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Abstract
Bacillus spp. have been widely reported with the ability to control plant diseases. In this work, we analyzed the whole genome 
of LJBS06, which was isolated from grapevine rhizosphere soil. In view of physiological and biochemical characteristics, 
genome data, and phylogenetic analysis of 16S rRNA, LJBS06 was affiliated with Bacillus stercoris. LJBS06 showed 
antagonistic activities against a variety of plant pathogens. The inhibition rate of Magnaporthe oryzae was up to 75.05% 
and the inhibition rates of Colletotrichum gloeosporioides, Coniothyrium diplodiella, and Botrytis cinerea were all above 
50% in the plate assays. The genome of LJBS06 had a 4,154,362-bp circular chromosome, with an average GC content of 
43.96%, containing an 82,935-bp plasmid with a GC content of 35.18%. The circular chromosome of LJBS06 contained 4231 
protein-coding genes, 30 rRNA genes, and 87 tRNA genes, including genes related to the synthesis of plant defense-related 
enzymes and the promotion of plant growth. Meanwhile, 11 gene clusters involved in biosynthesis of secondary metabolites 
were present in the genome of LJBS06. In conclusion, our findings indicated that LJBS06 strain had the necessary genetic 
machinery to control plant pathogens and provided insights for future studies of the biocontrol mechanisms of B. stercoris 
LJBS06.
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Introduction

Bacillus species are spherical or rod-shaped bacteria, which 
can survive under harsh environmental for long period of 
time due to the formation of endospores (Nicholson et al. 
2000). Many Bacillus spp. were proved to be effective 
against broad-spectrum phytopathogens. B. amyloliquefa-
ciens, B. megaterium, B. licheniformis, and B. subtilis have 
been commercially produced as biocontrol agent (Chen 
et al. 2018). Some among them, specifically B. subtilis, were 
widely used to control plant pathogens and play important 
role in different agro-ecosystems (Ahemad and Kibret 2014; 

Blake et al. 2021). Recently, B. subtilis subsp. stercoris was 
promoted to species status as B. stercoris (Dunlap et al. 
2020). Many studies had investigated the potential of B. 
stercoris for biological control. For example, B. stercoris 
JS inhibited tobacco fungal and oomycete diseases through 
inducing plant resistance (Kim et al. 2015). B. stercoris 
Fmb60 isolated from compost, had significant broad-spec-
trum antimicrobial activities through producing aurantinins 
B–D to destroy pathogen cell membranes (Yang et al. 2016). 
Furthermore, B. stercoris A053, B. stercoris JNUCC and 
B. stercoris X2 showed strong antifungal activity against 
plant pathogens (Byun et al. 2020; Dhruw et al. 2020; Guo 
et al. 2015).

The occurrence of the diseases lead to crop yield and 
quality reduction, and chemical pesticides were the main 
way to control diseases. However, environmental pollu-
tion, pesticide residues, and fungicide resistance caused by 
pesticides were becoming more and more serious (Abou-
torabi 2018). The use of microorganisms as biocontrol 
agent was a powerful alternative to prevent and suppress of 
plant diseases. Besides, beneficial microorganisms could 
promote plant growth to enhance disease resistance. For 
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example, the consecutive application of B. amylolique-
faciens NJN-6 as biofertilizer controlled banana wilt by 
changing soil bacterial and fungal community composition 
(Fu et al. 2017). B. subtilis 9407 suppressed apple ring 
rot disease by producing lipopeptides (Fan et al. 2017). 
B. velezensis ZSY-1, B. subtilis PTS-394, and B. subti-
lis CF-3 released volatile organic compounds (VOCs) to 
promote plant growth and suppress plant pathogens (Gao 
et al. 2017, 2018; Qiao et al. 2017).

Bacillus species as benefit microorganisms were envi-
ronmentally friendly alternative to pesticides. It was able 
to inhabit a wide range of plant pathogens through diverse 
mechanisms, including the synthesis of defense-related 
enzymes, secondary metabolites, and systemically induced 
disease resistance (Blake et al. 2021; Valenzuela-Ruiz et al. 
2019). Meanwhile, Bacillus spp. also had the potential of 
promoting growth, helping plant to defend against patho-
gens indirectly. Defense-related enzymes like chitinases, glu-
canases, cellulases and proteases inhibited the growth and 
reproduction of pathogens by hydrolyzing the major com-
ponents of the fungal and bacterial cell walls (Miljakovic 
et al. 2020). A range of secondary metabolites produced by 
Bacillus species, such as ribosomally and non-ribosomally 
synthesized peptides, terpenes, siderophores as well as pol-
yketides are important weapons against plant pathogens 
(Kaspar et al. 2019). Ribosomally synthesized peptides, 
such as Bacteriocins, showed bactericidal activity against 
pathogens by interfering with the synthesis of the cell wall 
and forming pores in the cell membrane (Shafi et al. 2017). 
Cyclic lipopeptides including surfactin, iturin and fengycin 
families, were non-ribosomally synthesized peptides and 
acted against a wide range of plant pathogens by interact-
ing with the cell membrane to cause changes in structure 
and permeability of target cell (Djordje et al. 2018). Other 
synthesized antibiotics, such as siderophores and polyke-
tides showed diverse antifungal and antibacterial activities 
via diverse pathway. Bacillus spp. can also trigger resistance 
to protect the plant from attack against various pathogenic 
organisms by modifications of plant biochemical reaction 
and structures, activation of plant-resistance factors, and 
production of phenolic compounds and defensive enzymes 
(Shafi et al. 2017).

In this study, we isolated LJBS06 strain with biocon-
trol effects from grapevine rhizosphere soil and performed 
genome sequencing. Through morphological, physiologi-
cal, biochemical, phylogenetic and genome analysis, the 
LJBS06 strain was identified as B. stercoris. Various genes 
related to the biosynthesis of defense-related enzymes, sec-
ondary metabolites and the promotion of plant growth were 
found in the LJBS06 genome by genome annotation. These 
results provided a better understanding of the mechanisms 
of Bacillus spp. as biocontrol agents and the scientific basis 
for application and optimization.

Materials and methods

Bacterial isolation

Bacillus stercoris LJBS06 was isolated from the grapevine 
rhizosphere soil at Shanghai, China, in October 2019. Soil 
samples were collected from the rhizosphere about 20 cm 
from the ground and were dissolved in sterile NaCl solu-
tion (0.85% w/v) by vibrating violently for 2 min. The soil 
suspension was incubated at 80 °C for 30 min, then the 
supernatant was serially diluted (10−1–10−3) with sterile 
distilled water, and 100 μL aliquot from each dilution was 
spread on Luria–Bertani (LB) agar plate (5.0 g yeast extract, 
10.0 g peptone, 10.0 g NaCl and 15.0 g agar per liter, pH 
7.0) (Santana et al. 2008). After incubating for 24 h at 37 °C, 
milky white colonies with biofilm were sub-cultured on the 
LB agar plates using a streak method following Sari et al. 
(2019). The screened bacteria were co-cultured with Colle-
totrichum gloeosporioides, Coniothyrium diplodiella and 
Botrytis cinerea on PDA medium (200.0 g potato, 20.0 g 
glucose, 20.0 g agar per liter, pH 7.0). The strain LJBS06, 
which can inhibit the growth of the hyphae of above patho-
gens, was selected and stored at − 20 °C with glycerol.

Morphological, physiological and biochemical 
analysis

The morphological characteristics of bacterial colonies were 
observed after growing on LB plates for 24 h. Gram staining 
and spore staining were performed according to Khurshed 
and Shakoori (2005) method. The physiological character-
istics of LJBS06 were identified according to the procedures 
outlined in the Bergey Manual of Deterministic Bacteriology 
(Guerrero 2001). Plate analysis was performed to evaluate 
the activities of cellulase (Cel) and protease (Prt), accord-
ing to reported methods with modifications (Paudel and Qin 
2015; Rajput and Tiwari 2012). Test carboxymethyl cellu-
lose (CMC) plates (10.0 g CMC, 3.0 g yeast extract, 3.0 g 
K2HPO4, 1 g KH2PO4, 0.5 g MgSO4·7H2O, and 20.0 g agar 
per liter) and Prt plates (10.0 g casein, 3.0 g yeast extract, 
5.0 g Na2HPO4·12H2O, 5.0 g NaCl, and 20 g agar per liter) 
with LJBS06 were at 37 °C for 24 h to evaluate Cel and Prt 
activity. The Cel plate was stained with 0.1% (w/v) congo 
red solution for 30 min, and then washed with 1 M NaCl 
solution for 15 min. Experiments were repeated three times.

16S rRNA sequencing and phylogenetic analysis

According to the manufacturer's instructions, a commer-
cially available DNA extraction kit (Shanghai Sangon Bio-
tech Co., Ltd.) was used to extract and purify the DNA of 
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LJBS06. Forward primer 27F (5′-AGA​GTT​TGA​TCC​TGG​
CTC​AG-3′) and reverse primer 1492R (5′-ACG​GCT​ACC​
TTG​TTA​CGA​CTT-3′) were used for PCR amplification 
of the extracted DNA. The PCR product was sequenced 
by Shanghai Sunny Biotechnology Co., Ltd. Homologous 
sequences were searched and downloaded from EZBio-
cloud (https://​www.​ezbio​cloud.​net/) database, then aligned 
by Clustal X. MEGA 7.0 software was used to analyze and 
calculate the genetic distance between the sequences, and 
constructed the 16S rRNA phylogenetic tree according to 
neighbor-joining method.

Genome sequencing and bioinformatic analysis

Whole-genome sequencing was performed by the third 
generation single molecular sequencing technique based on 
the Oxford Nanopore Technologies (ONT) platform. The 
reads of the third generation single molecular sequencing 
were assembled into contigs using HGAP V4 and CANU 
v1.7.1 (Chin et al. 2016; Koren et al. 2017). The reads of the 
Next-Generation Sequencing were used to correct the con-
tigs by software Pilon v1.18 (Walker et al. 2014). Based on 
the OrthoANI algorithm, the average nucleotide identity of 
LJBS06 with closely related strains was compared through 
Jspecies software (http://​jspec​ies.​riboh​ost.​com/​jspec​iesws/) 
(Richter and Rossello-Mora 2009). Genome-to-Genome Dis-
tance Calculator (GGDC) v2.1 (https://​ggdc.​dsmz.​de/) was 
used to judge the species according to the whole genome 
information (Meier-Kolthoff et  al. 2013). GeneMarkS 
(http://​topaz.​gatech.​edu/​GeneM​ark/) was used to predict the 
open reading frame (ORF) of the bacterial genome (Bese-
mer et al. 2001). The tRNAscan-SE, Barrnap, Rfam (http://​
rfam.​xfam.​org/) were used for predicting tRNA genes, rRNA 
genes, and non-coding RNAs (Kalvari et al. 2018a, b; Lowe 
and Eddy 1997), respectively. Multiple databases were used 
to annotate protein-coding gene functions, including non-
redundant (NR) database (http://​ftp.​ncbi.​nih.​gov/​blast/​db/) 
(Buchfink et al. 2015), evolutionary genealogy of genes: 
Non-supervised Orthologous Groups (eggNOG) database 
(http://​eggno​gdb.​embl.​de/#/​app/​home/) (Jensen et al. 2008), 
Kyoto Encyclopedia of Genes and Genomes (KEGG) data-
base (http://​www.​genome.​jp/​kegg/) (Ogata et al. 1999), 
Swiss-Prot database (http://​www.​unipr​ot.​org/) (Boeckmann 
et al. 2003) and Gene Ontology (GO) database (http://​www.​
geneo​ntolo​gy.​org/) (Ashburner et al. 2000). The graphical 
views of genome alignments was completed by CGView 
(http://​stoth​ard.​afns.​ualbe​rta.​ca/​cgview_​server/) (Chin et al. 
2016). In addition, signal peptides and transmembrane heli-
ces were predicted by SignalP v4.1 (Petersen et al. 2011) 
and TMHMM v2.0 (Chen et al. 2003), respectively. Island-
Viewer v4 (Bertelli et al. 2017), hmmscan v3.2.1 (Krogh 
et al. 1994), and CRISPR finder (Grissa et al. 2007) were 
used to predict genomics islands (GIs), carbohydrate active 

enzyme (CAZy), and clustered regularly interspaced short 
palindromic repeats (CRISPRs), respectively. AntiSMASH 
v6.0 (https://​antis​mash.​secon​darym​etabo​lites.​org/) was used 
to identify the putative secondary metabolite genes in the 
LJBS06 genome (Blin et al. 2021).

Enzymatic assays

LJBS06 was cultured in LB liquid medium using an orbital 
shaker at 180 rpm, 37 °C for 48 h. The cell-free supernatant 
of LJBS06 was obtained by centrifuging fermentation solu-
tion at 12,000×g at 4 °C for 10 min and sequentially filtered 
through a 0.22 μm organic filter membrane. The supernatant 
was used for determining enzymatic activities (Mohammad 
and Alireza 2007).

A modified quantitative estimation assay using 3,5-dini-
tro salicylic acid (DNS) method was used to measure the 
activities of chitinase (Liang et al. 2014), chitosanase (Liang 
et al. 2014), and cellalase (Miller 1959). Briefly, 1% (w/v) 
colloidal chitin, 5% (w/v) colloidal chitosan, and 1% (w/v) 
CMC in 50 mM phosphate buffer (pH 6.0) were used as 
the substrate for the measurement of chitinase, chitosanase, 
and cellalase activities, respectively. One unit (U) of these 
enzymes was defined as 1 μmol of N-acetyl-d-glucosamine, 
d-glucosamine, and d-glucose formed, respectively, per min. 
Protease activity was assayed using casein as a substrate 
with the method according to Yang et al. (2012). One unit 
of protease activity caused the production of 1 μg of tyrosine 
per min.

Polyphenol oxidase (PPO) activity assay was assayed 
with the method by Mayende et al. (2006). One unit of 
PPO activity was defined as a change in absorbance at 
420 nm of 0.01 per min. For superoxide dismutase (SOD) 
activity determination, each sample and substrate (10 μM 
cytochrome c, 50 μM xanthine, and sufficient xanthine oxi-
dase) were reacted in 50 mM potassium phosphate buffer 
(pH 7.8) at 30 °C (Hakamada et al. 1997). One unit of SOD 
activity was defined as the amount of protein required to 
inhibit the reduction rate of cytochrome c by 50%. The activ-
ity of peroxidase (POD) was measured according to Moham-
mad and Alireza (2007) with modification. One unit of POD 
activity caused a change in absorbance at 470 nm of 0.01 
per min. Catalase activity (CAT) assay was measured with 
the method by Xu et al. (2020a). One unit of CAT resulted 
in releases 1 μmol H2O2 per min.

Antifungal activity

Magnaporthe oryzae, Colletotrichum gloeosporioides, 
Coniothyrium diplodiella, Phytophthora capsica, Fusarium 
graminearum, Fusarium solani, Exserohilum rostratum are 
were cultured in a dark incubator at 28 ± 1 °C. Botrytis 
cinerea, Fusarium equiseti, Verticiltium dahliae, Sclerotinia 

https://www.ezbiocloud.net/
http://jspecies.ribohost.com/jspeciesws/
https://ggdc.dsmz.de/
http://topaz.gatech.edu/GeneMark/
http://rfam.xfam.org/
http://rfam.xfam.org/
http://ftp.ncbi.nih.gov/blast/db/
http://eggnogdb.embl.de/#/app/home/
http://www.genome.jp/kegg/
http://www.uniprot.org/
http://www.geneontology.org/
http://www.geneontology.org/
http://stothard.afns.ualberta.ca/cgview_server/
https://antismash.secondarymetabolites.org/
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selerotiorum, Fusarium oxysporum were cultured in a dark 
incubator at 22 ± 1 °C. The above pathogens were cultured 
on PDA medium and stored at 4 °C. The antagonistic activ-
ity of LJBS06 was evaluated using dual culture on PDA 
plates (Zhang et al. 2017). After activating LJBS06 on the 
LB medium, the activated strain was streaked horizontally 
in the middle of a plate (9 cm diameter) with PDA medium. 
Two discs (6 mm diameter) of the same pathogen were 
placed at 2.2 cm from the center of the plate, one on the right 
and one on the left of the LJBS06. Pathogen discs placed on 
the PDA plates without LJBS06 strain served as the control 
(Zhang et al. 2016). The inhibitory area of the treatment was 
observed and measured when the hyphae of the control were 
overgrown. The antagonistic activity was expressed as the 
rate of inhibition of mycelial growth compared to the con-
trol, following the equation: ((R1−R2)/R1) × 100%. R1 and 
R2 were the radii of the pathogen mycelium in the control 
and treatment, respectively (Zhang et al. 2016). Each treat-
ment was repeated three times, and each replicate consisted 
of three samples.

Statistical analysis

All data were analyzed by one-way analysis of variance 
(ANOVA), using SPSS 22.0 (SPSS Institute, Chicago, IL). 
Data were expressed as the means of replicates with standard 
errors. Significance analysis between means was compared 
by the least significant difference (LSD) test (p = 0.05).

Results and discussion

Identification and characterization of LJBS06

Bacillus stercoris LJBS06 was a gram-positive, spore-pro-
ducing, rod-shaped and aerobic bacterium, the colonies of 
which on LB plates were rough, creamy white, with uneven 

wavy edges and a dry wrinkle on the surface (Fig. S1). 
According to physiological and biochemical characteristics 
(Table 1), LJBS06 belonged to Bacillus genus. To further 
understand the genetic relationships between LJBS06 with 
other Bacillus strains, the 16S rRNA sequence of LJBS06 
was compared by the EZBioCloud database. LJBS06 had 
100% 16S rRNA similarity with type strain B. stercoris 
JCM 30051 (MN536904). Strains showing 98.7% or higher 
16S rRNA similarity with the sequence of LJBS06 were 
selected. These selected strains were compared with LJBS06 
at the genome level by average nucleic identity based on 
Blast + (ANIb), MUMmer (ANIm) and genome-to-genome 
distance calculator (GGDC) via BLAST. The estimate values 
of ANIb, ANIm, and GGDC between strains LJBS06 with B. 
stercoris JS were 98.93%, 99.06% and 92.3%, respectively 
(Table 2). Based on the cut-off values for species delimi-
tation for ANI > 95–96% and GGDC > 70% (Chun et al. 
2018), LJBS06 strain was affiliated with B. stercoris. The 
phylogenetic tree using the 16S rRNA gene (MW940707) 
was constructed with the neighbor-joining method confirm-
ing the taxonomic position of LJBS06 (Fig. 1). LJBS06 was 
identified as B. stercoris by morphological, biochemical, 
and molecular analysis. It has been confirmed that B. ster-
coris had strong antifungal activity against plant pathogens 
(Byun et al. 2020; Dhruw et al. 2020; Guo et al. 2015). 
Strain LJBS06 as B. stercoris may be effective against a 
broad range of pathogenic microorganisms.

Genomic features of B. stercoris LJBS06

Minimum information about the genome sequence (MIGS) 
of B. stercoris LJBS06 is presented in Table S1. The com-
plete genome of B. stercoris LJBS06 contained a circular 
chromosome and a plasmid. The chromosome sequence 
was 4,154,362 bp with an average GC content of 43.96%. 
The full length of the plasmid sequence was 82,935 bp 
and the GC content was 35.18%. There was a total of 4231 

Table 1   Physiological and 
biochemical characteristic of B. 
stercoris LJBS06

“+, −” stand for positive or negative of the reaction results

Properties Activity Properties Activity

Gram stain + Utilization of citrate +
Hydrolysis of starch + gelatin liquefaction test +
Methyl red test − Anaerobic growth −
Hydrogen sulfate + Glucose +
Catalase test + α-galactose +
Voges–Proskauer test + Sucrose +
KOH reaction − Mannitol +
Nitrate reduction + Xylose +
Tyrosine hydrolysis − Fructose +
Growth in NaCl at concentra-

tion (2.5 ± 8.5%)
+ Growth at different pH (4.5 ± 10.0) +
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ORFs predicted in the genome with 30 rRNA genes and 
87 tRNA genes in the chromosome (Table 3). A graphical 
circular map of the chromosome of the LJBS06 was shown 
in Fig. 2A. The plasmid contained 95 ORFs, in which the 
function of most genes was unclear. A circular map of the 
plasmid was presented in Fig. 2B. 228 (5.39%) and 1115 
(26.35%) of the ORFs on the chromosome were classi-
fied into different groups using the SignalP and TMHMM 

databases, respectively (Table S2). Moreover, the LJBS06 
encoded 111 secreted proteins, 269 genomic islands, 158 
CAZys and 2 CRISPR loci (Table S2). The genome size, 
GC content and number of genes of LJBS06 were similar to 
those of known Bacillus spp. genomes. To further analyze 
genetic information, ORFs in the LJBS06 chromosome were 
classified into different COG categories using eggNOG data-
base. There were 3540 ORFs in the LJBS06 chromosome, 

Table 2   Genome-to-genome comparison of B. stercoris LJBS06 with known related strains or type strains (16S rRNA ≥ 98.7%)

a Strains from EZBiocloud (https://​www.​ezbio​cloud.​net/) database
b ANIb: average nucleotide identity (ANI) calculation based on BLAST + 
c ANIm: average nucleotide identity (ANI) calculation based on MUMmer
d GGDC: silico DNA–DNA hybridization calculation using Genome-to-Genome Distance Calculator

Strainsa Genbank accession Size (Mb) GC (%) ANIbb (%) ANImc (%) GGDCd (%)

Bacillus stercoris JS NC_017743.1 4.12 43.9 98.93 99.06 92.3
Bacillus stercoris D7XPN1T JHCA01000001.1 4.08 43.8 98.48 98.69 88.5
Bacillus tequilensis KCTC 13622T NZ_AYTO01000001.1 3.98 43.9 91.17 91.60 44.4
Bacillus halotolerans FJAT-2398T NZ_KV440970.1 4.09 43.9 86.71 87.57 32.4
Bacillus cabrialesii TE3T RJVS01000001.1 4.08 44.1 91.89 92.26 46.8
Bacillus inaquosorum KCTC 13429T CP029465.1 4.35 43.8 92.48 92.76 48.6
Bacillus spizizenii TU-B-10T NC_016047.1 4.21 43.8 92.42 92.87 49.4
Bacillus subtilis NCIB 3610T CP020102.1 4.30 43.3 95.18 95.45 62.7
Bacillus mojavensis RO-H-1T NZ_AYTL01000001.1 3.94 43.7 86.62 87.42 32.2
Bacillus vallismortis DSM 11031T CP026362.1 4.29 43.8 90.50 91.04 42.5
Bacillus nakamurai NRRL B-41091T NZ_LSAZ01000001.1 3.69 45.3 76.82 83.62 20.7
Bacillus amyloliquefaciens DSM 7T NC_014551.1 3.98 46.1 76.21 84.49 20.8
Bacillus siamensis KCTC 13613T NZ_AJVF01000001.1 3.78 46.3 76.43 84.47 20.9
Bacillus velezensis NRRL B-41580T LLZC01000001.1 4.03 46.3 76.41 84.32 20.6
Bacillus atrophaeus NRS_213T NZ_LSBB01000001.1 4.16 43.2 79.23 83.89 22.1
Bacillus licheniformis ATCC 14580T CP034569.1 4.24 46.2 72.19 85.39 19.1

Fig. 1   Phylogenetic tree based 
on 16S rRNA gene sequences 
showing the relationship 
between B. stercoris LJBS06 
and closely related Bacillus 
species. The phylogenetic 
tree was constructed using 
the Neighbor-Joining method. 
Bootstrap values (%) based on 
1000 replications were given at 
nodes. The scale bar indicates 
0.005 nucleotide substitution 
per site

https://www.ezbiocloud.net/
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among which 6.71% were associated with amino acid trans-
port and metabolism, 6.31% with carbohydrate transport and 
metabolism, 4.30% with energy production and conversion, 
1.70% with secondary metabolites biosynthesis, transport 
and catabolism, and 0.85% with cell motility (Table S3). 
Amino acid transport and metabolism, carbohydrate trans-
port and metabolism, and energy production and conversion 

may endow LJBS06 with a wide variety of antimicrobial 
compounds, such as lytic enzymes. The abundance of sec-
ondary metabolites biosynthesized by LJBS06 played key 
roles for antagonism. Overall, these biological functions 
were important for the biocontrol function of LJBS06.

Antifungal activity of LJBS06

In the antagonistic plate assays, LJBS06 had a broad inhibi-
tory spectrum against plant pathogens. The inhibition rate 
of M. oryzae (rice blast) was up to 75.05% and the inhibition 
rates of C. gloeosporioides, C. diplodiella, and B. cinerea 
were all above 50% (Table S4). Prevention and cure of crop 
diseases was the primary condition for the development of 
agriculture. LJBS06 had the potential to inhibit the growth 
of pathogens and replace pesticides as environmentally 
friendly biocontrol agent. Moreover, the mycelia of C. gloe-
osporioides on the dual culture plate were severely enlarged, 
twisted and broken, with the leakage of intracellular proto-
plasm under microscopic observations (Fig. S2), whereas no 
similar changes were noted in the control mycelia. Enzyme 
assays showed B. stercoris LJBS06 synthesized Prt and Cel 

Table 3   Genome features of B. stercoris LJBS06

The reads of Nanopore are assembled into contigs using HGAP and 
CANU. The reads of the Illumina are used to correct the contigs from 
Nanopore. Genome features statistics are from assembly of Nanopore 
sequencing

Attribute Chromosome Plasmid

Genome size (bp) 4,154,362 82,935
Number of contigs 1 1
Average GC content (%) 43.96 35.18
Protein coding genes 4231 95
rRNA genes (5S, 16S, 23S) 30 0
tRNA genes 87 2
Genes in internal length 579,172 13,008

Fig. 2   The genome map of the chromosome (A) and the plasmid (B) 
of B. stercoris LJBS06 using the CGview server. From inner to outer, 
ring 1 represents the scale marks of the genome. Ring 2 represents 
the GC skew (green, positive skew; purple, negative skew). Ring 3 
represents the G + C content. Ring 5 represents reverse CDSs and 

ring 4 represents reverse COG Annotated coding sequences. Ring 6 
represents forward CDSs. Ring 7 represents forward COG Annotated 
coding sequences. Very short features were enlarged to enhance vis-
ibility. Clustered genes, such as several rRNA genes, may appear as 
one line due to space limitation
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(Fig. S3). Lytic enzymes, such as Prt and Cel, can hydrolyze 
the major components of cell walls, resulting in mycelial 
expansion of pathogens (Shafi et al. 2017). In general, B. 
stercoris LJBS06 produced lytic enzymes and showed a 
broad inhibitory spectrum against plant pathogens (Fig. 3).

Genes involved in defense‑related enzymes 
and plant growth promotion

Defense-related enzymes produced by Bacillus spp. are 
active in response to disease defense and considered to be 
important features in biocontrol activities (Leal et al. 2021). 
Bacillus species producing mycolytic enzymes like chi-
tinase and cellulase are effective against a variety of plant 
pathogenic diseases by degrading the cell wall of pathogens 
(Shafi et al. 2017). For example, Bacillus sp. X-b secret-
ing a complex of hydrolytic enzymes had broad-spectrum 
activity against pathogenic fungi (Helisto et al. 2001). The 
genes encoding chitinase (chi01), chitosanase (csn), cellu-
lase (bglC, bglS, and bglH) and 35 genes related to proteases 
were present in the genome of LJBS06 (Table S5).

It was reported that defense-related oxidative enzymes 
such as PPO and PO produced by Bacillus species involve in 
plant defense by inducing lignin and phenol oxidation. The 

production of PPO and POD in plant–pathogen interactions 
reduced severity of disease symptoms, showing oxidative 
enzymes played an important role against plant pathogens 
(Jiang et al. 2018; Thipyapong and Steffens 1997). Besides, 
SOD and CAT produced by Bacillus spp. reduced the level 
of reactive oxygen species in plant, alleviating pathogens 
from plant tissue damage (Leal et al. 2021). There were 
genes involved in the synthesis of oxidoreductases, including 
PPO (ylmD), SOD (sodA), POD (osmC and oxyR), and CAT 
(katE) in Bacillus stercoris LJBS06 (Table S5). The function 
of annotated genes related to the synthesis of defense-related 
enzymes was validated at a metabolic level, observing that 
LJBS06 was able to produce chitinase (0.10 ± 0.00 U mL−1), 
chitosanase (0.10 ± 0.00 U mL−1), cellulase (0.50 ± 0.02 U 
mL−1), protease (1.26 ± 0.03 U mL−1), PPO (2.10 ± 0.08 
U mL−1), SOD (3.28 ± 0.22 U mL−1), POD (145.65 ± 5.34 
U mL−1), and CAT (3.01 ± 0.13 U mL−1). It was widely 
reported that Bacillus spp. promoted growth indirectly 
enhancing plant resistance (Shafi et al. 2017). The genome 
of B. stercoris LJBS06 contained a series of genes asso-
ciated with plant growth promotion, including phosphate 
metabolism (pho and pst), nitrogen metabolism (nif and glt), 
IAA production (trpABCDEFS), volatile organic compounds 
(aco, acu, als, and isp), and arginine (spe) (Table S6).

Fig. 3   Antagonistic assay of B.stercoris LJBS06 against 12 patho-
gens. Uppercase letter indicated the treatment and lowercase letter 
indicated the control. A Magnaporthe oryzae. B Colletotrichum gloe-
osporioides. C Coniothyrium diplodiella. D Botrytis cinerea. E Phy-

tophthora capsica. F Verticiltium dahliae. G Fusarium graminearum. 
H Exserohilum rostratum. I Fusarium solani. J Sclerotinia selerotio-
rum. K Fusarium oxysporum. L Rhizoctonia solani 
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Genes related to antifungal secondary metabolites

The bioactive secondary metabolites from Bacillus species 
have been applied as plant pathogen control agents (Kaspar 
et al. 2019). Eleven secondary metabolite biosynthetic gene 
clusters were found, covering about 13.4% of the genome of 
LJBS06. There were two non-ribosomal peptide synthetase 
(NRPS) gene clusters, two terpene gene clusters, one type 
III polyketides (T3PKS) gene cluster, one sactipeptide gene 
cluster, one NRPS-T1PKS gene cluster, one NRPS-T3PKS-
transAT-PKS gene cluster, one NRPS-betalactone gene 
cluster, one LAP-thiopeptide gene cluster, and one ‘other’ 
type of gene cluster in the genome of B. stercoris LJBS06 
(Table 4). Gene cluster 1 had 82% similarity with surfactin 

biosynthetic clustered genes, suggesting that LJBS06 could 
produce a new kind of surfactin. Gene clusters 3, 4, 8, 10, 
and 11 had 100% similarity with bacillaene, fengycin, bacil-
libactin, subtilosin A, and bacilysin biosynthetic clustered 
genes, respectively. The above highly similar gene clusters 
and their core genes are shown in Fig. 4. In addition, gene 
cluster 2 had 18% similarity with zwittermicin A and 4 of 
the 11 clusters did not show any similarity clusters in the 
database.

Cyclic lipopeptides, synthesized by NRPSs, were well 
known for their powerful antagonistic action against a 
wide range of plant pathogens (Fira et al. 2018). Surfactins 
exhibited a wide range of antimicrobial and antiviral activi-
ties relying on its membrane permeabilization properties 

Table 4   Gene clusters involved in synthesis of biocontrol metabolites in LJBS06

a NRPS non-ribosomal peptide synthetase, NRP non-ribosomal peptide, PKS polyketide synthetase, AT acetyltransferase, T3PKS type 3 PKS. 
Other: cluster containing an antimicrobial protein that does not belong to any other category

Cluster Typea Size (kb) Position Most similar known cluster Similarity (%)

1 NRPS 63.2 357,175–420,398 Surfactin NRP:Lipopeptide 82
2 NRPS, T1PKS 80.6 710,921–791,531 Zwittermicin A NRP + Polyketide 18
3 Terpene 20.4 1,175,633–1,195,994 Unknown
4 NRPS, T3PKS, transAT-PKS 105.2 1,832,431–1,937,617 Bacillaene Polyketide + NRP 100
5 NRPS, betalactone 82.5 2,008,860–2,091,338 Fengycin NRP 100
6 Terpene 21.9 2,168,919–2,190,817 Unknown
7 T3PKS 41.1 2,237,432–2,278,529 Unknown
8 NRPS 49.7 3,171,413–3,221,154 Bacillibactin NRP 100
9 LAP, thiopeptide 30.1 3,237,741–3,267,849 Unknown
10 Sactipeptide 21.6 3,766,861–3,788,471 Subtilosin A RIPP:Thiopeptide 100
11 Other 41.4 3,791,484–3,832,902 Bacilysin Other 100

Fig. 4   The known secondary metabolite core gene clusters identified in B. stercoris LJBS06. AntiSMASH 6.0 was used to predict potential sec-
ondary metabolite biosynthetic gene clusters. A minimum of 80% cut-off was set for visualization of gene clusters
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(Kaspar et  al. 2019). For example, the mycelia of phy-
topathogens were significantly enlarged, twisted and broken 
after coculturing with surfactin-producing B.velezensis ZF2  
(Xu et al. 2020a, b). Fengycins showed the spectrum of anti-
fungal activity through a membrane disruption mechanism 
to cause the death of pathogens. Importantly, surfactins as 
biosurfactants working together with fengycin, exhibited 
a synergistic inhibitory effect on phytopathogens. Cyclic 
lipopeptides (surfactin and fengycin) were secreted from B. 
amyloliquefaciens FJAT-2349 as potential biocontrol agents 
against tomato bacterial wilt (Chen et al. 2019). Surfactin 
and fengycin from B. subtilis contributed to the highly active 
against grape downy mildew (Li et al. 2019). The lipopep-
tides surfactin and fengycin as signals induce plant defense 
responses by increasing the expression of the biocontrol 
genes PR-1, PR-4, SOD-2, PIN-1, and PIN-3 (Ongena et al. 
2007; Yanez-Mendizabal and Falconi 2021). Besides, sur-
factins were essential for biofilm formation and root coloni-
zation, which facilitated the ability of promoting growth to 
increase plant resistance. Primary gene clusters responsible 
for surfactin (srfAA to srfAD) and fengycin (fenA to fenE) 
biosynthesis were present in the genome, indicating that B. 
stercoris LJBS06 has the potential to produce surfactin and 
fengycin to control diseases.

In addition, gene clusters encoding other antimicrobial 
compounds were also present in the genome of LJBS06, 
including zwittermicin A (zmaA to zmaQ), bacilysin (bacA 
to bacE), siderophore bacillibactin (dhbABCDEF), bacil-
laene (bae) and subtilosin A (sbo and ywiA). Zwittermicin 
A was a highly polar, water-soluble, broad-spectrum lin-
ear aminopolyol antibiotic with significant activity against 
bacteria, fungi, and protists. For example, B. cereus UW85 
had the ability to suppress damping-off of alfalfa by pro-
ducing Zwittermicin A (Milner et al. 1996). Bacilysin as a 
dipeptide antibiotic exhibited activity against a wide range 
of pathogens by destroying the structure of the microbial 
cell wall. Bacillus spp. with the production of bacilysin were 
able to control plant diseases, such as bacterial diseases of 
rice, and potato ring rot (Wu et al. 2015a, b). Siderophores 
as metal-chelating can deprive iron to alter pathogen fitness 
and aggressiveness, especially under iron starvation con-
ditions (Khan et al. 2018). Furthermore, microbial sidero-
phores provided iron for plant growth to enhance plant dis-
ease resistance indirectly. Bacillus species able to produce 
siderophores as an important mechanism for inhibiting the 
growth of phytopathogens, has been proven to be a potential 
biocontrol agent (Hu and Xu 2011). Bacillaene, a polyene 
antibiotic, selectively inhibits protein biosynthesis in prokar-
yotes (Olishevska et al. 2019). Subtilosin A as a cyclical 
peptide, against phytopathogenic fungi and bacterial, were 
detected in the genome. The existence of bacillaene and sub-
tilosin A, which worked with other bioactive compounds, 
enhanced the antibacterial activity of LJBS06. In summary, 

there were genes responsible for surfactin, fengycin, zwitter-
micin A, bacilysin, siderophore bacillibactin, bacillaene, and 
subtilosin A in the genome of LJBS06, showing that LJBS06 
had the potential as natural antagonists of phytopathogens 
through multiple secondary metabolites.

Conclusion

Bacillus stercoris LJBS06 isolated from grape rhizosphere 
soil, had a broad inhibitory spectrum against fungal patho-
gens. Whole-genome sequencing and genomic analysis sug-
gested that it encoded numerous potential genes responsible 
for plant biocontrol mechanisms. B. stercoris LJBS06 har-
bored genes involved in the production of plant defense-
related enzymes to prevent further infection of pathogens 
and the promotion of plant growth to enhance resistance 
indirectly. Meanwhile, there were 11 gene clusters related 
to the synthesis of secondary metabolites as important anti-
microbial compounds. In conclusion, our data indicated 
that LJBS06 strain had the necessary genetic machinery 
to control plant diseases through potential direct and indi-
rect mechanisms, including production of defense-related 
enzymes, secondary metabolites, and promotion of plant 
growth. These features made it a promising candidate for 
field application.

Genome sequence accession number

The complete sequence of the chromosome of the strain B. 
stercoris LJBS06 and the sequence of the plasmid have been 
deposited in GenBank database under the accession number 
CP070483 and CP070484, respectively. The strain B. ster-
coris LJBS06 was publicly available from China General 
Microbiological Culture Collection Center (CGMCC) under 
the accession number CGMCC No. 21263.
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