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Abstract

Healthy skin protects from pathogens, water loss, ultraviolet rays, and also maintains homeostasis conditions along with
sensory perceptions in normal circumstances. Skin wound healing mechanism is a multi-phased biodynamic process that
ultimately triggers intercellular and intracellular mechanisms. Failure to implement the normal and effective healing pro-
cess may result in chronic injuries and aberrant scarring. Chronic wounds lead to substantial rising healthcare expenditure,
and innovative methods to diagnose and control severe consequences are urgently needed. Skin tissue engineering (STE)
has achieved several therapeutic accomplishments during the last few decades, demonstrating tremendous development.
The engineered skin substitutes provide instant coverage for extensive wounds and facilitate the prevention of microbial
infections and fluid loss; furthermore, they help in fighting inflammation and allow rapid neo-tissue formation. The current
review primarily focused on the wound recovery and restoration process and the current conditions of STE with various
advancements and complexities associated with different strategies such as cell sources, biopolymers, innovative fabrication
techniques, and growth factors delivery systems.

Keywords Skin - Chronic wounds - Engineered skin substitutes - Wound healing - Cell sources - Fabrication techniques -
Growth factor delivery systems
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HLA Human leukocyte antigen

HeCaT Human epidermal keratinocyte cell line

HFF Human foreskin fibroblast

HDF Human dermal fibroblasts

HUVECs Human umbilical vein endothelial cells

HEKSs Human epidermal keratinocytes

HA Hyaluronic acid

hKCs Primary human keratinocytes

hFBs Primary human fibroblasts

IGF-1 Insulin growth factor-1

KCNH-1 Potassium voltage-gated channel sub-
family H member-1

Kef Kefiran

KGF Keratinocyte growth factor

L-929 NCTC clone 929 Clone of strain L
fibroblast cell line

MSCs Mesenchymal stem cells

MDA-MB-231 Epithelial, human breast cancer cell
line

MCF7 Breast cancer cell lines

Mo Macrophages

NIH3T3 Mouse embryonic fibroblast cells

NHDF-neo cells

Human dermal fibroblasts-neonatal
cells

PLA Polylactic acid

PCL Poly(caprolactone)

PLGA Poly D,L-lactic-co-glycolic acid

PDGF Platelet-derived growth factor

PVA Polyvinyl acetate

PGA Polyglycolic acid

PEO Polyethylene oxide

PU Polyurethane

PEG Polyethylene glycol

PMNs Polymorphonuclear neutrophils

rhVEGF Recombinant human vesicular endothe-
lial growth factor

SIS Small intestine submucosa

STE Skin tissue engineering

STSGs Split-thickness skin grafts

TE Tissue engineering

TESS Tissue-engineered skin substitutes

TERM Tissue engineering and regenerative
medicine

TGF- o,p Transforming growth factor- a,f3

Introduction

The human skin is the major and the most complex multilay-
ered sensory organ, encompassing 1-1.5 m? of total exposed
surface area and also accounts for one-tenth of overall body
mass (Moore and Chien 1988). It shields the body's inter-
nal vital organs from the hostile environment. Skin tissue is

Pielase clla)l auan .
KACST 3.015lq rogle Ll @ Springer

subdivided into three layers, called: the epidermis (upper
layer), dermis (middle layer), and subcutaneous tissues or
hypodermis (bottom layer), as shown in Fig. 1 (Kanitakis
2002; Abdo et al. 2020). The outermost waterproof epider-
mal layer is mainly composed of 90% of viable Keratino-
cyte cells along with melanocytes (containing skin color
pigment-protein called melanin providing color to the skin
and acts as a harmful UV ray barrier), Merkel cells (which
mediate sensations and help in pressure detection on the
skin), and Langerhans cells (provides immunity by recogniz-
ing antigens and presenting them to T-helper cells which fur-
ther activates the immune responses) (Brohem et al. 2011;
Yousef and Sharma 2018). In-between both the epidermis
and dermis layers, a dermal-epidermal junction (DEJ) is
found, called Rete ridges. It provides mechanical strength
to the epidermis and also allows the diffusion of soluble
molecules within the layers (Butcher and White 2005).

The dermis, or middle stratum of the skin, is positioned
between the epidermal and subcutaneous fatty layers. It is
an integrated connective tissue system comprising ECM
components (including collagen, elastin, reticulin, polysac-
charides), blood vessels, fibroblasts, mast cells, hair follicles,
sweat glands, nerve endings, and lymphatic systems (Bro-
hem et al. 2011; Roig-Rosello and Rousselle 2020). This
layer provides elasticity, tensile strength, and pliability to the
skin, thus protecting the body from abrasions and helping in
wound healing (Roig-Rosello and Rousselle 2020).

The subcutaneous fatty layer or hypodermis is the bot-
tom-most part of the skin tissue that acts as a storehouse
of energy and exclusively comprises fat cells, fibroblasts,
nerves, and blood vessels (Brohem et al. 2011). Its major
role is to provide cushioning and heat to the body (Lawton
2019; Watt 2014). Overall, each layer of the skin has dis-
tinct functions and performs multiple active roles such as
thermoregulation, body homeostasis, sensation, and body
structure confinement. Additionally, it provides protection
against physical, chemical, and biological influences caused
by the external environment. Despite the above key roles,
the skin also has a pivotal role in vitamin D synthesis and
storage (Barry 1983; Park 2015; Lawton 2019).

Skin injuries can occur for various reasons, including
thermal, mechanical, physiochemical, and biological dam-
ages. Depending on nature, type of damage, and its abil-
ity to cure, they fall into two categories: acute and chronic
wounds (Boateng et al. 2008; Augustine et al. 2014). Acute
wounds heal completely within 8—12 weeks by undergoing
normal stages of wound healing. However, chronic wounds
heal slowly, taking more than 12 weeks and leaving abnor-
mal scars. It has been seen that chronic wounds reappear
after recovery because of several factors such as poor blood
circulation, edema, repetitive trauma, extensive wounding,
infection, aging, obesity, and diseases such as diabetes and
autoimmunity (Boateng et al. 2008; Cole-King and Harding
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2001). Although precise observational studies on impaired
chronic wounds are tough to obtain realistic data. However,
research conducted in the United States proclaimed that
chronic wound sickness affects 6—6.5 million individuals
worldwide, costing $20 billion in the United States each year
(Sen et al. 2009). As a result, wounds have a high incidence
of severity and fatalities, as well as a significant psychologi-
cal, psychosocial, and financial influence on individuals and
substantial expenditures for the health system, making them
a critical public health issue.

Skin wound healing is the inherent and highly complex
process of the human body which involves several sequential
phases, including hemostasis (blood clotting at the wound
site), inflammation (immune cells infiltration that cleanses
out the dead cell debris), re-epithelialization (keratinocyte's
migration from the periphery to the center at a wound site),
granular tissue formation (multiplication and migration
of fibroblast cells and endothelial cells that secretes ECM
components), vascular tissue regeneration and dermal
remodeling (collagen remodeling and wound size reduc-
tion) (Demidova-Rice et al. 2012; Rousselle et al. 2019).
Different external and internal factors significantly affect the
tissue healing process, including body fluid, intrinsic and
extrinsic factors, temperature, stress, oxygenation, medica-
tions, infections, diabetes, obesity, and nutrition. A healing
process also varies with age; fetal wound healing happens
rapidly, leading to scarless tissue formation, whereas the
healing process slows down and leads to scarring in adults
(Guo and Di Pietro 2010; Ding et al. 2021). The sequen-
tial regulated cycles that occur just after skin tissue damage
and scar development are remarkably equivalent to those
that occur after myocardial infarction and many other tis-
sue injuries (Evans et al. 2013). In this respect, particularly

Fig. 1 Human skin structure
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owing to its availability, skin is among the greatest models
for studying tissue regeneration mechanisms and developing
innovative biomedical approaches.

Tissue engineering (TE), a crucial rising topic in thera-
peutic medical science and biological engineering, has
shown tremendous promise in designing and construct-
ing biosynthetic alternatives for cadaver tissues or organs,
implants, and prosthetics to reduce patient suffering and
mortality rates. Tissue-engineered skin substitutes (TESSs)
provide an alternative therapeutic medication for major skin
tissue injuries and burn wounds. Since the successful isola-
tion and expansion of human epidermal cells and keratino-
cytes in 1975, TESSs have evolved from epidermal replace-
ments to full-thickness grafts, including multiple skin seeded
cells (Kim and Evans 2005). Recently, an incredibly innova-
tive advancement in designing and constructing skin sub-
stitutes has been clinically reported in the domain of STE.
Further, the skin tissue construct should meet the following
attributes: clinical effectuality, biodegradability, durability,
elasticity, biocompatibility, low toxicity, cytocompatibility,
and medical stability. Although skin tissue engineering is
one of the prominent therapies where translational investiga-
tions are at the frontline, the need to consider several impor-
tant factors while designing and constructing a skin tissue
scaffold, such as physicochemical properties, excellent inter-
connectivity, standard pore size, permeability, etc., makes
it much more challenging. For decades, split-thickness skin
grafts (STSGs), blended and clinically grown skin autografts
have been the global method of treatment for extensive burn
wounds and are still the method of choice for wound closure
(Liu et al. 2019). Commercially available acellular dermal
substitutes like Integra®, Renoskin, Hyalomatrix, and Teru-
dermis, comprising dermal and epidermal components, are

Sweat pore
\ Hair
° °

Nerve ends

Dermal hair

<€ — Hair follicle
~ ( /

/

L Adipose tissue

(—% Nerve fibre

Sebaceous gland Sweat gland

capillaries

Piedlae clodl ayao .
KACST ,161)lg rogLe Ll @ Springer



316 Page4of30

3 Biotech (2022) 12:316

extensively used by surgeons to achieve wound contraction
and healing. However, these substitutes have certain limita-
tions due to high economic costs and vulnerability to infec-
tion (Chocarro-Wrona et al. 2019).

Various innovative advancements in designing and
constructing skin substitutes have recently been clinically
reported in the STE domain. Significant advancement has
been achieved in designing and fabricating grafts for regen-
erative and biomedical purposes during the last few decades.
However, a skin substitute that replaces or resembles the
anatomy and physiology of the native healthy skin is yet to
be achieved. The central purpose of this review article is to
show the many approaches used in the research area of STE.
It discusses the most up-to-date sophisticated techniques for
creating perfect and effective skin replacements that can imi-
tate the ECM structure of the skin tissue.

Overview of skin wound healing mechanism

The epidermis, dermis, and subcutaneous or fatty layers of
skin serve as a defensive layer to shield pathogenic microbial
infection and fluid loss (Yousef et al. 2017). A wound is
developed due to the disturbance of layers of skin tissue. In
superficial or minor wounds, the skin repairs to generate tis-
sue nearly identical to the native skin. However, if the lesion
is sufficiently deep or extensive, it will regenerate, leading to
scarring. These injuries are regularly restored and regener-
ated in the human body through the inherent capability of
the skin wound healing process. The complex and sequen-
tial skin repair process has been broadly grouped into four
regulated overlapping stages: hemostasis (or blood clotting
phase), inflammatory (activation and infiltration of immune
cells phase), proliferative (multiplication and migration of
skin cells), and tissue maturation/remodeling (extracellular
matrix protein remodeling phase) (Zomer and Trentin 2018).
The early stage in skin wound repair is hemostasis, and this
phase lasts for seconds to hours. This phase includes many
steps such as vasoconstriction, which decreases the flow
of blood; platelet stimulation and recruitment at the site of
damage which continues to produce numerous growth fac-
tors (GFs) that further promote cellular migration and mul-
tiplication; and lastly, the thrombus formation all around the
blood clot (Rajendran et al. 2018).

After the clotting of blood at the injury site, within an
hour, different inflammatory cells move into the injury and
initiate the inflammation phase, which is marked by the
successive infiltration of polymorphonuclear neutrophils
(PMNs), monocyte differentiated macrophages (M®), and
lymphocytes (Short et al. 2022). These inflammatory cells
actively participate in phagocytosis, eliminating patho-
genic microorganisms and cellular debris from the wound.
Furthermore, they also secrete various GFs and cytokines,
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which facilitate the activation of different cells from nearby
tissues, such as fibroblasts which further differentiate into
myofibroblasts, endothelial cells, and keratinocytes during
the proliferation phase (Wallace et al. 2017). These cells
continue to migrate and proliferate, synthesizing new ECM,
promoting neo-vascularization and forming granular tis-
sue, progressively establishing an obstruction between the
wounded region and the environment, permitting wound
closure (Armstrong and Meyr 2022). The remodeling phase
of the wound repair process, which lasts weeks to months,
co-occurs with the development of neo-granular tissue. Dur-
ing this phase, recruited cells from the injured site (fibro-
blasts, myofibroblasts, macrophages, endothelial cells, and
keratinocytes) remodel the skin's ECM to form collagenous
networks. These cells release matrix metalloproteinases that
degrade unorganized collagen Type III of the granular tis-
sue and start replacing it with highly organized collagen
Type I matrix, which closely resembles the intact skin tissue
(Wilkinson and Hardman 2020).

The conventional approach to wound
healing

The skin tissue itself has the capability to restore the dam-
aged tissue naturally through the process of re-epithelializa-
tion and helps in maintaining its integrity and tensile strength
(Barry 1983; Swaney and Kalan 2021). It is also observed
that the self-healing properties of the skin get weakened in
some circumstances, such as deep chronic wounds, diabetes,
and non-healing ulcers, which further increases the chances
of infections and also affects the patient's daily life. Thus
these wounds require wound dressings that can assist and
strengthen the wound healing process at the desired pace
(Watt 2014; Lee and Koehler 2021). Wound patches, includ-
ing natural or synthetic dressings, cotton wool, lint, and
gauzes, were once used to keep injuries dry and sterile by
aiding wound exudates to evaporate and preventing harmful
microorganisms from infecting the wound (Boateng et al.
2008; Pereira and Bartolo 2016). Since pre-modern times,
conventional techniques have been used to treat damaged
tissue because of their low cost, feasibility, simplicity, and
effectiveness in the wound healing process.

The skin grafts provide instant coverage for extensive
wounds and protect against infections and fluid loss. The
consolidated role of the graft further reduces inflamma-
tion and allows rapid wound healing. Surgeons generally
use autografts to treat more profound dermal injuries due
to their non-immunogenic nature (Koller 2005; Luo et al.
2019). Various drawbacks, including limited donor avail-
ability, are associated with autografts. The above limita-
tions can be sorted out using allografts, genetically engi-
neered xenografts, and amnion membranes (Koller 2005;
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Carter and Holmes 2016; Cooper et al. 2016; Liu et al.
2010). Clinically, it has been reported that most grafts may
cause immune rejection and disease transmission during
transplantation (Koller 2005; Liu et al. 2010). The placen-
tal amniotic layer in mammals is the thinnest, measuring
up to 0.5 mm thick. (Murphy et al. 2017). Since the early
twentieth century, amnion membranes have been employed
extensively for wound and regenerative applications (John
2003). The human amniotic membrane is a safe, painless,
and effective method to treat wounds and has been reported
in numerous studies (Murphy et al. 2017; Farhadihossein-
abadi et al. 2018). Irrespective of its benefits, it has sig-
nificant drawbacks, such as low availability, quick biodeg-
radation, handling issues, and high cost, all of which limit
its use (Taghiabadi et al. 2015; Murphy et al. 2017). As
a result, researchers in the discipline of tissue engineering
and regenerative medicine (TERM) have been working to
resolve the drawbacks of conventional established methods
and develop a skin substitute that can mimic the functional
skin tissue and be used to treat a broad range of skin prob-
lems, including acute and chronic wounds, as well as burns.
Some of the current conventional graft implants that have
been analyzed are tabulated below with their pros and cons
as follows (Table 1).

Skin tissue engineering: principles

Tissue engineering, as described by Langer and Vacanti
(Vacanti and Langer 1999), is an "inter-disciplinary field or
a growing approach that uses the principles of basic biol-
ogy, engineering and fundamental science for the restora-
tion, improvement, and maintenance of damaged tissues,
organ failure, and regeneration of the lost tissue. In recent
times advancement in STE minimizes the need for organ
transplantation, reducing graft rejection, pain, the need for
solid immune suppressants, the transmission of diseases,

Table 1 Conventional methods of wound healing

complications, and the cost of processing (Hutmacher et al.
2001; Cao et al. 2020).

In skin tissue engineering, an ideal skin substitute should
possess some desirable properties such that they should
mimic the local skin environment, speed up the healing
process of wounds, cytocompatibility, non-toxicity, allows
regulated and sustained drug/growth factor release at the tar-
get site without losing its bioactivity and so on (Halim et al.
2010; Lord et al. 2017; Chen et al. 2022). A modern era of
tissue engineering was started in the 1980s with the ultimate
goal of maintaining, improving, strengthening, and recover-
ing damaged or lost tissues (Alrubaiy and Al-Rubaiy 2009).
The basic intellection behind tissue restoration includes 3Rs:
tissue regeneration, repair, and replacement. Regeneration or
resurrection is basically where the tissue is replaced with tis-
sue itself, thus, initiating the regeneration where it is usually
not seen. In tissue repair, drugs or growth factors are exter-
nally delivered to the targeted site to enhance the repair rate.

Furthermore, replacement is the possible alternative
where tissue regeneration and repair are not possible. This
approach replaces the damaged or lost tissue with a substi-
tute. The 3R's concept can be applied to all types of tissues;
however, the degree of complexity would differ among the
targeted tissues, for example, kidney, heart, bone, liver, etc.
The fundamental goal of this approach is to overcome the
certain limitations associated with conventional methodolo-
gies and provide an alternative treatment to patients suffer-
ing from different disabilities and ailments (Theoret 2009).

The approach of tissue engineering triad

The tissue engineering strategies basically involve the con-
cept of using the living cells (autogenic, allogenic, xeno-
genic, syngenic, stem cells, and genetically engineered
cells), natural or synthetic scaffolds (must be biocompat-
ible and biodegradable), and signals (growth factors, drugs,

Skin graft

Advantages

Disadvantages

References

1. Autograft
(Isograft)

2. Allograft
(Homograft)

3. Xenograft
(Heterograft)

No graft rejection; satisfactory clini-
cal findings; cost-effective; less or no
immune responses

Temporary graft; barrier against infec-
tions and fluid loss; reduces inflamma-
tion; abundant graft availability

Ample graft availability; cost-effective;
reduces pain

4. Amnion layer Reduces fluid loss; prevents infections;

reduces pain; it Hastens wound healing
and closure

Limited donor sites; risk of cell morbid-
ity; cause pain, infections; scarring;
ethical issues

Disease transmission; immune rejection;
cost; strong immunosuppressants are
required

Graft rejection; inflammatory response;
strong immunosuppressants are
required; risk of infections; vascular
barrier

Limited donor availability; disease trans-
mission; rapid degradation; handling
issues; high cost

Koller (2005); Carter and Holmes
(2016)

Koller (2005)

Koller (2005); Cooper et al. (2016)

Liu et al. (2010); Murphy et al. (2017);

Taghiabadi et al. (2015)
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mechanical forces, and physiochemical signs) independently
or in different combinations, to build a 3D construct. This
concept further helps to regenerate the functional tissue-like
structure under controlled laboratory conditions for other
clinical applications (O'brien 2011; Almouemen et al. 2019).
These three factors are collectively known as the "Tissue
Engineering Triad," as shown in Fig. 2.

Currently, there are different ways to develop a functional
tissue or an organ by using scaffolds, cells, or signaling
molecules that can be accustomed separately or in various
combinations in the form of a triad (O'brien 2011). Even
though these factors have shown promising results when
used independently, they can only help regenerate the target
tissue to a certain extent. For instance, Cultured Epithelial
Autografts (CEA) and Keratinocyte suspensions like Epicel,
RECELL, and BioSeed have been used as clinical adjuncts
with conventional treatment methods to accelerate wound
re-epithelialization. However, they are still limited to minor
injuries (Brockmann et al. 2018). Therefore, to achieve the
comprehensive, a multi-functional skin substitute is required
that can mechanically, micro-structurally, and functionally
mimic the healthier tissue. The extraordinary advances in
STE to recreate the functional skin substitute have been
accomplished because of the developments in bio-fabrica-
tion methods, genetically engineered cell sources, and differ-
ent ways of delivering the signaling molecules (Khademhos-
seini and Langer 2016; Bhardwaj et al. 2018). While all of
these advancements are still being researched, there seems
to be a substantial likelihood that many, not all but most,
of the skin appendages, such as hair follicles, hair shafts,
and sweat glands, will be included in future designs of skin
replacements and medically accessible for the management
of full-thickness or chronic injuries, including deep burns.

Scaffold/3D Gel, Foams,

ECM Analogue Sponges,
l Fibres
Autologous, . Growth Factors
Allogenic, Tissue (PDGF, EGF,
Xenogenic, Stem Engineering etc.), mechanical
cells Triad forces

| Cells ’ Signals ‘

Fig.2 Tissue engineering triad
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Clinically and commercially available TESSs
for wound healing

Skin replacements are used to restore skin's integrity and
functionality after burns or many other severe skin problems.
In situations where conventional therapeutic approaches are
not applicable, skin substitutes offer a solution to standard
injury covering. All engineered skin replacements must
meet some critical areas: patient safety, clinical efficacy,
user-friendly, ease of availability, long shelf life, non-frag-
ile, and cost-effective (MacNeil 2007; Wang et al. 2019;
Kharaziha et al. 2021). In the broad sense, such therapeu-
tic biomaterials should be non-cytotoxic, non-allergic, or
induce no inflammation and pain. Furthermore, they should
be biocompatible and allow complete wound healing with-
out posing any scarring, fluid loss, infections, and disease
transmission (Yu et al. 2018). There are not presently com-
monly available engineered skin substitutes that offer all of
the aforementioned attributes, nor can they entirely repli-
cate the morphological and functional features of native skin
tissue. The majority of the presently commercialized and
therapeutically accessible TESS products were addressed
in this review study based on the different classifications
discussed below.

A layer of skin they restore:

epidermal

dermal

dermo-epidermal (or composites)

Duration of wound coverage:

temporary (these replacements are often used as a
wound dressing for a limited period to safeguard the
wounded region from possible environmental risks
such as microbial infection or physical damage and
also offer safer as well as hydrated conditions to sup-
port and assist the healing process and are normally
replaced with an autogenous graft after 3 to 4 weeks)

7. semi-permanent (these are acellular replacements that
may be left at the wounded location for many days and
operate as secondary dressings to prevent fluid loss and
microbial infections, as well as to heal and regenerate
injured skin tissue, although they are ineffective for
severely injured wounds)

8. permanent (these TESSs have been used to replace and
restore the overall equivalent depth of skin layers and
to remain permanently at the injured site to enhance
the overall integrity of the skin tissue, thus reducing
the need for donor skin sites)

9. Type and source of the biomaterial:

10. biological (auto-, allo-, and xenografts)
11. synthetic (biodegradable or non-biodegradable)

SANAEE I S
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12. Classification of skin replacement in terms of cellular
components:

13. cellular

14. acellular

There are several distinct classes of commercially avail-
able TESS products that are now capable of helping with
tissue healing and regeneration (Snyder et al. 2020) and are
summarized in Table 2. Each has its own range of quali-
ties that make it acceptable to be used in different ailments
(burns or chronic wounds), but only a few can completely
heal regenerative native skin tissue.

A patent overview for skin tissue
engineering (STE)

STE is a novel approach that tends to bring combined mul-
tidisciplinary teams to facilitate effective healthcare trans-
lation. Severe deeper wounds, including burn wounds and
other serious skin loss problems, are clinical reasons where
tissue-engineered skin replacements are being researched
as an alternative that can restore the epidermal and dermal
structural integrity of the skin tissues. In comparison to
existing standards of treatment, the TESSs could minimize
fatalities and disability, thus improving the quality of peo-
ple's lives and fully functioning results. In the STE disci-
pline, it is sometimes neglected and difficult to understand
how TE-related fundamental experimentation may be trans-
ferred to practical and translational work, eventually seek-
ing to produce and commercialize TE products (Al-Himdani
et al. 2017). However, technological advancements such as
the advent of automated bioreactors and bio-printing for
fully functional skin tissue development may make health-
care products more accessible (Zhu et al. 2022).
Furthermore, all TE products must be approved by gov-
ernmental authorities (Food and Drug Administration, FDA
in the United Nations, etc.) to assure excellent quality, reli-
ability, health safety, and verified efficiency (Haddad et al.
2017). Over the last few decades, various trustworthy STE
patents have been researched; for example, RenovaCare,
Inc. has recently established patented innovative technolo-
gies such as the CellMist™ and SkinGun"" systems spray-
ing self-donated stem cells for functional skin tissue and
other organ regeneration (Kareem et al. 2021). Other pat-
ented TESSs include Kerecis's fish-skin products; dCELL
(decellularized dermal skin allograft); ReCell (device for
extraction of autologous skin cells), and many more, which
are used for healing and regeneration of a wide variety of
skin wounds (Dai et al. 2020; Kirsner et al. 2020). In one
research, in vitro examinations of decellularized fish skin
revealed improved structural and mechanical qualities com-
parable to normal human skin for regeneration, as well as

improved cellular activities, indicating that it might be a
viable choice for skin tissue regeneration (Kamalvand et al.
2021). Skin sprays are a potential approach for STE applica-
tions since they can transport cells and biocompatible hydro-
gels to extensive lesions with ease and safety. Several clinical
studies are being conducted to investigate spray solutions for
skin illnesses such as chronic wounds, diabetic foot ulcers
(DFUs), psoriasis and others (Esteban-Vives et al. 2018;
Chen et al. 2020). Decellularized ECM (dECM) derived
from diverse human and animal tissues has been used for
burn wound therapy and surgical restoration for the past few
decades. Tissue decellularization is necessary for transplan-
tation operations to minimize the activation of immunologi-
cal responses and inflammatory responses that cells in the
donor tissue may trigger, leading to transplant rejection. For
instance, Singh et al. demonstrated that integrating curcumin
into modified decellularized small intestine submucosa (SIS)
membranes resulted in potent antimicrobial and free radi-
cal scavenging activity, making them effective in neutral-
izing the negative effect of oxidative stress and bacterial
colony development in chronic skin wounds (Singh et al.
2022). Eventually, these approaches and advancements in
STE will reduce or eliminate the requirement for skin auto-
grafts and allow for faster commercial translation of viable
autologous engineered skin grafts ideal and safe for patient
usage.

The current approaches in STE

An impactful TESSs, at its most fundamental aspect, opti-
mally replicates the complexity of the original 3D anatomy
and performs the mechanisms of biological skin tissue. Fur-
thermore, these substitutes should promote pre-vasculari-
zation and offer supporting signals to cells in the surround-
ing environment. Finally, it should be able to successfully
integrate into the recipient with minimum or no scarring
while creating a minimal and regulated immune response if
transplanted in vivo. Over the past few generations, a wide
range of strategies has been developed and implemented
in the STE field. The foundation of this area is the notion
that efficient tissue growth requires the synergistic action
of numerous cell types rather than the isolated implications
of any one population. Currently, several approaches are
investigated to design skin substitutes analogous to native
healthy skin. Over the past three decades, TESS developed
by Cincinnati, Ohio, researchers comprised of autologous
cells, including keratinocytes and fibroblasts seeded in
bovine-derived collagen-glycosaminoglycans (GAG) scaf-
fold is currently considered to be the most clinically suc-
cessful scaffold with skin structure analogy (Mohamad et al.
2019; Smiley et al. 2006). Yet another skin substitute based
on bovine collagen is commercially available denovoSkin'",
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made up of collagen hydrogel, fibroblast, and keratinocytes.
DenovoSkin"" has received FDA and EMA Orphan status
to treat burns under Advanced therapy Medical Product
(ATMP) (Schiestl et al. 2021). However, these skin tissue
substitutes have certain limitations owing to their xenogenic
components, raising the risk of an immune response and
high cost of production. Few approaches have shown sig-
nificant clinical effectiveness, using fibroblast alone or with
a subsequent seeding density of keratinocytes along with
fibroblasts. However, the constrain of the long production
time (about 9 weeks) still remain a challenge. Furthermore,
researchers use autologous, allogenic, xenogenic, and stem
cells as a cell therapy to create skin analogs that closely
resemble native tissue architecture (Sierra-Sanchez et al.
2021). The creation of stratified constructions matching
the bilayered organization of the epidermis and dermis has
dominated skin restoration in tissue regeneration for the
most part. An ideal engineered skin construct must allow
proper cell adherence, regulated and sustainable delivery
of growth factors/drugs, and the re-growth of the tissue in
the injured region after its implantation. Currently, three
major approaches are being used to create the best possible

skin substitutes: scaffold-based, cell-based, and drug/signals
delivery-based approaches, as briefly discussed below and
schematically represented in Fig. 3.

Scaffolds: different biomaterials and fabrication
methods

The "Scaffolds" play a significant supportive role in the
domain of TERM because they tend to reproduce the struc-
tural and functional properties of ECM, as well as aid in
enhancing the cellular activities, growth factor delivery, and
neo-vascularization in vivo to improve healing and regenera-
tion of the worn-out tissue (Shafiee and Atala 2017; Dutta
and Dutta 2009). The primary purpose of an ideal scaffold
is to offer a three-dimensional habitat for cells to grow and
synthesize their matrix, which will eventually replace the
scaffold, resulting in a three-dimensional structure for the
injured tissue (Yu et al. 2019). Its framework determines
the final structural layout of newly formed soft or hard tis-
sue. The synthesis of cellular matrix and breakdown of scaf-
fold framework should be coordinated so that one process
does not overtake the other (Naderi et al. 2011; Afjoul et al.

I @ ) |

( ellular genetic
modification .

seeded Scaffolds in
Bioreactor

3D Skin
Construct

Fig.3 Diagrammatic representation illustrating different strategies
of STE. STE Approach I: cells isolated from an individual (A1), iso-
lated cells are further cultured under controlled in vitro conditions
(A2) to differentiate and proliferate, eventually the cultured cells are
genetically modified (A3 and A4) and expanded under specified lab
conditions (AS) preceding to potentially being re-implanted into the
same individual’s body (A6). STE Approach II: explanted genetically

I Ul a
des Shevis @) Springer

o
GFs/Drugs+Cell

Genetically modified
cells

ok o
** o* Growth
GFs/Drugs+Cell seeded O o Factors
Scaffolds (C1) (GFs)/Drugs

altered cells (A7) along with growth factors/drugs (B) could be added
to the polymeric scaffolds (C1) before implantation onto the target
site for tissue restoration (C2); Approach III: Pre-implantation, cell-
seeded or GFs/drug-loaded constructs (D1) can be cultivated in a bio-
reactor to develop an artificial skin tissue (D2) and then transplanted
at the target site of an individual (D3)
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2020). In addition, a variety of factors determine the scaf-
fold's selection and functionality (Auger et al. 2013; Atala
2012; Solovieva et al. 2018; Ghosal et al. 2017; Chang and
Wang 2011; Mndlovu et al. 2020), as shown schematically
in Fig. 4. The scaffold can be employed as a delivery system
to supply growth factors/drugs/signals to the affected area to
guide and promote cellular proliferation and differentiation
for controlled tissue growth (Naderi et al. 2011; Chen et al.
2022; Sharma et al. 2020). A large variety of biomaterials
with natural, synthetic sources and their blends, as well as
innovative manufacturing processes, have been suggested in
recent decades and are briefly outlined hereunder.

Scaffolding materials: natural, synthetic, and composites

Tissue-designed skin substitutes have been in use for dec-
ades, and the biomaterial used for scaffolding must be cus-
tomized to the specific requirements of the target tissue.
Numerous research work has demonstrated the positive
impacts of biomaterial modification on skin tissue engineer-
ing scaffolds qualities such as pro-angiogenesis, excellent
physiochemical properties, enhanced cellular responses, and
many other superior attributes (Shi et al. 2018; Zhang et al.
2017b; Zehra et al. 2020; Yin et al. 2021; Eskandarinia et al.
2020; Olad and Hagh 2019; Martins et al. 2018; Chandra
et al. 2020). The development of "smart or novel biomateri-
als" capable of regulating cellular activities and/or increas-
ing tissue functioning is now the subject of study (Furth
and Atala 2014; Govindharaj et al. 2019). The interaction
between the scaffold and cells depends on the properties of
the selected material, either natural or synthetic, applied for
the specific tissue. In producing engineered skin substitutes,
three distinct biomaterials are most often used, including

synthetic polymers, natural polymers, and their blends, as
summarized in Table 2.

Natural polymers, often known as biopolymers, are
organic compounds produced by biological entities. They are
further sub-divided into two categories, including protein-
based materials (collagen, fibrin, silk fibroin, keratin, and
gelatin) and polysaccharide-based materials (hyaluronan,
cellulose, alginate, chondroitin, and chitosan) (Sahana and
Rekha 2018). The freeze-drying approach was used to gen-
erate an entirely novel ciprofloxacin-loaded collagen—chi-
tosan matrix for wound therapy (Tripathi et al. 2021b). In
current history, 3D printed chitosan (Ch) structures with
enhanced cytocompatibility and biocompatibility were
already viewed as a useful and convenient biomaterial for
wound repair (Intini et al. 2018). Several prior studies have
shown that blending gelatin with a variety of other natu-
ral biopolymers promotes human dermal fibroblasts (HDF)
growth and division, which further enhances the rate of
wound healing (Vatankhah et al. 2014; Yuan et al. 2018).
Multiple studies have shown that different natural polymers
and their combinations could construct scaffolds for wound
healing applications (Sajjad et al. 2020; Afjoul et al. 2020;
Zhang et al. 2017a).

Synthetic polymers, such as polylactic acid (PLA), poly-
vinyl alcohol (PVA), polycaprolactone (PCL), polyglycolic
acid (PGA), and their copolymers (e.g., PLGA, etc.) are
extensively implemented. The FDA authorized biomedical
skin applications because of their non-toxic by-products and
tunable physiochemical characteristics, processability, and
malleability (Pina et al. 2019). The biodegradability and
biocompatibility of Ciprofloxacin-loaded electrospun PLGA
nanofibrous mats treated with sodium alginate microparti-
cles as skin replacements were studied by Liu et al. (2018b).

Fig.4 The crucial desirable

properties of an ideal scaffold Porosity, pore

size and pore
shape

Biodegradability

Biocompatibility

Sterilizable

Interconnectivity

Mechanical and
structural
stability

Non- Processable & Large
immunogenic malleable surface/Volume
ratio
Cell adhesion,
proliferation,
migration &
Scaffold differentiation
properties
| ' Signal delivery
l ’ Anti-bacterial
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Promote neo- Induce tissue cellular
vascularisation growth responses
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In one research, composite scaffolds made of PCL, Zein, and
Gum Arabic exhibited increased cellular activity, porosity,
and hydrophilicity (Sharifi et al. 2020). In vitro and in vivo
investigation exhibited cytocompatibility, remarkable tis-
sue development, and neovascularization, confirming its
promising applications for skin tissue engineering (Zhang
et al. 2018). A dual system of PVA and sodium alginate
(SA) hydrogel integrating bFGF-loaded PCL microspheres
exhibited enhanced cell-induced wound healing in vitro and
in vivo (Bahadoran et al. 2020).

Almost all of the above-discussed biomaterial has its own
set of benefits and, unsurprisingly, drawbacks. Composite
scaffolds derived from natural sources and/or synthetic
materials combine the benefits of each polymer's specific
chemical, mechanical and biological qualities to surpass
each polymer's limits and allow the construction of an ideal
as well as a functional skin substitute. Electrospun hybrid
nanofibrous mats (PVA/Chitosan/Starch) were shown to be
non-cytotoxic and antibacterial, allowing for faster wound
healing (Adeli et al. 2019). The fibroblast-loaded compos-
ite nanofibrous scaffold (PCL/gelatin/collagen type I) could
be a possible future strategy for repairing and regenerating
skin tissues (Gomes et al. 2017). The recombinant collagen-
hyaluronic acid composites had outstanding physical char-
acteristics and bio-compatibility, suggesting that they might
be utilized for wound repair or biomedical applications (He
et al. 2020). In current history, the results of cross-linked
nanofibrous bilayer scaffolds (Fish collagen-PCL) demon-
strated improved healing of the target tissue (Chandika et al.
2021). In vitro and in vivo investigations with curcumin-
loaded Cellulose-PLLA-nanosilica showed improved cell
proliferation, granular tissue formation, neovascularization,
wound healing, and full-thickness tissue restoration (Ram-
phul et al. 2020).

Scaffold fabrication strategies for STE

Modern TERM methods have primarily focused on 3D
porous hydrogels or composite scaffolds generated in nano-
structured frameworks featuring regulated breakdown effi-
ciency and permeability for gas, nutrition, and growth regu-
latory component transfer. 3D biocompatible scaffolds in TE
serve as cell and GF/drug mediators, providing a favorable
environment for cell expansion and controlled GF release.
The usage of TE constructs can alleviate the scarcity of tis-
sues, including skin, bone, cartilage, and so forth, minimiz-
ing the need for animal models while increasing the depend-
ability of observational data. Various fabricating procedures,
as described in Fig. 5, are often used to create 3D polymeric
constructs with excellent porosity, interconnectivity, uni-
form pore size, and surface area using biodegradable and
biocompatible natural/synthetic materials. Traditional and
advanced rapid prototyping are two methods for fabricating

Pielase clla)l auan .
KACST 3.015lq rogle Ll @ Springer

Electrospinning
Blow Spinning
Freeze Drying

3D Printing

Sele?tive .Laser Scaffold Gas Foaming
Sintering Fabrication Melt Molding
Fused Deposition Techniques Solvent Casting

Modelling

Particulate
Leaching
Stereolithography
3D Bioprinitng

Fig.5 A multitude of fabrication approaches used for STE

functionalized 3D constructs with suitable designs. Conven-
tional fabrication methods (e.g., porogen leaching (Yin et al.
2016), phase separation (Mi et al. 2003), gas foaming (Ji
et al. 2011), lyophilizer (Afjoul et al. 2020; Bahadoran et al.
2020; Niu et al. 2020), and many more), are inexpensive,
easy to scale up and allow to construct of a scaffold of the
desired shape. Still, they frequently fail to offer appropriate
strength characteristics, and as a result, such scaffolds distort
due to cellular movements. On the other hand, the proto-
typic method (e.g., electrospinning Atila et al. 2015; Fang
et al. 2019; Lopresti et al. 2021), blow spinning (Singh et al.
2018, 2019), 3D bioprinting (Liu et al. 2018a; Seol et al.
2018; Michael et al. 2013; Kim et al. 2017), melt-blowing,
etc.) seems to have no drawbacks and could offer additional
necessary qualities, including higher porosity, physiochemi-
cal properties as well as enhanced cellular activity to TESS
(Table 3).

The current advanced strategy to fabricate scaffolds
includes 3D bioprinting. It's indeed a CAD-based approach
in which live cells and structural material or hydrogel are
deposited in a temporal and spatially structured way using
a printer-based dispensing mechanism (Vijayavenkatara-
man et al. 2016). The polymeric solution containing cells
(or bioinks) are printed in a 3D framework using a range
of processes, including extrusion-, laser- and inkjet-based
methods (Mahendiran et al. 2021; Liu et al. 2018a; Seol
et al. 2018; Michael et al. 2013; Kim et al. 2017), and the
entire procedure is illustrated in Fig. 6 (Augustine 2018). 3D
bioprinting allows for accurate cell communication inside
a 3-dimensional space by allowing the architecture to be
controlled at both the micro-and nano-scale (Michael et al.
2013). Therefore, it is conceivable to create human skin,
cartilage, blood vessels, and bone in their native form. A 3D
printing approach combining two or more popular scaffold
manufacturing technologies is currently being developed.
Kim et al. demonstrated the effects of integrating the two



Page 130f30 316

UonoBNUOd
punom se [[om se ‘uoneIouagol
anss1 ‘ssaooid Jurfeay JIojsej €

Pamoys spjogJeds Apnjs [ewlIue Ue
ur aJowIoyMN,] “seniedoid rerq
-oJoTwnuE $9ssassod $o1x031-uou

pue 9[qnedwods01q pajensuowop

(0202) 'Te 10 pelles ayusodwodoueu )-Og YL

Anqnedwoooikd (Ayiqreduwos

-oway ‘aronys snojodoroew

(8107) ‘Te 10 uenx pUE -0IOTW PAJOSUUOIIANU]

Kj1Anoe Ie[ny[ed
PISBAIOUT PA[EOAdI OS[E I] "I[Npo
onse[d pue ‘A)ifiqernp jenbape
‘Kyroeded Surpjoy-19yem JUSTOY
-jns ‘Kysorod pajosuuodIAIUI
PAIQIYXI SP[OJFeds parake[ig
dnoi3 jonuoo e 03
paredwod uaym dnoi3 pajeon ay)
ur pauo)sey sem Suieay punom
JeU[) PI[BIAI SEM JI ‘ApNJS [eWIIUR
o) Surmp pue ‘yImoIs [0
PaouRYUS $O1X0)-uou pue o[qred
-wooo1q ‘amyonms snotod AySryg

(8107) 'Te 10 sepyag oLy

(8100) 'Te 10 unuy
Koudjod aredor punom sey yorym
‘UOTJBZIIB[NOSEA-0dU JO UOTBAID
9y Suraoxdwir se [[om se ‘uon
-e1oy101d pue UOISAYpE ISL[qOIqY
62671 Sunowod ur oA

a1om paredaid spjoyeos oy ey
PIMOYS $1$9) TeIuaWILIadX? JUQIo}
-J1p pue A1iqnedwod0ikd poo3
<K)1ANO2UUOdINUI IYSIY (%G 6
01 %1/, "xoidde Kyisorod pue
wrrl 9/°06g 01 wil 7z ge Jo

sniper a10d & yyim 2deys azod

AQB:VNV ‘T’ MENQN AI[-Jed e ssassod Sprojess puargq

[opow uIng asnou $S[[ad ¢.1.€ HIN

ST[99 20T *STI?9 6261

(seykoouneroy uewny) gSH
{(sI5B[qOIqY UBWINY) |GG 0N

SIBI IB)SIA\ O[BWR, ‘S[[eD
LeD3H ‘(PUN) ISe[qOIqY UewnEy

sye1 Aopmeq—on3erds (S[[90 6761

Surkip 0zoar]

poyjowr djejdws) uors g

Surkip 9zaa1q

Sunund q¢

Surkip 9zoo1q

(Og) 9song
-199 [BLI9)OBQ POPRO[-UIWNIIND) G

g odA1, uneRn v

(19Ae[ TeWLIOP) 9SO[N[[D

[AqyewAxoqred wnipos + (19Ke]

[ewropido) uagerjoo pejerod
-I00UI-9JBJ[NS UNIOIPUOY) ¢

uesonyD 'z

PIOY O1uOINeAH + UI01qLy NIIS T

s1owAjod emyeN

SOOUQIRYY s3urpur

[opout [ed130[01g

poylouwl UoneoLIqe,]

sIoWAT0og

3 Biotech (2022) 12:316

Surpeay punom ur 9[o1 Jueoyrusis J1ay) pue siowAjod Suipjoyeds € sjqel

\

nger

g rluw @ SPr

lase &
ST5 00

el
KAC



3 Biotech (2022) 12:316

316 Page 140f30

9Jel UOT)OBNUOD PUNOM
%66 ‘uonerdyjoid pue ‘uorerSiu
QuaUIYOR)E [0 SIje[NWNS
{Anqiqera 1199 %0, xoidde ue
[IIM OTX0J0IAD-UOU $AJIATIOR TBLI
-910BqQIIUE (9SEI[aI SNIp paureIsns
‘3Suams [edIUBYOW PAdONPAI pue
9Jel uonepeISop A} sAseaIour
IOUINJ V'S JO JUSJUOD PaseaIoul
¢K)ITIqe UOTIURIAL J9jeM JOYSIY
‘Krsorod pajsooq parensuowap

(0207) 'Te 1 uelopeyeqg S[930IpAY papeo] sa1aydsoIoTjA

Q)1 paInfur oy} J0J doUL)SISSE
[eorueyoow jenbope passossod
pue A)IAT)OR TRIqOIOTWITIUR $A)T
-[1qenom paroxduwr 1ajowrerp

(Q8107) 21O NIT  WLIOJIUN PJIQIYXD S}RUI SNOIqL

uonelajijoid pue uoisaype

1199 sayowoid (Ayrquedwoosorq
JUQ[O0X? <YISUMS [eITURYOIUW

[y3noua {AIATOUUOIIANUT %76

‘armonns snoxod snouaowoy

(8107) 'Te 10 Sueyyz PaMOYS SIONISU0D JLIOWA[O]

UONBIUITAI ULYS JoAe]

[ewLIop pue [euLoplds Se [[om se

XLIjew Je[n[ooenXa 9y Jo Sulfd

-powal pue ‘sisauagoI3ue ‘uorn

-e[nuel3 pasoiduwl {[erajorqnue

‘orqnedwosoway ‘SuUOIOTW G|

A[y3noi jo sazis a10d YIim aIm

-onns snoxod ATys1y ¢serodoroew

(91202) 'Te 30 1yyedri], pue -0I0IW PIJOIUUOIINU
sagepuadde unys jo
UONEBIoUAZAI pUR ‘UOIRWIIRYUT
pasea1dap Juawdoarap 1akef
[ewopido paoueyuS Ul paY[NSAL
SP[OJJBIS Papeo[-[[99 ‘uonesn
-SQAUI OAIA UI UB UI PUB ‘UOTJBID
-j1j01d pue uorsaype [[99 3uLIOAE)
amonns snotod pajodUUOIIAIUT
<Aqnedwosolq Ju[[eoXa Io1
-ABYQq SUI[[oMS pPUB UONEPRIZIP

(0202) Te 1R noliy  9[qelns ‘ypSuans 91sua) paroiduwy

SIBI IQISLIA S[[90 6261

syer Aoime—ongeldg ¢sise[qoiqr

Q2TW OuIq[e :SISe[qOIqI]

SIRI JBISTAN “ST[9D 6261

[9801pAY (VS)
deur3e wnipos + YAJ popeo|

poyiouw SUIMBY}-9Z99I] -saroydsororu TDJ-I049 ‘01

s1oqyoueu YO TJ-PIpeo]
Suruurdsonodrg  seponted 9jeurdie + uroexogoidr) g

Surwreoy N

vDd'§  s1owAjod onoyiuAg

uroexopoidio
SurkIp 9zoo1L] YJIM PIpeo[ UBsoyD) + ude[[o) L

poyjow uone[as 9zaa1 uneas + 9euIdy 9

SOOUQIRYY s3urpury

[opout [ed130[01g

poylouw UoneoLIqe,] sIoWA[0d

(ponunuod) ga|qel

@ Springer

| ayao

jellate ¢

KACSTa,061lg roglel)

1)



Page 150f30 316

3 Biotech (2022) 12:316

-t

Y

50

g

et

9

w

UOTJRZLIE[NOSBAOSU &l
JO [9A9] JuedYIUSIS B pUB S[[90 WM
KIojewrwrejul JEQ[ONUOUOW JO 19q s
-wInu pA)IWI] € Sk [[om Se ‘sIoqy ‘m. w
ua3e[[0o pa[eaaal A3ofoyredolsty Mm

s,onssn oy pue ‘senradoid [erro) -

-0BqIUE pPUE JUBpIXONUE ‘AI10jeW

-wegur-nue ssassod {pasearodp

st suorsny a3eydoroew jo junowe

Q) 9sneoaq paroxdur st AIpIqr

-1edwos01q paMoys s)onnsuod

(0202) Te 10 ydurey paseq-aso[n([ed undsono9[g
A)[IQeIA [[90 WNWIXBU!
M OTX0J0)K0-uou ‘uonerdjroid
pue juawyorNE [[20 paroiduwr
¢AIIATIOR [B1I9)OBQ-T)UR POMOYS
sApiqeanp 1ysiy pue yi3uans [eo
-TuRYoaW poos ¢AI[Iqe UONUIAI
191eM 19Y31Y 906 < Jo Asorod
93eI0AR U )M SQINIONIS
snoiod wWIoJTUN PajoaUU0IIUT

(6100) ‘Te 1 1[opY PIMOYS $JONIISUOD SNOIqLOUBN

uononpoid NDH Juaoyjns
Surmopre ‘orer uonerjijold pue
UOISAUPE [0 JUS[[9IXA SN[Npow
onse[ 1Y3IY ‘9[3ur 10BIUOD

o0 WA spoggeas o1rydoIpAy
A3y ¢Aysorod paysooq pajens

(L102) Te 30 sowon -uowap sreqyouru undsoxnodg

AWTIQeIA JE[N[[2D PIsEAIOUL
‘SIoqUOULU A} UT JORIIXA [8qIdY
Jo Kiuenb oty Sursearour Aq
PIZIWIUIW Sem AJIOTX0) JB[N][dd
Q3 ‘J0TARYRq [BLIAJOBRQTIUE ‘UOT)
-e1oJ1[01d puE 9OUAIAYPE [[90
AU} PROURYUD JAYIINJ YITYM
3nip jo souasaxd oy 03 anp son
-1odoid o1yiydoipAy paaordur
‘Wi 69 F 8¢9 Jo Iajowerp a5e
-IOAE UE [)IM PIUTEIGO 2IoM
SIOQUOUBU JOOWS PUE SSI[PEIq
(0Z07) ‘Te 12 YLBYS  PIMOYS JONISUOD SNOIqYOURU YT,

syel
IeISIA ‘safeydoroewr S[[90 [el]

-9U)OPUD S[[99 1 BDSH ‘SII®0 67671 Suruurdsonod[g

ST192 62671 Suruurdsonoorg

(zdddH

aur| [[99) SISL[QOIQY [eIef BN Suruurdsonoorg

S[199 SOSINY  Suruurdsonos[a d[zzou-a[qnoq

BII[ISOUBN -V T1d-950]
-N[[9D) POPLO[-UTWNIIND) |

YoIRIS + UBSONYD + VA "€1

unepEon +1Dd +uesoyy) ‘gp  stowAkjod 9ysodwo)

sIsqpouel VId-"TO0d
POPEOI-108I)X2 BATIES BI[OSIN "TT

SOOUQIRYY s3urpury

[opout [ed130[01g poylouw UoneoLIqe,]

SIoWAT0g

(ponunuoo) ¢ 3jqey



316 Page 16 0f30 3 Biotech (2022) 12:316

3D printing techniques on wound healing and regeneration
(Kim et al. 2017). Despite the many advantages of 3D print-
ing, fabricated scaffolds may well not encourage biologi-
cally important responses (Tamay et al. 2019). 4D bioprint-
ing could be utilized to resolve the challenges associated
with 3D printed technology in which 3D printed frameworks
are designed to change over time in response to external or
internal stimuli (physiochemical and biological responses)
(Mota et al. 2020; Qasim et al. 2019). The same rapid proto-
typing processes and technologies used in three-dimensional
printing are used in four-dimensional printing. Table 4 sum-
marizes ongoing cellular and acellular research for STE that
used various scaffolding methods.

He et al. (2020)
Chandika et al. (2021)

References

Cell sources and their application in STE

a highly porous structure (>90%)
along with uniform pore size
degradation rate (20% degradation
after 48 h); increased mechanical
strength; high biocompatibility;
promotes cellular adhesion,

migration, and proliferation
ability; promotion and modulating

In this study, the construct showed
(100 to 250 pm) and distribution;
improved swelling ability; lower
showed interconnected fibrous
structure; higher water retention
adhesion, migration, and prolifera-
tion for both cell types; improved
mechanical properties; wound site
showed signs of fast healing, re-
epithelialization, and contraction

Bilayered nanofibrous construct

Findings

Cells are key constituents of skin because they play a mul-
titude of activities in maintaining natural skin homeostasis
and physiological functions. Cells including keratinocytes,
endothelial cells, melanocytes, and dermal fibroblasts are
often used in skin injury and burn therapeutic products
(Shevchenko et al. 2010; De Pieri et al. 2021). Tissue regen-
eration advancements have improved the potency and appli-
cation of cell-based treatments. There are several methods
for strengthening cellular skin therapies. This would include
cell type selection, cell source (autologous vs. allogenic
vs. xenogenic), and strategies for increasing cellular sur-
vivability and biological function after seeding. The first
methodology is to use cells as a therapeutic agent for the
restoration of functional tissue (De Pieri et al. 2021). This
method entails isolating various types of skin cells, includ-
ing autologous, allogenic, and xenogenic, growing them
under suitable growth conditions, and then implanting them
back to the target site for proper tissue functioning and resto-
ration. Furthermore, the second approach involves isolating
and seeding multiple types of skin cells onto scaffolds from
diverse sources, subsequently implanting them back into the
target site for appropriate tissue functioning and restoration
(Sierra-Sanchez et al. 2021; Goyer et al. 2019).

The use of autologous cell sources in TE is of significant
clinical interest because of their cost-effectiveness and non-
immunogenic nature, reducing the intake of solid immuno-
suppressants and their ill effects. Still, their limited avail-
ability, long culturing periods, handling issues, and scarring
limit their usage for clinical purposes (Cozzolino et al. 1999;
Olender et al. 2011; Goyer et al. 2019; Sierra-Sanchez et al.
2021). The other cell sources, such as—allogenic and xeno-
genic, provide an alternative to autologous cell sources
with the advantage of their ample availability, ease to use,
painless grafting, and scar-free tissue formation (Olender
etal. 2011; Salgado et al. 2017). However, autologous cells
source is clinically preferred over allo- and xenogenic cell
sources because later one has certain limitations such as

NHDF-neo cells; HaCaT cells;
ICR mice

Biological model

1929 cells

Fabrication method
Freeze drying
Electrospinning

(rCOL) + hyaluronic acid (HA)

16. Collagen (COL) and poly(e-
caprolactone) (PCL)

15. Recombinant collagen

Table 3 (continued)

Polymers

’

Pielase clla)l auan .
KACST 3.015lq rogle Ll @ Springer



3 Biotech (2022) 12:316

Page 17 0f30 316

Fibroblasts

Melanocytes
Keratinocytes

Imaging

Patient

Matured skin

Bioprinted skin

Fig.6 “Steps in the fabrication of bioprinted skin. Various cells such
as keratinocytes, fibroblasts and melanocytes would be collected from
the patient and grow and multiply in cell culture system. A suitable
biopolymer is mixed with the cells and the formed bioink is fed to
the bioprinting system. Features of the wound are captured and a 3D

their immunogenic nature, intake of solid immunosuppres-
sants, high risk of disease transmission, and ethical issues
(Lu et al. 2011; Tomford 1995; Haldar et al. 2019).

In the current scenario, a wide range of cell sources,
including genetically modified stem cells as shown in Fig. 7
(Kwon et al. 2018), and cell lines have been explored and are
manipulated, providing an alternative option to the above-
discussed cell sources in the field of skin tissue regeneration
and are extensively discussed in Table 5. Clinically, the most
common and actively used stem cell sources for STE are
discussed below.

Embryonic stem cells (ESCs), derived or extracted from
the blastocyst's inner cell mass, are the most appropriate
cell source that can be used for the origin of various differ-
entiated cell populations under controlled culture conditions
(Kitsberg 2007). Even though ESC have remarkable advan-
tages such as abundancy, self-renewal potency, and pluri-
potency, their usage is limited at clinical levels because of
their immunogenic nature, ethical issues, the transmission of

Cell collection & culturlng

Bioinks
Biopolymer solution

Bioprinting

structure is reconstructed using CAD/CAM approaches. According
to the 3D pattern, wound tissue will be reconstructed, allowed for
maturation in vitro and implanted back to the patient” by (Augustine
2018), licensed under CC by 4.0

inherited diseases or chromosomal aberrations (Kwon et al.
2018), and the formation of teratomas during the differen-
tiation of ESCs into a particular lineage (Spits et al. 2008;
Khademhosseini et al. 2020). The hESCs and iPSCs bank
typed with human leukocyte antigen (HLA) have recently
been tested in clinical trials to overcome the immunological
rejection problem in allogenic patients associated with these
stem cell therapies (Taylor et al. 2011).

Adipose-derived stem cells (ADSCs) are mesenchymal-
derived adult stem cells that can be found in any white ani-
mal tissue, connective tissue, and omental fat. These stem
cells are younger and have the potential to regenerate them-
selves with multipotential cellular differentiation (mostly
cartilage, bone, tendon, and fat), and are easy to harvest in
large quantities via the liposuction process under optimal
culture conditions (Estes et al. 2006; Li et al. 2014). One
study of an albino rat with a full-thickness defect treated
with a bioscaffold composed of adipose-derived stem cells
showed minimal wound contraction, ECM remodeling,
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Table 4 (continued)

Biological model Type of matrix Significance References

Polymer composition

Fabrication method

3D-microfibrous constructs Enhanced cellular activities;  Liu et al. (2018a); Seol et al.
Hydrogel

HUVECS; NIH3T; MDA-

9.Extrusion- based printing ~ GelMA + Alginate

(2018)

higher porosity; superior

MB-231; and MCF7 cell

lines

HA + Gelatin +
Glycerol +

biocompatibility; biostabil-

ity; rapid wound healing &

tissue growth

Human fibroblasts, keratino-

cytes

Fibrinogen +

PU

10. Solution Blow Spinning ~ Gelatin

Singh et al. (2018, 2019)

Large surface to volume ratio;

Human bone marrow-derived  Nano-fibrous mesh

easy and low-cost method;
excellent biocompatibility;

Core — shell nano-fibrous mat

mesenchymal stem cells

Core (PEO+PDLLA +PCL)

(SBS)

(hBMSCs)
hBMSCs

and shell (PCL +PEO)
loaded with bFGF

increased porosity; superior
biodegradability; facilitates

the cell growth; imitates a

dynamic in vivo conditions

epithelialization, and promoted angiogenesis (Ozpur et al.
2016). In another study, the 3D-printed ADSC-loaded scaf-
folds showed an enhanced wound healing and angiogenesis
rate, thus providing an ultimately engineered skin graft
(Roshangar et al. 2021). These cells are still in clinical trials
to monitor their cellular properties and efficacy (Aso et al.
2016).

Mesenchymal stem cells (MSCs), similar to ADSCs, are
adult stem cells with the capacity to distinguish between
nearly all distinct types of cellular lineages, such as osteo-
blasts, chondrocytes, muscles, and adipocytes (Tong et al.
2015). A growing body of research indicates that MSCs
(mesenchymal stromal cells) could be helpful in the treat-
ment of cutaneous wound tissue regeneration. In a research
of a pig partial-thickness severe burn wound model, it was
discovered that MSCs could develop into dermal cells (Li
et al. 2006), allowing for a faster wound healing process,
keratinization, and wound contraction, as well as increased
vascularization. In one survey, MSCs were found to facili-
tate the functionality of rejuvenated skin, regulate colla-
gen accumulation, augment re-epithelization, significantly
improve neo-angiogenesis, and encourage restoration of
skin appendages by seeding them well within the scaf-
folding matrix (Formigli et al. 2015). Besides this, MSCs
possess immune-modulatory, pro-angiogenic, and scarless
wound healing properties (Li et al. 2019; Martinello et al.
2018). MSCs provide an ultimate auto- or allogenic source
for the treatment of moderate to severe wounds/burns and
relatively lacking ethical issues in comparison to ESCs (Pit-
tenger et al. 1999; Maxson et al. 2012). Several MSC-based
cellular therapeutics are clinically approved and available at
the commercial level. However, their stability and efficacy
are still in discussion for several reasons, including their lim-
ited proliferation rate, reduced secretion of growth factors,
and the loss of cellular differentiation (Jossen et al. 2018;
Zhang et al. 2012).

Another stem cell source known as induced pluripotent
stem cells (iPSCs) has been managed to be produced from
the differentiated adult stem cells by artificially reprogram-
ming the main four transcription factors (Oct-4, Sox-2, Klf-
4, and c-Myc) (Takahashi and Yamanaka 2006; Takahashi
et al. 2007). The iPSCs, in their potency, are very similar to
embryonic stem cells (ESCs) and are the inexhaustible and
renewable resource of autologous cells (Park et al. 2008).
One study showed that the potential proliferation and sur-
vival rate of iPSCs-derived MSCs is better than that of bone
marrow-derived MSCs because of the higher expression of
the KCNHI1 ion channels. However, the functional role of
these ion channels on the proliferation rate of iPSCs-MSCs
is still not fully understood (Zhang et al. 2012). Furthermore,
iPSCs-derived human melanocytes are being investigated
to treat the skin discoloration disorders such as albinism,
vitiligo, or melasma. They can also be used as a cell source

iglue Lol auo .
KACST ,161)lg rogLe Ll @ Springer
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Fig.7 “Stem cell engineering strategy” by (Kwon et al. 2018), licensed under CC by 4.0

for the development of TESSs (Ohta et al. 2011; Gledhill
et al. 2015). According to a recent study, an organoid cul-
ture technique could be used to build multilayered skin from
the human-induced pluripotent stem (Lee et al. 2020). Itoh
and his co-workers have created in vitro 3-D skin analogs
made entirely of hiPSC-derived skin cells, mainly keratino-
cytes and fibroblasts (Itoh et al. 2013). However, iPSCs
are clinically prohibited because of their immunogenicity,
tumorigenic nature (caused by genetic instability and active
reprogramming factors), and heterogeneity (Garreta et al.
2018; Yamanaka 2020; Doss and Sachinidis 2019). As a
consequence, researchers are concentrating their efforts on
establishing alternative approaches to iPSC-related complex-
ities. For example, tumorigenic testing kits are accessible
to anticipate the presence of tumors, HLA-typed hiPSCs,
as well as HLA or immunocloaking practices, are in clini-
cal trials to decrease immunogenicity and the generation of
naive human iPSCs, or the employment of diverse attributes
to combat heterogeneity (Sato et al. 2019; Taylor et al. 2011;
Gornalusse et al. 2017; Rohani et al. 2020; Kunitomi et al.
2016).

On the other hand, cell lines are a viable alternative to the
previously mentioned cell sources due to their robustness,
immortality, and ease of culture. HeCaT (human keratino-
cyte cell line) (Intini et al. 2018), HFF (human foreskin
fibroblast cell line) (de Torre et al. 2018), L-929 (murine
fibroblast cell line) (Bahadoran et al. 2020), NIH3T3 (fibro-
blast cell line) (Fang et al. 2019), and other cell lines are
currently being utilized in clinical practices to develop a bio-
compatible skin substitute. Above mentioned cell lines can
also be used as a feeder layer to nourish and support grown
cells (Unger et al. 2009). Instead of being robust and immor-
tal, they may become genetically modified or have signifi-
cantly altered cellular properties, resulting in differences in

Pielase clla)l auan .
KACST 3.015lq rogle Ll @ Springer

the outcomes, and thus are not very dependable (Seo et al.
2012).

Growth factor/drug delivery strategy and their role
in STE

Tissue restoration and re-growth are a crucial part of the
healing process and are thus essential for all species' proper
functioning and survivability. Growth factors/bioactive/
drugs were already well understood as a crucial aspect of
the wound recovery process, whose involvement begins
when damage occurs and persists until the injury is entirely
cured. Growth factors are either produced immediately by
cells within the body or become incorporated into the matrix
and delivered in a regulated way. Many composites can pro-
vide crucial structural reinforcement and adhesion sites, but
they cannot influence cellular phenotype as effectively as
signaling molecules. These factors are the primary source of
chemical and biological signals in biomedical applications
by guiding the ultimate destiny of cells and permitting the
regeneration of target tissue (Ladewig 2011; Demidova-Rice
et al. 2012; Atienza-Roca et al. 2018). The characteristics of
the GFs/drugs and polymers utilized to enable effective res-
toration of wounds and tissue regeneration are just as essen-
tial as the delivery methods adopted. Targeted and sustained
administration of wound healing agents has excellent prom-
ise for critical patient wound treatment, especially as the
proportion of individuals diagnosed with incurable chronic
infections grows across the world (Whittam et al. 2016).
Exogenous GF's/drugs are a viable therapeutic option for
many chronic wound conditions. A variety of GFs, such as
PDGF, VEGEF, EGF, FGF, KGF, and TGF-a, B have been
extensively established in studies for their ability to hasten
wound healing (Atienza-Roca et al. 2018; Marti-Carvajal
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et al. 2015). Growth factors or drug delivery methods have
recently been studied in wound healing and skin re-growth
and are summarized in Table 6. The potential of fabricat-
ing method and biomaterial framework to retain and allow
for customized release kinetics (Wang et al. 2017) (e.g.,
burst, sustained, prolonged, mixed, and pre-programmed)
of relevant dosages of GF's or drugs for an extended period
well within the specified site is driving attention in their
advancement towards their treatment delivery (Wang et al.
2015, 2016; Geer et al. 2005; Goh et al. 2016; Garcia-Orue
et al. 2017; Choi et al. 2017; Degim et al. 2011; Gainza
et al. 2014; Mizuno et al. 2003; Niiyama and Kuroyanagi
2014; Li et al. 2017; Xu et al. 2020; Cao et al. 2015; Shi
et al. 2019; Tripathi et al. 2021b; Mo et al. 2017; Ghasem-
inezhad et al. 2020). For example, a regulated and prolonged
release of EGF is necessary to boost cell proliferation along
with wound healing and neo-tissue development (Johnson
and Wang 2013). In addition, these delivery systems should
preserve biostability, restrict burst release, reduce immune
reactions, enhance cellular activity, favor neo-angiogenesis,
permit effective chronic wound healing, and allow for neo-
tissue regeneration (Ladewig 2011; Demidova-Rice et al.
2012; Atienza-Roca et al. 2018; Whittam et al. 2016; Wang
et al. 2017; Marti-Carvajal et al. 2015).

Conclusion and future direction

As stated earlier, distinct layers of skin tissue have promi-
nent non-homogenous properties that must be considered
while evaluating and developing constructs for skin tissue
engineering purposes. The worldwide cost of skin wounds
has significant public health care consequences, accounting
for almost half of the globe's yearly medical expenditure.
The rising area of skin tissue engineering (STE) offers hope
to sufferers who urgently demand skin grafts in a period
when tissues seem to be less available for transplantation,
and there is a significant need for viable and functional alter-
natives. While assessing the skin regenerative characteristics
of tissue-engineered implants, wider and complex injuries
have a number of difficulties that must be taken into account.
To present, potential therapeutic findings have been reported
using TESSs based on cells and drug delivery systems in
terms of effective transplant (60-90% in most investiga-
tions), durability (minor negative effects in certain case
scenarios), re-epithelialization, and injury recovery rates.
In general, the translation of such TE skin grafts utiliz-
ing the innovative technologies discussed above demands
model-based test techniques as well as relevant norms and
standard safety guidelines in order to prove the transplants'
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durability, stability, and fully operational dependability.
However, after achieving significant clinical achievements
with widely accessible commercial skin substitutes, the
desire for an ideal full-thickness graft that precisely repli-
cates the host's native tissue in terms of multilayer complex-
ity, thermoregulation, sensations, appendage regeneration,
Ultraviolet rays shielding, pigmentation, impaired angiogen-
esis, and reduced scarring continues to be unfulfilled. Angio-
genesis is critical for the effectiveness of engineered skin
grafts, resulting in a longer life period and improved compat-
ibility with the host's native skin. By integrating cells includ-
ing endothelial cells, MSCs, and ADSCs into the scaffold
framework as well as utilizing angiogenic active biomole-
cules, and modifying the microstructural and functional fea-
tures of the engineered grafts, in vivo neo-angiogenesis of
the grafts may be encouraged (Hashemi et al. 2021). It is
feasible to promote the migration and recruitment of cells,
either stem cells or progenitor cells, at the injury site by
developing bioactive smart scaffolding materials in vitro
with appropriate 3D frameworks. Additional strategies for
preserving artificial tissues are required for effective trans-
portation from the manufacturing location to the implanta-
tion site still has to be improved.

The following are some of the most significant challenges
and the active areas of future research:

(i) selection and designing of different composites that
can stimulate cellular activities, promote pre-vascu-
larization and tissue re-growth;

(i) choosing a manufacturing technique capable of creat-
ing a scaffold with suitable skin tissue-specific prop-
erties;

(iii) identifying the type and origin of cell source, along
with growth factors, in perspective of diversity
throughout the layers of the skin tissue and;

(iv) development and optimization of innovative GFs/
drug delivery methods to maintain and strengthen
the therapeutic effectiveness of GFs/drugs on wound
healing by exerting temporal and spatial command
throughout their delivery.

To summarize, these many techniques to develop
advanced skin replacements, such as the utilization of
stem cells, smart biomaterial, rapid prototyping fabrica-
tion techniques, and novel drug delivery systems, provide
new optimism that the functional and ideal skin constructs
may indeed be produced soon and will be easily accessible
in adequate quantities and cost-effective. Latest advance-
ments, particularly in the engineering of biomaterials allow-
ing integration into skin replacements, along with stem cell
therapy, suggest that more successful methods may be pos-
sible shortly.
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