2015).

Thus, the potential interaction of DENV-NS5 with host 
proteins most likely results in a cascade of downstream 
effects, some of which can be directly associated with the 
immune response or with dengue disease. A recent single-
cell RNA-seq analysis study performed on naïve vs dengue 
patients revealed differential expression of many genes that 
were identified as downstream targets of DENV-NS5 in our 
study including TFs like STAT1 and SP1, and genes such as 
CXCL8, EGR1, PFKL and LDLR, in one or more immune 
cells(Xu et al. 2022).

Discussion

Viruses have evolved ways to modulate host cellular pro-
cesses for their own survival, be it by increased viral produc-
tion, evasion of the host immune system or increasing the 
long-term survival of latently infected cells. One of the ways 
of taking over cellular processes is by mimicking the binding 
surfaces of host proteins, enabling physical interactions with 
a large set of host proteins (reviewed in (Guven-Maiorov 
et al. 2016, Fishburn et al. 2022)).

The p-HIPSTER database predicts human-viral PPIs of 
all human-infecting viruses (Lasso et al. 2019). Its approach 
combines both sequence and structural similarity prediction 
as is the case with our study. However, the tools we used 
for these predictions are different. p-HIPSTER uses PrePPI 
(http:// bhapp. c2b2. colum bia. edu/ PrePPI), a database that 
combines predicted and experimentally determined pro-
tein–protein interactions (PPIs) using a Bayesian framework. 
By contrast, we have modelled our protein tertiary structures 
using i-TASSER, determined the structural similarity using 
DALI and identified the NS5-human interacting partners 
using BioGRID, which is based on experimentally vali-
dated data, and combined it with ELM-based predictions. 
Our study specifically focused on our protein of interest, 
DENV-NS5 protein. In addition to identifying interactors 
of NS5, we performed a downstream analysis to identify 
transcription factors and human proteins, and identified 
the cellular processes directly or indirectly influenced by 
it. Another deep structural analysis study has been done on 
Zika-NS5 protein and STAT2 to identify the amino acid 
residues important for their interaction and IFN antagonism 
(Dar et al. 2017). Future studies like these involving deep 
structural analysis could be performed on these identified 
interacting partners of DENV-NS5 to determine the amino 
acid residues involved in these interactions (Kumar et al. 
2022, Singh et al. 2022a, b).

Our simultaneous and rigorous two-pronged approach 
to deciphering PPI’s of DENV-NS5 resulted in the 

identification of 42 host proteins whose functions spanned 
both the cytoplasm and the nucleus. Further analysis of 
the downstream interactors of these 42 proteins revealed 
proteins that, in publicly available transcriptomic studies, 
exhibit significant fold-change during DENV infection. Our 
focus on downstream transcription factors has uncovered 
known as well as previously unsuspected ramifications of 
DENV-NS5 interactions with host proteins involved in the 
host immune response.

Our study identified eight previously validated interac-
tors of DENV-NS5 and identified 34 novel interactors, many 
of which play key roles in anti-viral immune responses or 
in dengue pathophysiology due to their involvement in the 
processes of cell cycle regulation, proliferation, protein deg-
radation, apoptosis, and cytokine production among others. 
It enables the formulation of testable hypotheses regarding 
the influence of DENV-NS5 on the mediators of the host 
responses involved in the entire pathogenic pathway starting 
with a viral effector through host intermediaries and even-
tually to terminal host effectors. Thus, this study provides 
insights into how DENV (and other Flaviviruses, owing to 
high sequence conservation of NS5 protein across all Flavi-
viruses), might hijack the human host proteome by means 
of molecular mimicry to facilitate their replication and/or 
contribute to pathogenesis, an understanding of which can 
open novel lines of inquiry into both prophylactic and thera-
peutic options.

Conclusions

Our stringent approach of using both sequence and tertiary 
structure-based information for studying DENV-NS5 pro-
tein that is capable of interacting with human proteins led 
to the identification of a common, minimal set of novel 
human interactors. Further identification of downstream 
interacting partners identified TFs that could be targeted by 
DENV-NS5 for the ease of establishing infection. Our analy-
sis of previously published RNA-seq data from naïve and 
dengue-infected individuals has identified certain differen-
tially expressed genes which could be indirectly modulated 
by DENV-NS5 via interaction with host proteins, some of 
which interact with transcription factors. This study has led 
to the generation of the testable hypothesis that requires fur-
ther experimental validation. However, our analysis clearly 
indicates that the potential role of DENV-NS5 during viral 
infection extends well beyond its known enzymatic func-
tions. Further validation of these predicted interactors is 
required to understand the cumulative effects of these inter-
actions in dengue infection.

Dengue has been a particularly difficult disease to control. 
With no universal vaccine or antivirals currently available 

http://bhapp.c2b2.columbia.edu/PrePPI
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to tackle the disease, other strategies such as behavio-
ral changes (e.g., using mosquito nets) and vector control 
remain the only options. Under these circumstances, it is 
important to explore therapeutic options that could help 
patients by controlling viral replication and modulating 
immune responses, particularly those that could potentially 
damage the host tissues. Our study provides mechanistic 
insights into human-dengue virus interactions at the molec-
ular level, some of which may be used to design and test 
therapeutic interventions at key pathways to prevent viral 
multiplication and spread as well as mitigate or prevent 
adverse clinical outcomes.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s13205- 023- 03569-0.
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