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Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease and the fourth leading cause of death after cardiovascular disease, 
tumors, and stroke. Acetylcholinesterase (AChE) inhibitors, which are based on cholinergic damage, remain the mainstream 
drugs to alleviate AD-related symptoms. This study aimed to explore novel AChE inhibitors produced by the endophytic 
fungus FL15 from Huperzia serrata. The fungus was identified as Talaromyces aurantiacus FL15 according to its morpho-
logical characteristics and ITS, 18S rDNA, and 28S rDNA sequence analysis. Subsequently, seven natural metabolites were 
isolated from strain FL15, and identified as asterric acid (1), methyl asterrate (2), ethyl asterrate (3), emodin (4), physcion 
(5), chrysophanol (6), and sulochrin (7). Compounds 1–3, which possess a diphenyl ether structure, exhibited highly selective 
and moderate AChE inhibitory activities with  IC50 values of 66.7, 23.3, and 20.1 μM, respectively. The molecular docking 
analysis showed that compounds 1–3 interacted with the active catalytic site and peripheral anionic site of AChE, and the 
esterification substitution groups at position 8 of asterric acid may contribute to its bioactivity. The asterric acid derivatives 
showed highly selective and moderate AChE inhibitory activities, probably via interaction with the peripheral anionic site 
and catalytic site of AChE. To the best of our knowledge, this study was the first report of the AChE inhibitory activity of 
asterric acid derivatives, which opens new perspectives for the design of more effective derivatives that could serve as a drug 
carrier for new chemotherapeutic agents to treat AD.
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Introduction

Alzheimer’s disease (AD), which is commonly known as 
dementia, is a neurodegenerative disorder characterized by 
memory loss and other cognitive impairments (Jalili-Baleh 
et al. 2018; Friker et al. 2020). Reportedly, over 46 mil-
lion people live with dementia worldwide, and the evaluated 
number is expected to increase to 131.5 million by 2050 
(Prince et al. 2015). The rapid growth of AD has led many 

medicinal chemists to develop drug-discovery investigations 
in this field (Prince et al. 2015; Mohammadi-Khanaposhtani 
et al. 2015; Friker et al. 2020).

The etiology of AD is not well understood. Thus, different 
pathogenesis hypotheses regarding AD, including choliner-
gic, amyloid cascade, oxidative stress, and tau protein, have 
been proposed. Among them, the cholinergic hypothesis 
is widely accepted (Goedert and Spillantini 2006; Sonmez 
et al. 2017; Oh et al. 2019). According to this hypothesis, 
the most effective therapeutic approach for treating AD 
is the restoration of the acetylcholine (ACh) levels in the 
brain by inhibiting acetylcholinesterase (AChE). AChE 
inhibitors (AChEIs) can effectively improve neurotransmit-
ter activity levels and duration by inhibiting the hydrolysis 
of ACh (Sonmez et al. 2017; Oh et al. 2019). Currently, 
the mainstay drugs used for the clinical management of AD 
remain AChEIs. Four AChEIs, namely, tacrine, donepezil, 
galantamine, and rivastigmine, have been approved by Euro-
pean and US agencies (Sonmez et al. 2017; Oh et al. 2019). 
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Huperzine A (Hup A), a powerful and selective lycopodium 
alkaloid AChEI firstly isolated from Qian Ceng Ta (i.e., 
Huperzia serrata) in traditional Chinese medicine, was also 
approved in the 1990s in China (Fig. 1) (Ma et al. 2007). 
Although the existing AChEI drugs are essential for pal-
liating AD, their clinical efficacy is limited because of their 
poor selectivity, low bioavailability, and adverse side effects 
on the peripheral nervous system and liver. Therefore, great 
efforts have been dedicated for investigating better and novel 
AChEIs from natural sources (Zaki et al. 2020).

Fungi are important organisms in the production of bio-
active secondary metabolites. Currently, many of the drugs 
in the market that possess various activities, such as antitu-
mor, immunosuppressant, antibiotic, hypocholesterolemic, 
antifungal, antiparasitic, anti-inflammatory, and enzyme-
inhibiting activities, were obtained from fungal metabolism 
(Kingston 2011; Teles and Takahashi 2013). Endophytic 
fungi are microorganisms that reside in the internal tissues 
of living plants or animals without causing apparent dis-
ease (Gupta et al. 2019). Endophytes, an eclectic group of 
microbes that can chemically bridge the gap between plants 
and microbes, have attracted the most attention because of 
their relatively high metabolic versatility (Zaki et al. 2020). 
Thus, endophytes have been demonstrated to be a rich source 
of bioactive metabolites with diverse structural features, and 

a large number of compounds with novel structures and vari-
ous bioactivities are continuously being isolated from them 
(Gupta et al. 2019; Zaki et al. 2020). Notably, some endo-
phytic fungi have produced identical or similar chemical 
compounds to those produced by their host. For example, 
the widely prescribed anticancer drug paclitaxel (Taxol), one 
of the most amazing natural products initially isolated from 
the Pacific yew tree Taxus brevifolia, was later found in the 
endophytic fungus Taxomyces andreanae and other fungal 
genera (Liu et al. 2016). Hup A was also found in the endo-
phytic fungus Shiraia sp. Slf14, as well as in Cladosporium 
cladosporioides LF70, Penicillium sp. LDL4.4, Trichoderma 
harzianum L44, and other endophytic fungi (Ellman et al. 
1961; Zhang et al. 2011; Cao et al. 2021).

The endophytic fungi from H. serrata are a huge untapped 
source of natural products including AChEI. Thus far, there 
are only few reports on AChEI form endophytic fungi of H. 
serrata (Cao et al. 2021). In our previous screening studies, a 
total number of 22 endophytic fungi strains, including strain 
FL15, showed high AChE inhibitory activity (≥ 50%) (Wang 
et al. 2016b). In the present study, as part of an ongoing 
search for Hup A-producing endophytes and new natural 
AChEI, the secondary metabolites from the ethyl acetate 
extract of fungal strain FL15 were isolated, and seven natural 
metabolites were purified and identified. AChE inhibition 
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Fig. 1  Chemical structures of the main acetylcholinesterase inhibitors used in clinical management
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results showed that the three asterric acid derivatives exhib-
ited highly selective and moderate AChE inhibitory activi-
ties. Then, the molecular docking analysis was carried out 
to reveal the binding patterns between the three asterric acid 
derivatives and AChE proteins. This study not only provided 
new precursors of the anti-AChE drug, but also contributed 
to the application of endophytic fungi as compounds produc-
ers in biopharmaceutical industry.

Materials and methods

General

The strain FL15 used in this study was isolated from the 
leaves of H. serrata, which were collected from natural pop-
ulations at Lushan Botanical Garden in Jiangxi Province, 
Central China. This strain was subsequently deposited in 
the China Center for Type Culture Collection (CCTCC NO: 
2019832), Wuhan, China.

1H and 13C data were acquired on a Bruker AV400 spec-
trometer at 400 and 100 MHz, respectively, using  CDCl3, 
acetone-d6, and  CD3OD as solvents. Chemical shifts were 
given in parts per million (δ) using tetramethylsilane (TMS) 
as an internal standard. J values were given in Hertz. Abbre-
viations for the 1H NMR data quoted are as follows: s, sin-
glet; d, doublet; t, triplet; q, quartet; m, multiplet; bs, broad 
singlet. ESI–MS data were recorded on a Waters Xevo G2 
quadrupole time-of-flight/time-of-flight (QTof/Tof) mass 
spectrometer (Milford, Massachusetts, USA). High-perfor-
mance liquid chromatography (HPLC) was performed on a 
Waters W2996 chromatograph equipped with a 1525 pump 
using a C18 column (19 × 150 mm, 5 μm; YMC Co., Ltd.).

Chemicals and enzymes

All solvents and reagents were obtained from commercial 
sources, unless stated otherwise. Electric eel acetylcho-
linesterase (AChE, Type-VI-S, EC 3.1.1.7, 425.84 U/mg, 
Sigma) and equine serum butyrylcholinesterase (BuChE, 
E.C.3.1.1.8) were purchased from Sigma (Steinheim, Ger-
many). Acetylthiocholine iodide (AChI), butyrylthiocholine 
iodide (BChI), and dithiobis nitrobenzoic acid (DTNB) were 
purchased from Sigma-Aldrich (Taufkirchen, Germany). 
The solvents used for chromatography were of HPLC grade, 
whereas the solvents used for extraction were of American 
Chemical Society grade. Silica gel (200–300 mesh, Qing-
dao Marine Chemical Group Co., Ltd. Qingdao, China) and 
Sephadex LH-20 (25–100 μm; Amersham Biosciences) were 
used for column chromatography. Thin-layer chromatogra-
phy (TLC) was performed with glass-precoated silica gel 
60 plates (0.25 mm; Merck, Darmstadt, Germany). Other 

chemicals were from China Medicine Shanghai Chemical 
Reagent Co., Ltd.

Identification of the endophytic fungus FL15

The endophytic fungus FL15 was identified by morpho-
logical observation combined with the determination of the 
sequences of the rDNA internal transcribed spacer (ITS), 
18S rDNA, and 28S rDNA (Lai et al. 2014).

A small number of mycelia were selected from the pre-
served brilliant medium, and the strains were inoculated 
into potato dextrose agar (PDA), yeast extract sucrose agar 
(YES), and Czapek yeast extract agar (CYA) plate medium 
using the point-planting method, respectively. The strains 
were cultured in a 28 °C constant temperature incubator 
for 10–20 days, of culture, and the changes in, and charac-
teristics of, colony morphology were regularly observed: 
the shape, size, texture, color, edge characteristics, and 
other conditions of the colony were recorded (Lai et al. 
2014). After sampling, the morphology of the mycelium 
was observed under an optical microscope (BA300, Motic, 
China) after alkaline methylene blue staining and a scan-
ning electron microscope (SEM, QUANTA-200F, FEI, The 
Netherlands).

The strains were inoculated into a liquid medium and cul-
tured at 28 °C and 150 rpm for 14 days. The mycelia were 
filtered for molecular biological identification. Genomic 
DNA was extracted using the improved CTAB method 
(Zhang et al. 1996). The ITS, 18S, and 28S sequences of 
the FL15 strain were amplified. The amplified sequences 
were detected via 1% agar electrophoresis gel, and the gel 
plate was stained with ethidium bromide. After detection of 
the bands, the PCR products were sent to Sangon Biotech 
(Shanghai) Co., Ltd. for sequencing, to obtain the relevant 
gene sequence fragments. The fragments were uploaded to 
the GenBank database of the National Center for Biotechnol-
ogy Information (NCBI) for Basic Local Alignment Search 
Tool (BLAST) comparison, and the application number was 
obtained. Moreover, a phylogenetic analysis was performed 
using the MEGA 7.0.14 ClustalX software, and an evolu-
tionary tree was constructed to determine the classification 
status of the strain (Vig et al. 2021).

Fermentation and extraction of mycelia

The fungal strain FL15 was cultured on slants of PDA at 
28 °C for 7 days. The mycelia from the PDA plate were 
harvested and grown in 150 mL of PDB medium for 5 days 
at 28 °C and 150 rpm. Aliquots (5 mL) of this seed culture 
were inoculated into 500 mL Erlenmeyer flasks that con-
tained 100 mL of medium. The samples were incubated at 
28 °C and 150 rpm for 14 days (Lai et al. 2014). The myce-
lium was separated from the culture broth and dried at 40 °C. 
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Finally, the dried mycelium (980 g) was obtained. The myce-
lia were ultrasonically broken and extracted exhaustively 
with 85% alcohol (3 × 1 L) at room temperature, filtered 
under vacuum, and transferred to clean bottles. Ethanol 
was removed from the solution using a rotary evaporator 
at 40 °C. The water phase was extracted with ethyl acetate 
(EtOAc). The organic solvent was evaporated to dryness 
under reduced pressure, to give 12.8 g of crude extract.

Isolation and purification of compounds

The separated crude EtOAc fraction was first subjected to 
column chromatography (CC) by eluting the silica gel with 
a gradient of petroleum ether/EtOAc from 9:1 to 0:10 (v/v). 
Nine fractions (Fs. A to Fs. I) were obtained based on TLC. 
Fraction Fs. B (134 mg) dissolved in  CHCl3 was chromato-
graphed over a silica gel column with a gradient of petro-
leum ether/EtOAc from 9:1 to 1:1 (v/v), to afford compound 
2 (24 mg). Fraction Fs. C (3.6 g) with  CH3OH was heated to 
60 °C and stirred until completely dissolved, and then placed 
in a ventilation cabinet for evaporation drying. After stewing 
for 24 h, crystals were formed and washed with methanol 
three times, to obtain compound 7 (231 mg). The residual 
liquid was subjected to a Sephadex LH-20 column with 
an isocratic elution of 1:1  CH3OH/CH2Cl2 (v/v), to obtain 
compound 3 (165 mg) and Fraction Fs C1. In turn, Fraction 
Fs C1 was dissolved in acetone and separated by silica gel 
CC with a gradient of petroleum ether/EtOAc from 9:1 to 
1:1 (v/v), to afford compounds 1 (18 mg) and 4 (14 mg). 
Fraction Fs. D (274 mg) was dissolved in  CHCl3 and the 
solution was separated by silica gel CC using a petroleum 
ether–EtOAc mixture (20:1 to 1:1), to give compound 5 
(16 mg) and subfraction Fs. D1. Fraction Fs. D1 was dis-
solved in  CH3OH–CHCl3 (1:1) and purified in a Sephadex 
LH-20 column with an isocratic elution of  CH3OH–CH2Cl2 
(1:1 v/v), to obtain compound 6 (21 mg). The chemical char-
acteristics of the compounds isolated were as follows.

Acetylcholinesterase/butyrylcholinesterase 
inhibition activity in vitro assay

The determination of the in vitro AChE inhibition activity 
of the endophytic fungal extracts and compounds 1–7 was 
conducted according to the method of Ellman’s spectropho-
tometry (Ellman et al. 1961; Devidas et al. 2021). Known 
AChEIs, i.e., rivastigmine and huperzine A, were used as the 
positive controls. The assay was carried out in the 96-well 
microtiter plates. Briefly, a preincubation solution of 250 μL 
of phosphate buffer (200 mM, pH 7.7) that contained 15 μL 
of purified compounds/rivastigmine/HupA, 80 μL of DTNB 
[3.96 mg of DTNB and 1.5 mg of sodium bicarbonate dis-
solved in 10 mL of phosphate buffer (pH 7.7)], and 10 μL 
of AChE/BuChE was prepared. The mixture was incubated 

for 5 min at 25 °C. After preincubation, 15 μL of the sub-
strate AChI/BChI (10.85 mg in 5 mL of phosphate buffer) 
was added and incubated again for 5 min. The color devel-
oped was measured in a microwell plate reader at 412 nm 
(Bio-Rad, Hercules, CA). Percent inhibition was calculated 
through the following formula: (control absorbance − sample 
absorbance)/control absorbance × 100.

Kinetic study of acetylcholinesterase inhibition

According to Ellman’s method, a kinetic analysis of AChE 
was performed (Ellman et al. 1961; Sonmez et al. 2017). 
The type of inhibition was deduced by determining Km and 
Vmax using Lineweaver–Burk reciprocal plots by plotting 1/V 
against 1/S at varying concentrations of the acetylthiocho-
line substrate (0.01–0.04 mM). The inhibitory constant, Ki, 
was calculated by secondary plots obtained by plotting 1/V 
versus different inhibitor concentrations.

Docking study

The preparation of ligand file includes three aspects: (i) draw 
the small molecular structure of ligand by drawing software; 
(ii) minimize the energies of small ligand molecules drawn; 
(iii) initialization of small molecule docking of ligand. In the 
first step, the two-dimensional structural formulae of aster-
ric acid, methyl asterrate, and ethyl asterrate were drawn 
using ChemBioDraw Ultra 14.0 drawing software, and the 
files were saved in “.mol” format. In the second step, open 
the “.mol” file with ChemBio3D Ultra 14.0, minimize the 
energy using MMFF94 position in the software, and save the 
minimized molecule as a “.pdb” file for the next step. The 
third step is to open the “.pdb” format file processed in the 
previous step with AutoDockTools software, and process the 
small ligand molecules, including adding Gasteiger charge, 
detecting the root of ligand, setting the number of rotating 
structures, etc. All parameters here are default values. The 
processed ligand molecule is saved as a coordinate file in 
“.pdbqt” format for molecular docking backup. The “.pdbqt” 
format file is a file containing atomic coordinates, AutoDock 
atomic type, charge, and torsion bond information (Pan et al. 
2019).

The AutoDock v.4 software was used in the docking sim-
ulations. The crystallographic structures of AChE (PDB: 
1F8U) (Kryger et al. 2000) and its ligands were processed 
with AutoDock Tools (version 1.5.6, Sep_17_14) to delete 
water, add hydrogens, compute Gasteiger charges, and 
select rotatable side-chain bonds. Affinity (grid) maps of 
60 × 100 × 60 points with a grid spacing of 0.375 Å were 
generated using the help of the program AutoGrid v.4 pro-
gram included in the AutoDock 4 distribution (Singh et al. 
2020; Devidas et al. 2021). AutoDock parameter settings and 
distance dielectric functions were used in the calculation of 
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van der Waals and electrostatic terms, respectively (Kumar 
et al. 2021; Singh et al. 2021). The receptor site is semi-
flexible docked with the ligand. The receptor site is main-
tained as rigid, while the ligand is treated as flexible (Singh 
et al. 2020). The docking simulation was performed using 
the “Lamarckian Genetic Algorithm” method and the fol-
lowing associated parameters: 150 individuals in a popula-
tion with a maximum of 2,500,000 energy evaluations and 
a maximum of 27,000 generations, the maximum number of 
top individuals that automatically survive is usually set to 1, 
the rate of gene mutation in the genetic algorithm is 0–1, and 
the default value is 0.02, followed by 100 iterations of Solis 
and Wets local search. Other parameter values were kept in 
default. The final figures were generated using the Discovery 
Studio Visualizer program (Accelrys) (Meng et al. 2012a, 
b; Kou et al. 2021).

Results

Identification of the endophytic fungal FL15

Strain FL15 was cultured in CYA medium at 28 °C for 
7 days. The colony diameter can reached 35–40 mm; its 
color was goose yellow; and the surface mycelium was 
white and fluffy, slightly convex in the middle, and had 

yellow droplet of exudation and a flat back (Fig. 2A). In 
the same culture conditions on PDA, the colony diameter 
was 46–50 mm; its color was yellow velvet; and the myce-
lium bulged in the middle, with no droplet exudation on 
the surface. With the extension of culture time, the color 
of the front of the colony deepened from yellow to dark 
yellow, whereas the color of the back and front remained 
the same (Fig. 2B). In the meanwhile, the strain FL15 was 
cultured on YES medium at 28 °C for 7 days. The colony 
diameter was 36–40 mm; its color was white velvet; and it 
had a flat surface, was slightly bulged in the middle, and a 
pale-yellow edge at the back, whereas the colony center was 
white (Fig. 2C). Furthermore, a scanning electron micros-
copy observation showed that the mycelia of this strain were 
slender and bamboo-like, with many branches. Clustered 
conidia were observed in the head, and most broom-like 
branches were bicycles. There were elliptical or nearly 
spindle-shaped densely distributed spores near the mycelia, 
and the walls were smooth (Fig. 2D). The mycelium had 
a slender septate, was branched, and the wall was smooth 
(Fig. 2E, F). Based on the colony and cell morphological 
observation, strain FL15 was recognized as a member of the 
genus Talaromyces. (Fig. 2).

The length of the ITS, 18S rDNA, and 28S rDNA 
sequence was 589, 1708, and 940 bp, respectively. The 
accession number(s) for the ITS, 18S rDNA, and 28S rDNA 

A B C

D E F

Fig. 2  Colony morphology and mycelium morphology of the endo-
phytic fungus FL15. Colony characteristics of FL15 on CYA (A), 
PDA (B); and YES (C), respectively; microscopic morphology of 

FL15 (100 ×) (D); scanning microscopy-based electron micrograph 
morphology of FL15 (bar = 50  μm) (E); scanning electron micros-
copy-based micrograph morphology of FL15 (bar = 20 μm) (F)
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nucleotide sequences of the strain FL15 in GenBank were 
MZ542471, MZ540308, and MZ540309, respectively. 
BLAST analysis of ITS of strain FL15 showed 99% of 
sequence similarity with T. aurantiacus. Based on the ITS, 
18S rDNA, and 28S rDNA sequence analysis, strain FL15 
was identified as belonging to the phylum Ascomycota, order 
Eurotiales, family Trichocomaceae, and genus Talaromyces. 
A phylogenetic tree was constructed using the neighbor-join-
ing and MEGA 7.0.14. By combining the results of morpho-
logical observation analysis and those ITS, 18S rDNA, and 
28S rDNA sequence phylogenetic analysis, the strain FL15 
was identified as T. aurantiacus FL15 (Fig. 3).

Structural elucidation of the purified compounds

A total of seven natural compounds were isolated and puri-
fied from the crude ethyl acetate extract of the mycelia of 
the endophytic fungus T. aurantiacus FL15. Their chemical 
structures were elucidated based on 1H nuclear magnetic 
resonance (NMR), 13C NMR, and electrospray ionization/
mass spectrometry (ESI–MS) analyses (Supplementary 
Tables S1–S3), as well as via the comparison of their prop-
erties and spectral characteristics with published data. The 
compounds were confirmed as being asterric acid (1) (Har-
greaves et al. 2002), and its derivatives, methyl asterrate (2) 
(Hargreaves et al. 2002), and ethyl asterrate (3) (Li et al. 
2008), together with four other compounds, emodin (4) (Li 
et al. 2008), physcion (5) (Guo et al. 2011), chrysophanol 
(6) (Guo et al. 2011), and sulochrin (7) (Liu et al. 2015). The 
chemical structures of the compounds are depicted in Fig. 4.

Anti‑acetylcholinesterase/butyrylcholinesterase 
activity

The AChE/BuChE inhibitory activities of the purified com-
pounds were evaluated using Ellman’s spectrophotometric 
method, with rivastigmine and Hup A as the reference com-
pounds. The half-maximal inhibitory concentrations  (IC50) 
of the compounds for AChE/BuChE inhibition are summa-
rized in Table 1. The results showed that compounds 1–3 
exhibited moderate AChE inhibitory activities, whereas the 
four other compounds displayed no AChE inhibitory activi-
ties. The tested compounds did not afford any inhibition of 
BuChE. Based on these results, the asterric acid deriva-
tives could be described as being highly selective AChEIs. 
Moreover, compound 3 exhibited better inhibition against 
AChE, with an  IC50 value of 20.1 µM than did compounds 
2  (IC50 = 23.3 µM) and 1  (IC50 = 66.7 µM).

The ability of a compound to cross the blood–brain bar-
rier (BBB) is essential for AD treatment. Thus, log P was an 
important physicochemical parameter for the evaluation or 
prediction of the ability of the compounds to cross the BBB. 
The log P values of the isolated compounds were calculated 

Fig. 3  Phylogenetic tree of strain FL15 and corresponding strains 
based on ITS (A), 18S rRNA (B), and 28S rRNA (C) sequences
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using Lipinski’s Rule of Five (http:// www. scfbio- iitd. res. in/ 
softw are/ drugd esign/ lipin ski. jsp) and are shown in Table 1. 
The optimum log P value for central nervous system pen-
etration is around 2 ± 0.7. Thus, the log P results indicated 
that the isolated compounds were sufficiently lipophilic to 
pass the BBB.

Kinetic study of acetylcholinesterase inhibition

The crystal structure of AChE in complex with inhibitors 
revealed the presence of dual binding sites: a Ser–His–Glu 
catalytic site (CAS) located at the bottom of the gorge, 
and a peripheral anionic-binding site (PAS) located at the 
gorge entrance (Bartus et al. 1982; Miles and Ross 2021). 
An enzyme kinetic study was performed to explore the 

AChE inhibition mode of compounds 1–3. The results 
obtained from in the reciprocal Lineweaver–Burk plot 
(Fig.  5) show increased slopes (decreased Vmax), and 
intercepts (higher Km) at higher inhibitor concentrations, 
and a mixed-type inhibition was demonstrated. Therefore, 
compounds 1–3 might be able to simultaneously bind to 
CAS and PAS, as well as the catalytic triad of AChE. The 
inhibitory constant, Ki (0.14 mM), was determined by plot-
ting the slopes of the Lineweaver–Burk reciprocal plots 
versus the concentrations of compound 3.
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Table 1  Acetylcholinesterase (AChE) and butyrylcholinesterase 
(BuChE) inhibitory activities and log P values of the title compounds

a IC50 values represent the means ± SEM of three parallel measure-
ments (P < 0.05)
b Selectivity index = IC50 (BuChE)/IC50 (AChE). “–” no determina-
tion

Compound IC50 ± SEM (µM)a Selectivity  indexb log P

AChE BuChE

1 66.7 ± 1.7  > 100  > 1.50 1.36
2 23.3 ± 1.2  > 100  > 4.29 2.78
3 20.1 ± 0.9  > 100  > 4.98 3.17
4  > 100  > 100 –
5  > 100  > 100 –
6  > 100  > 100 –
7  > 100  > 100 –
Rivastigmine 1.82 ± 0.13 – 1.34
Huperzine A 0.045 ± 0.01 – 1.22
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Fig. 5  Kinetic study of the inhibition mode of AChE by compound 3. 
Overlaid Lineweaver–Burk reciprocal plots of AChE initial velocity 
at increasing substrate concentration (0.01–0.04 mM) in the absence 
of inhibitor and the presence of different concentrations of compound 
3 are shown

http://www.scfbio-iitd.res.in/software/drugdesign/lipinski.jsp
http://www.scfbio-iitd.res.in/software/drugdesign/lipinski.jsp
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Docking study

Docking studies were performed using AutoDock 4 to 
analyze the binding mode of the asterric acid derivatives 
to AChE (PDB ID: 1F8U) (Kryger et al. 2000). From the 
docking results, AChE interacted with compound 1 through 
14 amino acid residues, namely, Asp73, Trp85, Gly119, 
Tyr123, Ser124, Tyr132, Glu201, Ser202, Phe292, Tyr332, 
Phe333, His471, and Tyr 473. Hydrogen-bond interaction 
with Asp73, Gly119, Tyr123, Ser124, Tyr132, Glu201, 
and Ser202, π–π interactions with Trp85, π–σ interactions 
with Tyr332, π-alkyl interactions with Phe292, Phe333, 
and Tyr 473, and carbon–hydrogen bonds with His471 was 
observed (Fig. 6.1A–C). The methyl ester group of ben-
zene ring interacts with His471 by van der Waals force at 

a distance of about 3.12 Å, and with Ser202 by hydrogen 
bonding at a distance of about 2.12 Å. Whereas, AChE 
interacted with compound 2 through 15 amino acid resi-
dues, hydrogen bonds with residues Asp73, Gly119, Gly120, 
Tyr123, Ser124, Tyr132, Glu201, and Ser202, π–σ inter-
actions with Tyr332, π-alkyl interactions with Phe292 and 
Phe333, and carbon–hydrogen bonds with Thr82, Trp85, 
Asn86, and His471 (Fig. 6.2A–C). Compared to the interac-
tion between compound 1 and electric eel AChE, the ester 
bond site of methyl asterrate at the peripheral anion site 
formed hydrogen bond with Thr82 and Asn86. These two 
hydrogen bonds were the non-existent interaction between 
compound 1 and electric eel AChE, which may increase the 
interaction force between methyl asterrate and the peripheral 
anion site. Compound 3 interacted AChE through 14 amino 

H-Bonds Donor Acceptor

1A

2A

3A

1B

2B

3B

1C

2C

3C

Interactions

Conventional Hydrogen Bond
van der Waals Carbon Hydrogen Bond

Pi-Sigma Pi-Pi Stacked
Pi-Long Pair Amide-Pi Stacked

Pi-Alkyl
Pi-Pi T-shaped
Alkyl

Fig. 6  Diagrams the docking poses (A), interactions (B), and two-
dimensional interactions (C) of asterric acid (1), methyl asterrate (2), 
and ethyl asterrate (3) docked to AChE (PDB: 1F8U). The dashed 

lines represent bonding interactions. The interacting amino acid resi-
dues are labeled. The figures were generated using the Discovery Stu-
dio Visualizer software (Accelrys)
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acid residues. Compound 3 formed hydrogen bonds with 
residues Asp73, Gly119, Gly120, Tyr123, Ser124, Tyr132, 
Glu201, Ser202, π–σ interactions with residues Trp85, 
Tyr332, π-alkyl interactions Pro87, Phe292, and Phe333, 
while His471 exhibited carbon–hydrogen-bond interaction 
(Fig. 6.3A–C). The values of the free energy of binding 
(ΔG) for the ‘asterric acid–AChE’, ‘methyl asterrate–AChE’ 
and ‘ethyl asterrate–AChE’ interactions were − 7.89, − 9.72, 
and − 9.74 kcal/mol, respectively, and their corresponding 
 IC50 values were estimated to be 66.7, 23.3, and 20.1 μM, 
respectively (Kryger et al. 2000; Shaikh et al. 2015). The 
active site of AChE was reported to be located at the bot-
tom of a deep and narrow gorge, consisting of a number of 
domains. The peripheral anion site is located at the entrance 
of the active pocket, which comprises residues Trp85 and 
Trp304. The catalytic active site for AChE of electric eels 
composed of Ser202, Glu325, His471, Trp85, and Trp304. 
From the docking results in Fig. 6, Compound 1–3 could 
enter the active cavity of electric eelfish AChE and interact 
with the amino acids of the peripheral anion sites in the 
active cavity and the main amino acids of the catalytic active 
center. Ser202 and His471 interact with the catalytic active 
center mainly by hydrogen bond, and Trp85 and so on form 
π–π stacking interaction. At the bottom of the gorge, the 
benzene ring structure of the diphenyl ether interacted with 
Trp85 via π–π stacking, and the oxygen atom of the ester 
group created a hydrogen bond with the hydroxyl group of 
Tyr123 (Xu et al. 2020; Miles and Ross 2021). In summary, 
the asterric acid derivatives can interact with both periph-
eral activity sites (PAS) and catalytic activity sites (CAS) 
of AChE.

Discussion

AChEIs were initially isolated from plants (Su et al. 2017). 
However, the production of AChEIs through plant extrac-
tion processes is limited due to the lack of natural plant 
resources. Meanwhile, marked-available AChEIs derived 
from plants showed a lot of disadvantages such as low bio-
availability and other abdominal side effects. Thus, explor-
ing other alternatives of AChEIs derived from microbial 
sources with different niches is a must (Su et al. 2017; Zaki 
et al. 2020). Endophytes are a rich source of bioactive and 
chemically novel compounds with huge medicinal and agri-
cultural potential. Furthermore, they can produce bioactive 
substances identical or similar to those of host plants (Su 
et al. 2017; Zaki et al. 2020). Hence, searching for a natural, 
cost-effective, and sustainable source of effective AChEIs 
from endophytes has become an attractive subject for many 
researchers (Su et al. 2017; Zaki et al. 2020). So far, vari-
ous structural types of AChEIs, including alkaloids, terpe-
noids, and other compounds, were found in fungi, especially 

endophytic fungi (Table 2), suggesting that fungi represent 
valuable, novel, and alternative resources with good AChE 
inhibitory activity (Su et al. 2017; Zaki et al. 2020). To date, 
more than 300 endophytic fungal isolates from H. serrata 
have been isolated, of which 9 endophytic fungal strains 
can produce Hup A (Cao et al. 2021). Additionally, aver-
toxin B isolated from endophytic fungi of H. serrata showed 
AChE inhibitory activity  (IC50, 14.9 μM) (Wang et al. 2015). 
Herein, we also isolated diphenyl ethers AChEIs from endo-
phytic fungi of H. serrata.

The existed studies showed that fungal AChEIs displayed 
different AChE inhibitory activity with  IC50 from 0.026 μM 
to 280 μM (Table 2). Our result showed that asterric acid 
derivatives (compounds 1–3) exhibited AChE inhibitory 
activities with  IC50 values of 66.7, 23.3, and 20.1 μM, 
respectively. Compared to  IC50 values of other AChEIs 
derived from fungi, the asterric acid derivatives exhibited 
moderate AChE inhibitory activity (Table 2). Meanwhile, 
asterric acid derivatives have no inhibitory activities against 
BuChE (Table 1), indicating that asterric acid derivatives 
have high selectivity.

According to the available reports, the asterric acid deriv-
atives were firstly isolated from the fermentation broth of 
Aspergillus terreus in 1960 (Curtis et al. 1960). Thereafter, 
these metabolites were gradually discovered in fungi that 
belong to different genera, such as Penicillium frequentans 
(Mahmoodian and Stickings 1964), Oospora sulfureaochra-
cea (Natori and Nishikawa 1962), Scytalidium spp. (Stermits 
et al. 1973), Pestalotiopsis spp. (Ogawa et al. 1995; Liu et al. 
2009), Phoma sp. (Jayasuriya et al. 1995), Geomyces sp. (Li 
et al. 2008), and A. flavipes (Zhang et al. 2016), as well as 
in endophytic fungi, such as Neoplaconema napellum IFB-
E016 from Hopea hainanensis (Wang et al. 2006), Asper-
gillus sp. F1 from Trewia nudiflora (Lin et al. 2009), and 
Pseudogymnoascus sp. from the Antarctic marine sponge 
Hymeniacidon spp. (Figueroa et al. 2015). To the best of 
our knowledge, these three asterric acid derivatives were 
isolated from the genus Talaromyces for the first time.

Asterric acid and its analogs have attracted considerable 
interest as the first non-peptide endothelin-1-binding inhibi-
tion (Ohashi et al. 1992). Thus, asterric acid, as a vascular 
endothelial growth factor inhibitor and antibiotic, has been 
commercialized as a biological reagent and used in biologi-
cal and medical-related research (Tang et al. 2007). Further-
more, several asterric acid derivatives are useful for treating 
myocardial infarction and renal insufficiency (Curtis et al. 
1960). Asterric acid and its analogs also exhibit other good 
or excellent medicinal activities. Dimethyl 2,3-dimethoxy-
osoate and 2-(2-formyl-3-hydroxy-5-methylphenoxy)-5-hy-
droxy-3-methoxybenzoate displayed cytotoxicity against the 
K562 cell line (Liu et al. 2006) and low cytotoxic activity 
in HepG2 and Raji cells (Fang et al. 2012), respectively. 
Geomycins B and C displayed substantial antifungal activity 
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Table 2  Various AChEIs derived from fungi

Compounds Strains Sources Inhibitory activity 
against AChE  (IC50)

References

Alkaloid Dimeric indole deriva-
tives 1

Rubrobacter radiotol-
erans

Petrosia sp. 11.8 µM Li et al. (2015)

Dimeric indole deriva-
tives 2

13.5 µM

Quinolactacins A1 Penicillium citrinum Soil sample 280 µM Kim et al. (2001)
Quinolactacins A2 19.8 µM
Cytochalasin H Phomopsis sp. Cs-c2 Senna spectabilis 25.0 µg Chapla et al. (2014)
Penicinoline Penicillium steckii 

SCSIO 41,025
Mangrove 87.3 μM Chen et al. (2021)

Penicinoline E 68.5 μM
Meroterpene Arigsugacin I, Arig-

sugacins F, Territrem 
B

Penicillium sp. 
sk5GW1L

Kandelia candel, 
China

0.64 ± 0.08 µM Huang et al. (2013)

Isoaustinol Aspergillus sp. 16–5 Mangrove 2.50 µM Long et al. (2017)
Dehydroaustin 0.40 µM
Dehydroaustinol 3.00 µM
Arigsugacin Penicillium sp. 

FO-4259
Soil sample 1 nM Omura et al. (1995)

Sesquiterpenoid Colletotrichine B Colletotrichum gloe-
osporioides GT-7

Uncaria rhyncho-
phylla

38.0 ± 2.67 μg/mL Chen et al. (2019)

Armiloid A co-culture of Armil-
laria sp. and 
endophytic fungus 
Epicoccum sp.

Gastrodia elata 4.91 μM Li et al. (2019)

Talaromycin A Talaromyces marneffei Epilobium angustifo-
lium

12.63 μM Yang et al. (2021)

Diterpene Trachyloban-17,19-di-
oic acid

Syncephalastrum 
racemosum

– 0.06 μM Santos et al. (2018)

Polyketide Avertoxin B Endophytic fungus Huperzia serrata 14.9 μM Wang et al. (2015)
Koninginin T Phomopsis stipata Styrax camporum Pohl 10.0 μg (galantamine 

was employed as 
positive control at 
1.0 μg)

Biasetto et al. (2020)

Phenol 14-(2′, 3′, 5′-tri-
hydroxyphenyl) 
tetradecan-2-ol

Chrysosporium sp. Not clear 197 µM Sekhar Rao et al.( 2001)

Benzopyranones Palmariol B Hyalodendriella sp. 
Ponipodef12

Populus deltoides 115.31 μg/ml Meng et al. (2012b)
4-hydroxymellein 116.05 μg/ml
Alternariol 9-methyl 

ether
135.52 μg/ml

Botrallin 103.70 μg/ml
Oxaphenalenone
Xanthenone

Talaromycesone A Talaromyces sp. Strain 
LF458

Axinella verrucosa 7.49 ± 0.08 μM Wu et al. (2014)
Talaroxanthenone 1.61 ± 0.26 μM
Isopentenylxanthenone 2.60 ± 0.03 μM

Diketopiperazines Cyclo-(L-Val-L-Pro) Aspergillus sydowii Soil and a voucher 
specimen

0.36 ± 0.17 μmol  mL−1 Lima et al. (2018)

Lipopeptide Sinulariapeptides A Cochliobolus Lunatus 
SCSIO41401

marine alga Coelar-
thrum sp.

1.8 ± 0.12 μM Dai et al. (2020)
Sinulariapeptides B 1.3 ± 0.11 μM

Glycerol ether Phthalide glycerol 
ether

2.5 ± 0.21 μM

Cyclohexanoids Speciosin U Saccharicola sp. Eugenia jambolana 0.026 ± 0.005 mg/ml Chapla et al. (2020)
Carboxylic acid Trans-3,4-dihydro-

3,4-dihydroxy-
anofinic acid

0.053 ± 0.007 mg/ml
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against A. fumigatus and antimicrobial activities against 
Gram-positive and Gram-negative bacteria, respectively 
(Li et al. 2008). More recently, methyl asterrate, methyldi-
chloroasterrate, methyl 3-chloroasterric acid, monomethy-
losoic acid, and 2,4-dichloroasterric acid exhibited more 
potent inhibitory activities against α-glucosidase vs. acar-
bose (Wang et al. 2016a, b; Zhang et al. 2016). Herein, we 
showed for the first time that asterric acid and its derivatives 
displayed highly selective AChE inhibitory activities.

To further reveal the relationship between asterric acid 
derivatives and acetylcholinesterase and the reasons for 
the differences activities of asterric acid derivatives, the 
molecular docking analysis was carried out. Docking is a 
structure-based drug design method, which can effectively 
estimate the binding energy and conformation of drugs 
(Devidas et al. 2021). Docking results show that the three 
asterric acid derivative molecules could interact with PAS 
and CAS of eel AChE. One of the benzene rings of diphenyl 
ether binds through hydrogen bonding and π–π interaction 
with the key amino acid residues of peripheral sites, while 
another substituent of the benzene ring interacts with center 
of the catalytic activity. Among them, the hydrophobic ester 
bond and hydrophobic benzene ring formed a large hydro-
phobic pocket with hydrophobic amino acid residues such 
as Gly119, Gly120, Phe292, and Phe333. These interac-
tions enable the three small molecules to bind well to the 
electric eel AChE, and thus compete with the substrate to 
inhibit the AChE activity. Pan et al (2019) reported that lina-
rin improves the dyskinesia by inhibiting AChE. To assess 
whether linarin could dock with AChE and decipher mecha-
nism of linarin as AChEI, molecular docking simulation was 
used. The result shows that linarin may inhibit AChE by 
binding to the hydrophobic active site of the alkoxy sub-
strate including residues Phe 330 and Phe 331. This active 
site is different from our docking result of AChE inhibition 
by simultaneously binding to CAS and PAS. In comparison 
with the docking results of Devidas et al. 2021, our result 
is consistent with those of previous studies in which the 
same amino acid residues of AChE played an essential role 
in substrate binding. The  IC50 values of asterric acid (1), 

methyl asterrate (2), and ethyl asterrate (3) were 66.7, 23.3, 
and 20.1 µM, respectively, which suggests that the size and 
variety of the esterification substituent at C-8′ on the parent 
nucleus may contribute to the AChE inhibitory activities of 
these compounds. Moreover, a kinetic analysis revealed a 
mixed-type AChE inhibition of diphenyl ether compounds 
(Kou et al. 2021). Therefore, the AChE inhibitory activities 
of diphenyl ether compounds are important to identify their 
structure–activity relationships and design compounds with 
higher activity based on this lead compound. Accordingly, 
the asterric acid scaffold could be considered in the design 
of a new AChEI.

Conclusions

In the present study, three natural compounds asterric acid 
(1), methyl asterrate (2), and ethyl asterrate (3) possessed 
a diphenyl ether structure were isolated from endophytic 
fungal T. aurantiacus FL15 of H. serrata. These compounds 
exhibited potent AChE inhibitory activities, with  IC50 values 
of 66.7, 23.3, and 20.1 μM, respectively. Docking analysis 
results not only showed that they displayed selectivity inhib-
itory activities to AChE, and their action against AChE was 
related to esterification R groups of 8 carbon on the parent 
nucleus, but also demonstrated binding interactions with the 
PAS and CAS of the enzyme. According to the calculated 
log P values, all three compounds might pass the BBB. To 
the best of our knowledge, this study was the first to report 
on asterric acid derivatives that act as AChEIs. Asterric acid 
could be considered as a new lead scaffold to develop more 
potent AChEIs.
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Table 2  (continued)

Compounds Strains Sources Inhibitory activity 
against AChE  (IC50)

References

Oxysporone Pestalrone C Pestalotiopsis sp. 
YMF1.0474

– 33.90 μM Liu et al. (2021)

6-[1-hydroxy-(1S)-
pentyl]-4-methoxy-
(6S)-2H,5H-pyran-
2-one

81.54 μM

LL-P880β 16.43 μM

Pestalrone A 95.22 μM

https://doi.org/10.1007/s13205-022-03125-2
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