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Abstract
In the present study, we designed and validated genome-wide polymorphic SSR markers (110 SSRs) by mining the walnut 
genome. A total of 198,924 SSR loci were identified. Among these, successful primers were designed for 162,594 (81.73%) 
SSR loci. Dinucleotides were the most predominant accounting for 88.40% (175,075) of total SSRs. The SSR frequency 
was 377.312 SSR/Mb and it showed a decreasing trend from dinucleotide to octanucleotide motifs. We identified 20 highly 
polymorphic SSR markers and used them to genotype 72 walnut accessions. Over all, we obtained 118 alleles that ranged 
from 2 to 12 with an average value of 5.9. The higher SSR PIC values indicate their robustness in discriminating walnut 
genotypes. Heat map, PCA, and population structure categorized 72 walnut genotypes into 2 distinct clusters. The genetic 
variation within population was higher than among population as inferred by analysis of molecular variance (AMOVA). For 
walnut improvement, it is necessary to have a large repository of SSRs with high discriminative power. The present study 
reports 150,000 SSRs, which is the largest SSR repository for this important nut crop. Scientific communities may use this 
repository for walnut improvement such as QTL mapping, genetic studies, linkage map construction, and marker-assisted 
selection.
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Introduction

The walnut (Juglans regia L.) belongs to the Fagales order 
and family Juglandaceae (McGranahan and Leslie 2009; 
Hussain et al. 2021; Zaini et al. 2020). It is a widely cul-
tivated nut crop in temperate regions of the world, includ-
ing Indian state of Jammu and Kashmir (Shah et al. 2021, 
2018). Walnuts are nutritionally dense and is considered as 
“bread of the future” (Jaćimović et al. 2020; Turdieva et al. 
2012). Presently, China is a key walnut-producing country 
with share of 43.31% global production. The United States, 
Iran, Turkey, Mexico, and India each contribute 16.74%, 
11.19%, 5.87%, 4.35%, and 0.88% of the global walnut 
output, respectively. Walnut is a native to Eurasia, growing 
from the Balkans to Southwest China (Aradhya et al. 2017; 
Feng et al. 2018; Khadivi-Khub et al. 2015; Pollegioni et al. 
2004). All the species of genus Juglans are diploid with a 
karyotype of 2n = 32 and have 16 linkage groups (Kefayati 
et al. 2017). There have been numerous previous attempts 
to create genetic linkage maps using RAPD, RFLP, and 
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isozyme markers (Fjellstrom and Parfitt 1994; Woeste et al. 
1996; Malvolti et al. 2001). However, there were not suf-
ficient markers to cover all of the linkage groups, and some 
of the linked markers lacked sequence information. Recently, 
SNP and InDel markers were also used to construct genetic 
map of walnut (Zhu et al. 2015; Luo et al. 2015). The first 
SSR-based linkage map was constructed by Kefayati et al. 
(2017) with consensus map length of 1569.9 cM. Avail-
ability of walnut genome (Martínez‐García et al. 2016) 
opened many frontier areas including fine mapping of eco-
nomic traits (Bernard et al. 2019; Marrano et al. 2019a; Ji 
et al. 2021) and cracking of other Juglans species genomes 
(Stevens et al. 2018). The walnut genome version 1.0 (Mar-
tínez‐García et al. 2016) was highly fragmented and was sig-
nificantly improved in v1.5 genome assembly (Stevens et al. 
2018). Recently, a high-quality chromosome-scale assembly 
(Chandler v2.0) helped to explain the complex biological 
processes in walnut (Marrano et al. 2020). This high-quality 
genome assembly was obtained by combining Oxford Nano-
pore long read sequencing with chromosome conformation 
capture (Hi-C) technology. A few genomic studies indicate 
that walnuts grown in South Asian countries particularly 
the Pakistani and Indian populations are ancestral (Aradhya 
et al. 2017; Bernard et al. 2020a; Gaisberger et al. 2020; Roor 
et al. 2017). However, new phylogenomic studies reveal the 
hybrid origin of J. regia (Zhang et al. 2019). In Jammu and 
Kashmir, the crop has not been exploited for any intensive 
breeding program; therefore, the natural population possess 
highest genetic diversity (Shah et al. 2022). To effectively 
harness the walnut latent potential, it is essential to accu-
rately recognize high genetic diversity to breed new genitors 
and superior cultivars (Doğan et al. 2014). Phenotypic trait 
evaluation is a common approach to assess walnut diver-
sity. However, such investigations are inefficient, expensive, 
and difficult to assess directly for complex polygenic traits 
(Nickravesh et al. 2023). These issues have been resolved 
by the development of DNA-based markers, which provide 
reliable results regardless of the external environment (Shah 
et al. 2020). Among the molecular markers, microsatellites 
(1–6 bp in length) are most reliable (Grover et al. 2007; 
Taheri et al. 2018), which are abundant and well distrib-
uted throughout the nuclear genome of eukaryotes (Kalia 
et al. 2011). Microsatellites are powerful and informative 
markers for assessing the genetic diversity, finding the rela-
tionships among different germplasm populations, linkage 
map construction, validate walnut scions, and source plants 
for reliable propagation and to investigate biotic or abiotic 
stresses (Ali Khan et al. 2016; Bernard et al. 2020a, b, 2019; 
Shah et al. 2018, 2020; Pollegioni et al. 2017; Doğan et al. 
2014; Nickravesh et al. 2023). The genetic diversity in J. 
regia was first studied by Woeste et al. (2002) followed by 
other researchers (Bai et al. 2010; Chen et al. 2014; Dangl 
et al. 2005; Foroni et al. 2005, 2007; Hoban et al. 2008; 

Magige et al. 2022; Najafi et al. 2014; Robichaud et al. 2006, 
2010; Ross-Davis et al. 2008; Topçu et al. 2015; Victory 
et al. 2006; Zhang et al. 2010, 2013). The first set of 13 SSR 
markers developed from J. regia was developed by Najafi 
et al. (2014). Second set of 94 SSR markers for walnut was 
developed by Topcu et al. (2015) and out of which only 19 
SSRs markers were polymorphic. Topçu et al. (2015) devel-
oped another 276 SSR makers from enriched repeat region 
of genomic libraries. Among these, 185 SSR markers were 
polymorphic. In spite of the fact that molecular markers aid 
in deciphering Juglans species’ population structure and dif-
ferentiation (Victory et al. 2006; Foroni et al. 2005, 2007; 
Ross-Davis et al. 2008; Woeste et al. 2002), very few SSR 
have been developed so far. Although these SSRs have been 
routinely used to infer the walnut population structure (Ber-
nard et al. 2020a, b; Wang et al. 2008; Ebrahimi et al. 2016), 
the number is less to construct dense linkage map, marker 
trait association studies, and QTL mapping. Recently walnut 
SNP chip, currently the largest chip available in crops, was 
developed by Marrano et al. (2019b) and is in vogue to map 
the complex traits (Marrano et al. 2019b; Arab et al. 2019, 
2022; Bükücü et al. 2020; Sideli et al. 2020). However, it is 
difficult to access this chip by the scientific community from 
developing nations. Alternatively, SSRs being neutral can be 
used by the labs that do not have high-throughput genomics 
setup. The best and easiest way to develop large number 
of SSR markers is to use publicly available walnut genome 
(Martínez‐García et al. 2016). With the aid of bioinformatics 
workflows, it is easy to mine huge number of genome-wide 
SSR markers. Many researchers exploited the genomic infor-
mation to mine genome-wide SSR markers in different plant 
species in the past decade. For instance, genome-wide SSR 
markers were developed using bioinformatic approaches in 
pear (Liu et al. 2015), citrus (Hou et al. 2014), pomegranate 
(Patil et al. 2020b), spinach (Patil et al. 2020b), Lilium (Bis-
was et al. 2020), capsicum (Cheng et al. 2016), watermelon 
(Zhu et al. 2016), and Palmae (Manee et al. 2020).

To date there are only 1300 SSRs available for walnut 
(Foroni et al. 2005, 2007; Chen et al. 2014; Dangl et al. 
2005; Hoban et al. 2008; Najafi et al. 2014; Robichaud et al. 
2006; Ross-Davis et al. 2008; Topçu et al. 2015; Victory 
et al. 2006; Woeste et al. 2002; Zhang et al. 2010), hence 
we explored publicly available chandler genome to mine 
genome-wide SSR markers. We report a new set of 162,594 
genome-wide SSR markers. Preliminary wet lab studies 
show that our SSRs are robust with high discriminatory 
power. Using these SSR markers, we found high diversity 
in walnut populations from northern India. Our SSR reposi-
tory will help the scientific community actively working on 
walnut to saturate linkage map, phylogenetic analysis, and 
to map economically important traits. Further, this set will 
help to deduce the population structure of Juglans species as 
most of these SSR markers will show cross transferability.
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Materials and methods

Genome‑wide SSR mining

Walnut genome (Cv. Chandler) is publicly available at NCBI 
[Juglans regia (ID 17683)—Genome—NCBI (nih.gov)] and 
we downloaded it in a local server. We used GMATA v 2.0 
tool (https:// sourc eforge. net/ proje cts/ gmata) to scan genome-
wide SSRs markers as described previously (Wang and 
Wang 2016; Bhat et al. 2018). To design primers, standalone 
primer3 was used in batch mode with the following param-
eters: product size 140–400 bp; primer length 19–25 bp with 
optimal length 22 bp; primer annealing temperature with 
optimal Tm 60 °C; and primer must be at least 200 bp away 
from the microsatellite locus. To calculate amplicon size 
and number of alleles, we used standalone electronic PCR 
(e-PCR) module with default parameters. All text handlings 
were performed using in-house perl scripts.

Selection of plant material and DNA extraction

We collected young leaves from 72 walnut genotypes, that 
included 60 from Shopian (SW), 8 from Anantnag (AW), 
and 4 from Pulwama (PW). These populations were selected 
based on important growing districts of Kashmir, highly 
diverse agro-ecosystems, and high phenotypic plasticity. The 
sampling locations are geographically separated from each 
other (Fig. S1). The plants were selected based on the cru-
cial morphological and pomological traits to include highly 
diverse genotypes for genotyping (Shah et al. 2021). The 
plant seedlings thrive in their natural habitat without the 
use of any management techniques. The genomic DNA was 
isolated using the CTAB technique (Doyle and Doyle 1987). 
RNase treatment was used to further purify the extract. 
On a 1% agarose gel, the DNA's purity was examined and 
DNA was quantified using a bio spectrometer (Eppendorf, 
Germany).

Validation of selected SSRs

A set of 110 SSR primers were selected from unique 
136,582 SSR markers showing single allele in e-PCR and 
validated on 10 highly diverse samples that were chosen 
from geographically isolated places. For instance, From 
Shopian population, we selected four samples that were 
at least 200 km apart. Similarly, we selected walnut geno-
types from other two districts. The criterion of selecting 
110 SSR markers among a large SSR repository was based 
on the number of repeat motifs. The markers which failed 
to amplify or produced monomorphic fragments were dis-
carded. From these, 35 markers were selected for validation 

to find out the highly polymorphic ones. Fifteen markers 
out of thirty-five markers although were polymorphic but 
produced low-resolution bands, thus were discontinued for 
fingerprinting. PCR amplification was carried out in 0.2 ml 
PCR tubes in a thermal cycler from Biometra T gradient 
(Gottingen, Germany) using 2 µl of genomic DNA (25 ng/
µl), 1U of Taq polymerase (Thermo Scientific), 1.5 µl of 
10 X Taq polymerase buffer, 1.5 mM  MgCl2, 200 µM of 
each dNTP, 0.4 µM of each primer, and 8.30 µl of deionized 
water in a final volume of 15 µl reaction. We used following 
temperature regimes; initial denaturation for 5 min at 94 °C, 
followed by 35 cycles of denaturation for 1 min at 94 °C, 
primer annealing for 30 s at 60 °C, primer extension for 30 s 
at 72 °C, and a final extension for 7 min at 72 °C. Amplified 
DNA fragments were resolved in 3% agarose gel. Product 
sizes of DNA fragments were determined using 100 bp DNA 
ladder (Thermo Scientific) as molecular size marker.

Data analysis

Genetic diversity and relationship analysis

Online marker efficiency iMEC program (https:// irsco pe. 
shiny apps. io/ iMEC/) was used to calculate multiple indices 
of marker efficiency such as number of alleles (Na), expected 
heterozygosity and discriminating power (Amiryousefi et al. 
2018). DNA fragments of various molecular weight sizes 
generated by SSR markers were compared with the standard 
molecular weight marker and scored as discrete variables 
using 1 to indicate presence and 0 to indicate absence of a 
band. The heatmap was generated based on SSR data of 72 
walnut genotypes constructed by Euclidean distance with 
Ward (unsquared distances) linkage method using Clust 
Vis Bio tools (https:// bio. tools/ clust vis) (Metsalu and Vilo 
2015).

Genetic structure and admixture analysis

The population structure was analyzed using the Bayesian 
clustering algorithm implemented in STRU CTU RE. The 
program STRU CTU RE was run with K values from 1 to 12. 
A burn-in period of 50,000 iterations followed by 500,000 
replications was used to estimate each value of K. No prior 
information was used to define the clusters. The number of 
populations was determined by maximizing Ln likelihood 
of data for different values of K (Evanno et al. 2005) and the 
optimal K depends on the peak of ΔK (Earl and VonHoldt 
2012). Genotypes with affiliation probabilities of 60% or 
higher were designated as belonging to a specific group, 
while those with affiliation probabilities below 60% were 
classified as admixture. For the purpose of analyzing molec-
ular variance, Arlequin software was employed (AMOVA). 
Based on the geographic location of the samples and the 

https://sourceforge.net/projects/gmata
https://irscope.shinyapps.io/iMEC/
https://irscope.shinyapps.io/iMEC/
https://bio.tools/clustvis
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findings of the population structure of the investigated geno-
types, Arlequin was used to calculate the pair-wise genetic 
distances and the population differentiation coefficients 
within and among populations (Excoffier and Lischer 2010).

Results

Frequency of SSR’s in walnut genome

A total of 198,924 SSR loci were identified in the 647 Mb 
walnut genome. Among these, successful primers were 
designed for 136,582 loci (Table S1). The frequency of SSRs 
per Mb within the genome was 428.71. Overall SSR motifs 
analysis shows that the frequency of SSRs falls with the 
increasing number of repeat motifs. Dinucleotides motifs 
were predominant and accounted for 88.40% (175,075) of 
total SSRs followed by trinucleotides (17,184) with a fre-
quency of 8.3% while octanucleotides were least frequent 
(< 0.1%; Fig.  1a). Frequency of dinucleotide repeated 
motifs was 377.312 SSRs/Mb and the frequency of SSRs/
Mb decreased with the increase in repeat motifs (Fig. 1b).

Motif type and motif repeats

We looked at the top 20 single and paired group motifs. 
In both solo and paired dinucleotide motifs, the dinucleo-
tides came in first place, accounting for 88.40% and 88.6% 
motifs, respectively (Figs. 2, 3). In each class, we discovered 
that some motif types were more prevalent than others. For 
instance, the AT motif was significantly overrepresented in 
dinucleotide motifs (28%) (Fig. 2a). Additionally, an exami-
nation of various repeat counts revealed that dinucleotides 
(AT motif) had the highest frequency (114.33 SSRs/Mb). 
Among the trinucleotides, the AAT motif has the highest 
frequency (5.99 SSR/Mb), while tetranucleotides and penta-
nucleotides had less SSR repeats (Fig. 2b). The paired motifs 
AT/AT were more common and accounts for 28% alike 
that of single motif (AT) followed by TA/TA paired motifs 
(Fig. 3a). The highest number of SSRs/Mb was obtained in 
motifs AT/AT and TA/TA followed by other paired motif 
types (Fig. 3b). It was interesting to observe 81- and 62-time 
repetition of 2 trinucleotide SSR motifs (ATA and TAT). 
Another intriguing finding was that heptanucleotides had 
more repeats than tetranucleotides and pentanucleotides 
(Fig. 4).

Fig. 1  Distribution of motifs 
and SSR density of walnut 
genome. Distribution of motif 
numbers and their percentage 
(%); the motifs from dinu-
cleotides to octanucleotides 
are shown by colored boxes 
(a). Frequency distribution of 
SSR’s/Mb from di-to-penta 
motifs. The horizontal axis 
depicts the motif type, whereas 
the vertical axis indicates the 
frequency of SSRs/Mb (b)
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In silico PCR

The unique SSR markers produced a single allele (84.35%) 
and the remaining markers produced greater than two alleles 
(15.65%; Table S2). The number of in silico alleles ranged 
from 1 to 131 and the average amplicons per mapped marker 
was 1.20. We also found 99.82% markers generating ≤ 10 in 
silico PCR products and 99.97% of markers generating ≤ 50 
in silico products (Table S2).

Validation and marker efficiency of microsatellite 
markers

When fingerprinted, majority of SSR primers (65) produce 
monomorphic band. Therefore, 72 walnut genotypes were 
fingerprinted using a set of 20 highly polymorphic SSR 
markers which produced 118 alleles. The primers gener-
ated alleles with values ranging from 2 to 12 with an aver-
age of 5.2 alleles per primer. The primer WSSR008 yielded 
the most alleles (12), followed by WSSR001 and WSSR026 
with ten alleles each (Fig. 5; Table 1). The primer WSSR3 
amplified the minimum of two bands. We observed the 
amplicon size 110–500 bp that matched to the e-PCR band 

size (161–393 bp) of SSRs. The polymorphic information 
content (PIC) of 75% of the markers was ≥ 0.5 and 25% of 
the markers produced PIC value less than 0.5 with overall 
values ranging from 0.391 to 0.605 and an average value 
of 0.184 (Table 1). The expected heterozygosity index (H) 
ranged between 0.081 and 0.625 with a mean value of 0.514. 
The discrimination power had a mean value of 0.474 and a 
range of 0.081–0.590 (Table 1).

Genetic relationship and admixture analysis

To determine which genotypes are similar and which indi-
viduals differ from one another, it is vital to analyze molecu-
lar data matrices using methods like heatmaps and principal 
component analysis (PCoA). The heatmap created from the 
SSR molecular data set using the Ward's linkage cluster-
ing approach and Euclidean distance indicated two unique 
groups (Fig. 6). The genotypes are clustered as shown by 
the PCoA ellipses (Fig. 7), with PC1 and PC2 account-
ing for 22.2% and 10.1%, respectively, of the molecular 
variation. The results of the PCoA matrix showed that the 
walnut accessions were divided into two primary clusters 
(Fig. 7). According to the PCoA results, the accessions from 

Fig. 2  Distribution of individual 
motifs and SSRs/Mb in Chan-
dler walnut genome. Distribu-
tion of individual motif type, 
number, and percentage from 
dinucleotides to tetranucleo-
tides, which are discriminated 
from each other by differ-
ent colors (a). Frequency of 
individual SSR motifs from di 
to tetra (b). The horizontal axis 
depicts the motif type, whereas 
the vertical axis indicates the 
frequency of SSRs/Mb



 3 Biotech (2023) 13:136

1 3

136 Page 6 of 16

Anantnag and Pulwama form a single group, and are clus-
tered within the Shopian population that is encircled by a 
red ellipse, except a single genotype at the circumference's 
edge. Many Shopian accessions were present in the other 
cluster. The clustering pattern of PCoA and the heatmap are 
in agreement.

We used a model-based approach to study the genetic 
structure of walnut. To identify the true number of popula-
tions, two distinguished methods, non-parametric (Wilcoxon 
test) and delta K method, were applied. The non-parametric 
method could not give the exact number of populations. 
Therefore, delta K method was applied (Fig. 8). According 
to the distribution of delta K values, there was only one peak 
(Fig. 8a) at K = 2 indicating two distinct populations. Among 
72 genotypes, 28 genotypes were placed in subpopulation I 
and 43 were placed in subpopulation II (Fig. 8b). The sin-
gle genotype SW-46 showed admixtures. Furthermore, the 
analysis revealed that the overall proportion of membership 
of the samples in each of the two clusters was 39.43% in 

cluster I and 59.72% in cluster II excluding admixture mem-
ber. Statistical analysis revealed that the percentage of geno-
types having ≥ 90 membership was 87.5%, 11.11% exhibited 
membership coefficient ≥ 60%, and 1.39% of the genotypes 
exhibited membership coefficient percentage of ≤ 5%. The 
membership coefficient in the bar plot revealed that acces-
sions SW-05 and SW-25 have gene flow from the cluster II 
(green) and accessions SW-01, SW-29, SW-37, and SW-38 
received genetic material from the cluster I (red). Similarly, 
allele frequency among two sub-populations (net nucleo-
tide distance) was 0.0669 and average distance (expected 
heterozygosity or gene diversity) between individuals in 
same cluster was found almost similar in cluster I (0.2303) 
and cluster II (0.2312). Mean value of fixation indices (FST) 
measures the genetic differentiation among the populations. 
It is one of the most important and frequently used param-
eters in explaining the population structure. The FST meas-
ured by the STRU CTU RE program revealed greater FST in 
subpopulation I (0.3134) than in subpopulation II (0.2389). 

Fig. 3  Distribution of motif 
type, quantity, and percentage of 
paired nucleotides (di to tetra), 
that can be distinguished from 
one another by their respective 
colors (a). Pair-wise frequency 
distribution for di-, tri- and 
tetra-SSR motifs. The vertical 
axis shows the frequency of 
SSR’s/Mb and the horizontal 
axis displays the paired motif 
type (b)
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Fig. 4  Distribution of top ten motifs (di to penta) with their repeat numbers

Fig. 5  Electrophoretic monograph of four SSR markers. Lane M1 is 100 bp DNA marker. Lane L1–L48 are walnut genotypes and a = WSSR1; 
b = WSSR016; c = WSSR018; d = WSSR002
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The AMOVA based on geographical origin of samples 
revealed significant molecular variation within populations 
(92.04%) than among populations (7.96%). Whereas, analy-
sis based on population structure (K = 2) showed 87.38% 
molecular variance within the population and 12.62% among 
the populations (Table 2). The FST among the populations 
was 0.06 to 0.12 (0.05–0.25), indicating moderate level of 
genetic differentiation. 

Discussion

In the present study, walnut genome downloaded from 
NCBI (National Centre of Biotechnology Information) was 
mined to develop large number of microsatellite markers. 
Genome-wide SSR markers have been successfully devel-
oped in various plant species including jujube (Xiao et al. 
2015), apple (Zhang et al. 2012), citrus (Biswas et al. 2014; 
Duhan et al. 2020; Liu et al. 2013), pomegranate (Patil et al. 
2020b, 2021), Bunium persicum (Bansal et al. 2022), pear 
(Xue et al. 2018), watermelon (Zhu et al. 2016), and bottle 
gourd (Bonthala et al. 2022). In the current investigation, 
we thoroughly detailed 162,594 genome-wide microsatellite 
markers for this significant crop. To the best of our knowl-
edge, this is the first study on J. regia that presents enormous 
number of genome-wide microsatellite markers. Because of 
its larger genomic size (647 Mb), the number of SSRs in 
walnut is comparatively large than other crops. For instance, 
only 28,342 and 39,523 SSRs were mined from foxtail and 
watermelon genomes, because of their smaller genomic 
sizes (Zhu et al. 2016; Pandey et al. 2013). In comparison, 
the density of SSRs within the genome was 428.71 SSRs/
Mb. However, it is surprising that SSR densities among the 
various woody plants did not differ considerably (Liu et al. 
2018a). According to other studies, genome size and SSR 
density are negatively correlated (Cavagnaro et al. 2010; Liu 
et al. 2013; Morgante et al. 2002). It may be due to variation 
in search parameters used to mine SSRs from the genomes 
(Zhu et al. 2016) or, the different sequencing and assembly 
methods (Xu et al. 2013). This SSR set after validation will 
help the scientific community for developing saturated link-
age map and mapping of useful traits in walnut that were 
impossible with limited number of available SSR markers. 
In addition, a large set of SSR markers will make it easier to 
map QTLs precisely, identify and exploit genes that control 
critical traits, conduct genome-wide association studies, ena-
ble selective breeding through genomic selection, and infer 
population structure. Microsatellite markers play a major 
role in genetic improvement of cereals and grasses but are 
yet to be explored in horticultural crops. For instance, SSRs 
shed light on gene regulation and genome organization, 
genetic diversity (Zhao et al. 2014; Göl et al. 2017), crop 
domestication (Zhao et al. 2014), variety and scion source Ta
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validation (Arab et al. 2022; Nickravesh et al. 2023), com-
parative mapping (Zhu et al. 2016; Wu et al. 2017), genetic 
map construction (Bali et al. 2015; Tan et al. 2013), and 
breeding studies (Dossa et al. 2017).

Out of 192,924 SSR loci identified, successful primers 
were designed for 162,594 (84.27%) loci. In the present 
investigation, the options of 200 bp flanking SSR region 
must be responsible for not designing SSR marker for 
15.73% loci. Most of these SSR loci were present either in 
the beginning or end of the scaffold. The failure to develop 
successful primer pairs for each detected SSR locus in plants 
genomes is consistent with earlier observations (Pandey 
et al. 2013; Sonah et al. 2011; Parida et al. 2009). The SSR 
primers designed were subjected to electronic PCR module 
(e-PCR) to check the amplification efficiency. It is difficult to 
validate each primer pair through a thermocycler but e-PCR 

module is very useful for rapid screening and effective iden-
tification of informative markers (Patil et al. 2020a, 2021; 
Duhan et al. 2020). Hence, each microsatellite created in 
the present study was confirmed using the e-PCR module 
with default settings. When subjected to in silico PCR, the 
majority of SSRs produced a single allele; however, few SSR 
primers produced multiple bands. To validate the micros-
atellites generated from plant genomes, many researchers 
have used in silico PCR amplification modules (Biswas et al. 
2020; Shi et al. 2014; Wang et al. 2015). Out of the designed 
primers, 110 microsatellite markers with different motifs and 
longest repeats were selected for validation purpose because 
longer repeats in the genome have higher mutation rates, 
which can result in a high frequency of polymorphism (Bhat 
et al. 2018; Cavagnaro et al. 2010; Wren et al. 2000).

Fig. 6  Heatmap categorize 72 walnut genotypes into 3 populations. The blue and light square plots of the heatmap indicate the presence (1) and 
absence of the loci (0) of the particular sample. The red, blue, and green represent the three populations
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The frequency of microsatellites is negatively corre-
lated with the number of nucleotides among the different 
nucleotide types. Frequency analyses of different nucleotide 
repeats in walnut revealed that dinucleotide repeats are most 
abundant SSRs, accounting for 88.4% of total SSRs while 
hepta-nucleotide repeats were least abundant, represent-
ing only 0.1% of total microsatellites. These results are in 
agreement with numerous studies examining various crop 
species (Liu et al. 2013; Najafi et al. 2014; Tangphatsorn-
ruang et al. 2009; Topçu et al. 2015; Xu et al. 2013; Zhang 
et al. 2007; Zhu et al. 2012). Microsatellite abundances 
considerably reduced with the increase in number of motif 
repeats. The dinucleotide repeats experienced the slowest 
rate of change while other longer repeats experienced a 
higher rate of change. The results were inconsistent with 
those of other studies, as Cucumis sativa, Medicago trun-
catula, Populus trichocarpa, and Vitis vinifera had the high-
est tetranucleotide repeats, while Glycine max, Arabidopsis 
thaliana, Oryza sativa, Setaria italica, and Sorghum bicolor 
had the highest trinucleotide repeats (Cavagnaro et al. 2010). 
This is most likely a result of the various SSR identification 
criteria being used. Dinucleotides and trinucleotides were 
found to have SSRs with a greater repetition count, whereas 
tetranucleotides, pentanucleotides, and hexanucleotides had 
less repeats of the SSR motif. Several plant species showed 
similar tendencies as well such as citrus (Liu et al. 2013) and 
watermelon (Zhu et al. 2016).

There were apparent differences in the frequency of the 
motifs. The AT/AT motif was the most prevalent dinucleo-
tide repeat in the walnut genome. Likewise, to this, the tri-
nucleotide and tetranucleotide repeats of the motifs ATA/
TAT and AAAT/ATTT were the most common, indicating 
that they are the most frequent motifs throughout the entire 
walnut genome. Since AT motifs are unlikely to undergo 
mutations. For instance, AG/CT is the most abundant motif 
in rice (Zhang et al. 2007) and citrus (Liu et al. 2013). How-
ever, AT/TA motif is abundant in maize (Xu et al. 2013), 

Fig. 7  PCA biplot categorizes the genotypes into single cluster 
(encircled by green) with admixture from Pulwama and Anantnag 
(encircled by red). The Anantnag population is shown by red circle, 
Pulwama population by blue square, and Shopian population by green 
triangle

Fig. 8  Structure stratification indicates 2 populations of 72 walnut 
genotypes (a). The red and green represent the members of the two 
groups or clusters inferred by STRU CTU RE harvester (b)

Table 2  Analysis of molecular variance of 72 walnut genotypes partitioned into populations based on their geographic location and structure dif-
ferentiation

a,b  indicate significant difference among and within population, respectively

Populations Source of variation df Sum of squares Estimated variability Percentage of 
variation (%)

p value

Geographic origin of samples Among populations 2 7.930 0.17322a 7.96 ˂ 0.05
Within populations 69 140.140 2.00199b 92.04 ˂ 0.05
Total 71 148.069 2.17521
FST 0.07963

Population structure Among populations 1 10.036 0.28892a 12.62 ˂ 0.05
Within populations 70 138.033 2.00048b 87.38 ˂ 0.05
Total 71 148.069 2.28940
FST 0.126
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cucumber (Cavagnaro et al. 2010), pomegranate (Patil et al. 
2021), pepper (Zhong et al. 2021), and watermelon (Zhu 
et al. 2012). Such studies indicate overrepresentation of dif-
ferent motifs in different plant species.

Molecular diversity analysis of J. regia genotypes based 
on 20 microsatellite markers revealed a high level of poly-
morphism in different genotypes of walnut indicating a 
suitability of these markers for studying genetic diversity. 
Microsatellite markers are suitable for studying the walnut 
genetic diversity (Ahmed et al. 2012; Bai et al. 2010; Dangl 
et al. 2005; Foroni et al. 2005; Gunn et al. 2010; Shah et al. 
2020; Victory et al. 2006; Woeste et al. 2002; Karimi et al. 
2010). All primers showed high rate of amplification suc-
cess. In the present study, some of the primers were unable 
to amplify all genotypes indicating that these genotypes are 
distant to the Chandler. Walnut being diploid so the SSRs 
produced a maximum of two bands per locus and the results 
are in accordance with earlier reports (Ahmed et al. 2012; 
Najafi et al. 2014; Mahmoodi et al. 2019). However, some 
primers (Walnut primer-7 and Walnut primer-11) produced 
multiple bands suggesting their multi-loci nature.

The substantial impact on the utilization of the SSR mark-
ers depends on the SSR markers, the accuracy of the geno-
typic data acquisition, and the planting material (Liu et al. 
2018b, 2017). We were able to find 20 highly polymorphic 
SSR markers which amplified distinct and consistent bands 
across 72 walnut genotypes. The size of the amplified prod-
ucts was at par with the expected size value of each locus. 
This shows the primer binding site of primers was highly 
conserved. Surprisingly the few SSR markers produced low 
PIC value ˂ 0.5 and majority of the markers produced PIC 
value > 0.5. The low PIC value may likely be due to loca-
tion of these markers in the coding regions of the genotypes. 
The SSRs found in coding regions are less prone to muta-
tion than non-coding genomic SSRs (Kalia et al. 2011). The 
average PIC value of our SSR markers was comparatively 
lesser than reported by Guney et al. (2021). The variations 
in PIC value may be due to sampling technique, number of 
SSR markers, the size and type of SSR motifs repeats, and 
the location of the SSR motifs in the genome (Orhan et al. 
2020). The PIC value of the majority of the newly devel-
oped SSR markers is > 0.5 demonstrating their suitability 
for phylogenetic and diversity studies as well as construc-
tion of linkage maps (Biswas et al. 2014). The present study 
reports 5.2 alleles per primer and is significantly lower than 
23.8 alleles per primer reported by Victory et al. (2006). It 
is interesting to note that compared to agarose, metaphor gel 
electrophoresis polyacrylamide gel electrophoresis and the 
automated capillary DNA fragment analyzer significantly 
contribute to higher polymorphism (Ebrahimi et al. 2011; 
Dangl et al. 2005; Patil et al. 2020a). We anticipated that 
our polymorphic SSR markers can reveal higher number of 
alleles if assayed through automated capillary systems or 

polyacrylamide gel electrophoresis. The variation in number 
of alleles amplified may also be due to highly diverse nature 
of the samples and number of SSRs tested.

Unrevealing the degree of genetic diversity is neces-
sary for accelerating the walnut genetic improvement. To 
achieve this, molecular marker technologies, such as SSRs, 
have become a promising method for identifying genetic 
variation in a set of genotypes. In this context, the heat-
map, PCoA, and structure analysis methods were effectively 
used to measure the genetic relationships and population 
differentiation (Ebrahimi et al. 2016; Shah et al. 2020; Pol-
legioni et al. 2011, 2015). According to Roor et al. (2017), 
the Himalayan range of Jammu and Kashmir is the native 
range of the J. regia. The fragmentation and geographic iso-
lation of the walnut populations in this area occurs due to 
genes flow barrier and other natural factors (Pollegioni et al. 
2015). This led to population differentiation in natural range 
of walnut. However, there are other factors such as human 
activities, which can contribute to the genetic structure of 
the autochthonous population (Gunn et al. 2010). There-
fore, the population genetic structure revealed by our genetic 
data needs to be integrated with historical and linguistic 
sources to find whether this is the product of natural factors 
or anthropogenic dispersal or human cultural interactions. 
We observed higher molecular variance within the walnut 
populations, which may be attributed to the predominant 
cross-pollination of walnut (Victory et al. 2006; Pollegioni 
et al. 2014) and the higher gene flow. The low molecular 
variance among populations is related to long separation, 
avoidance of long-distance pollination, and fragmented char-
acter of populations, which causes pollinations within near 
relatives only. These results are in accordance with other 
earlier studies (Magige et al. 2022; Wang et al. 2022; Zhang 
et al. 2022). Therefore, when selecting the populations of J. 
regia with high genetic diversity, the individuals should be 
selected from within the population for genetic improvement 
of the walnut.

Conclusion

Walnut is an economically important nut crop with high 
diversity. The long juvenile period is a bottleneck for its 
genetic improvement. For walnut speed breeding, it is imper-
ative to identify the markers tightly linked to the economic 
traits. Rapid progress has been made in the development of 
genomic tools over the past few years, such as the release 
of the genome sequence, which created new prospects for 
the development of numerous genetic markers like SSRs. 
To explore this opportunity, we identified 198,924 SSR loci 
and successfully designed primers for 162,594 SSR loci. As 
100 out of 110 SSRs amplified the various walnut genotypes, 
the e-PCR module demonstrated that each SSR created in 
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the current study will generate an amplicon across all of the 
walnut genotypes. The majority of our SSRs had PIC val-
ues above 0.5, which shows their robustness for predicting 
genetic diversity and population structure. To the best of 
our knowledge, this is the first study of scanning SSRs from 
the walnut genome, and we present a microsatellite reposi-
tory for the walnut scientific community. These SSRs will 
be helpful for walnut improvement such as development of 
saturated genetic linkage map, genetic structure, QTL map-
ping, and marker-assisted selection.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s13205- 023- 03563-6.
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