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Abstract
Long noncoding RNAs (lncRNAs) are implicated in various biological processes, such as cell proliferation, differentiation, 
apoptosis, migration, and invasion. They are also key players in various biological pathways. LncRNA was considered as 
‘translational noise’ before 1980s. It has been reported that lncRNAs are aberrantly expressed in different cancers, either as 
oncogene or tumor suppressor gene. Therefore, more and more lncRNAs are recognized as potential diagnostic biomarkers 
and/or therapeutic targets. As competitive endogenous RNA, lncRNAs can interact with microRNA to alter the expression 
of target genes, which may have extensive clinical implications in cancers, including diagnosis, treatment, prognosis, and 
chemoresistance. This review comprehensively summarizes the functions and clinical relevance of lncRNAs in digestive 
system cancers, especially as a potential tool to overcome chemoresistance.

Keywords Long noncoding RNA · Diagnostic biomarker · Colorectal cancer · Gastric cancer · Pancreatic cancer · 
Chemoresistance

Introduction

Noncoding RNA is a type of RNA that is transcribed, but 
not translated into protein, such as transfer RNA, ribosomal 
RNA, and microRNA. It has been demonstrated that non-
coding RNAs can act as key regulators of gene expression 

in diverse cellular systems, biological processes, and various 
pathways (Yu et al. 2019b; Ferre et al. 2016; Barangi et al. 
2019; Lin and Yang 2018). Long noncoding RNA (lncRNA) 
is defined as the transcripts exceeding 200 nucleotides that 
are not translated into protein. In the late 1980s and early 
1990s, lncRNA H19 and Xist were first found in mouse 
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(Brannan et al. 1990; Brockdorff et al. 1991). Since then, 
lncRNA has attracted significant attention and becomes 
one of the hot topics of research interest. lncRNAs can be 
divided into several subclasses (Fig. 1A) according to their 
genomic position related to the neighboring genetic code 
gene: sense, antisense, bidirectional or divergent, intronic 
and intergenic lncRNA (Herrera-Solorio et al. 2017). Sense, 
antisense, bidirectional, or divergent lncRNA, respectively, 
represent the transcription direction of lncRNA and its 
neighboring protein-coding genes, either in the same, or 
opposite, or at different directions. Conversely, intronic and 
intergenic lncRNA represent whether a lncRNA is tran-
scribed from the intron region of the gene or from the inter-
genic region. lncRNAs are generally, but not exclusively, 
spliced and transcribed by RNA polymerase II and were 
considered as ‘translational noise’ previously (Quinn and 
Chang 2016). However, increasing evidence has proven that 
lncRNAs perform many functions, such as mediating chro-
matin remodeling, acting as scaffold linking different pro-
teins interaction and regulate transcription regulation (Chen 
and Carmichael 2010). At the transcriptional level, the pro-
duction of mRNA can be affected by lncRNAs. Some lncR-
NAs gene are located at the promoter region, upstream of 
the coding gene, and can be transcribed into corresponding 
lncRNAs, which then acts as a cis-acting element to inter-
fere with the transcription of downstream genes; thereby, 
affecting the production of mRNA (Martens et al. 2004). 
Previous studies have also found that lncRNA can form a 
complex with ribonucleoprotein to regulate gene expression 

(Ponting et al. 2009). At post-transcriptional level, lncRNA 
can form complex with pre-mRNA, therefore, regulate the 
gene expression at post-transcription stage (Beltran et al. 
2008). Also, lncRNA can bind to miRNA and indirectly 
affect the downstream process.

LncRNAs are involved in many biological processes, 
including cell proliferation, migration, and invasion (Liu 
et al. 2017), differentiation (Chen et al. 2017c), metasta-
sis (Chen et al. 2017d), inflammation (Du et al. 2017b), 
angiogenesis (Li et al. 2017d), and metabolism (Fan et al. 
2017), and so can regulate the pathophysiological processes 
in cancer and other human diseases. Aberrant expression 
of lncRNAs is usually found in cancers, which is associ-
ated with tumorigenesis by promoting malignant biological 
behaviors of tumor cells, such as proliferation, invasion, and 
metastasis (Xiao et al. 2017a; Weidle et al. 2017). Cancer-
related lncRNAs can be oncogene or tumor suppressor gene 
depending on their dysregulated expression and correspond-
ing function.

The number of lncRNA-related studies is increasing rap-
idly and new lncRNAs are identified continuously, but their 
functions have not been completely characterized. In this 
mini-review, we briefly summarize the lncRNAs implicated 
in digestive system cancers and their clinical relevance, 
with a particular focus on the multiple roles of lncRNAs 
in genetic alteration, molecular mechanisms and signaling 
pathways involved in tumor progression, metastasis, and 
chemoresistance.

Fig. 1  A The type of lncRNAs. Sense, antisense, bidirectional or 
divergent lncRNA respectively, represent the transcription direction 
of lncRNA and its neighboring protein-coding genes, either in the 
same, or opposite, or at different directions. Intronic and intergenic 
lncRNA represent whether a lncRNA is transcribed from the intron 
region of the gene or from the intergenic region. B The roles and 
functions of lncRNA. I LncRNA can mediate gene expression in 
different ways: lncRNA can form complex with chromatin, different 
proteins or ribonucleoprotein, lncRNA can acts as cis-acting element 

to interfere with the transcription of downstream mRNA production, 
target gene will be released from miRNA when lncRNA sponge to 
miRNA. II LncRNAs are involved in many biological processes 
which are investigated in cancer study such as cell proliferation, 
apoptosis, migration, invasion, and lymph node metastasis. Aberrant 
expression of lncRNAs is usually found in cancers, and it has been 
proved to play an important role in various pathways as well as in 
chemoresistance study
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lncRNAs in cancers

Numerous reports have showed aberrant expression, various 
functions as well as chemoresistance of lncRNAs in different 
cancers (the functions and roles of lncRNAs are displayed 
in Fig. 1B). Some lncRNAs are up-regulated, as oncogenes, 
while others are down-regulated, as tumor suppressors.

Some lncRNAs are involved in many biological processes 
such as cell proliferation, migration, invasion, apoptosis, 
lymph node metastasis, and pathological differentiation 
(Liu et al. 2018f), although the specific mechanisms remain 
unclear so far. Some lncRNAs are functional in different 
pathways such as Wnt/β-catenin signaling pathway (Zhou 
et al. 2019a), p53 pathway, and AKT/mTOR signaling path-
way (Yu et al. 2017b). In addition, there are lncRNAs that 
are involved in more than one pathway such as lncRNA 
MEG3, NF-κB pathway, p53 signaling pathway, and PI3K/
Akt pathway (Zhang et al. 2017a, 2018g; Zhu et al. 2019b). 
miRNA is a type of noncoding RNA with 19–25 nucleotides. 
miRNA is involved in many aspects of biological regulation, 
including regulation of cell cycle, differentiation, develop-
ment, metabolism, and body aging. miRNA also serves as 
a potential tumor molecular marker. A change in miRNA 
expression is related to the progression of the tumor (Lee 
and Dutta 2009). lncRNAs may act as a regulator by target-
ing miRNA, functioning as a ‘sponge’ or competing endog-
enous RNA (ceRNA). Thus, it can diminish the regulatory 
effect of miRNAs on target mRNA. For instance, 3’-untrans-
lated region of lncRNA FOXD2-AS1 could directly bind to 
miR-150-5p in breast cancer (Jiang et al. 2019a); NR2F2-
AS1 functions as ceRNA that directly binds to miR-320b to 
regulate downstream target gene and promote tumorigen-
esis in nonsmall cell lung cancer (Zhang et al. 2018e); and 
lncRNA UCA1 regulates colorectal cancer through modu-
lating miR-28-5p, where UCA1 binds to miR-28-5p, then 
targets HOXB3 to mediate cell proliferation and migration 
of colorectal cancer cells (Cui et al. 2019). These lncRNAs 
can be potential therapeutic targets because they play piv-
otal functions via miRNA to modulate the malignancy and 
tumorigenesis of diverse cancers.

lncRNAs in digestive system cancers

Colorectal cancer (CRC) and gastric cancer are among the 
most common malignant cancers associated with high mor-
bidity and mortality. With the increasing cases of colorectal 
cancer, the development of diagnostic indicators for early 
diagnosis and treatment has become a common concern 
of many scientific and clinical researchers. It is currently 
known that the carcinoembryonic antigen level is a good 
tumor marker and can be used as a reference or an indicator 

in judging the disease development, treatment efficacy, 
as well as in monitoring and prognostic evaluation. How-
ever, the lack of high specificity and sensitivity is making 
it unsuitable and ineffective as an early diagnosis tool of 
colorectal cancer (Wang et al. 2014).

A study has shown that after a 5-year follow-up, around 
70% patients with gastric cancer (GC) died from this dis-
ease globally (Verdecchia et al. 2007). Smoking, alcohol 
drinking, eating habits, and Helicobacter pylori infection are 
significant risks of GC. The interaction between host-related 
factors and environmental factors is a key factor in the high 
mortality rate of GC. The patients were often diagnosed as 
GC in late stages, when the metastasis has occurred, and the 
prognosis is quite poor while the palliative chemotherapy 
is the main treatment method (Digklia and Wagner 2016). 
Pancreatic cancer (PC) is not common, but aggressive at 
high growth rate, often diagnosed at late stages. Owing to 
the poor early diagnosis, most patients have already lost the 
surgery opportunities when diagnosed. Although the median 
survival period after diagnosis is around 2–8 months, the 
5-year survival rate is only 5% which is largely contributed 
to the poor prognosis of the disease. The etiology of pancre-
atic cancer is unclear so far, and its occurrence and develop-
ment are an extremely complex process. Epidemiological 
investigation results have shown that the occurrence and 
development of pancreatic cancer are related to a variety of 
risk factors. Long-term smoking, high-fat diet, and chronic 
pancreatitis or concomitant diabetes are nongenetic factors 
in the onset of pancreatic cancer (Rebelo et al. 2017).

In the recent years, more studies have shown that lncRNA 
participates in the regulation of tumors at both molecular and 
cellular levels, rendering their potential as important indica-
tors for the diagnosis, treatment, and prognosis of digestive 
system cancer (Lv and Huang 2019; Deng et al. 2020; Gao 
et al. 2020). In addition, miRNAs have been proven to be 
involved in tumorigenesis and development, angiogenesis, 
metastasis, invasion, and apoptosis by inhibiting/promoting 
the expression of oncogene. The ceRNA regulatory network 
composed of lncRNA–miRNA–mRNA network has been 
revealed in digestive system cancer study (Gong et al. 2018; 
Lv and Huang 2019; Chen et al. 2017b). lncRNAs can bind 
to miRNAs as ceRNA, suppress the expression of miRNA, 
and negatively regulate the downstream target gene. Thus, 
by interfering the lncRNA expression, the proliferation, and 
invasion of cancer cells can be inhibited, and cancer pro-
gression can be prevented. Some lncRNAs are shared by 
different digestive system cancers, but function via different 
mechanisms. For example, lncRNA CRNDE acts as a regu-
lator by targeting miR-217, miR-136, miR-181a-5p (Han 
et al. 2017) in CRC, miR-384 in PC (Wang et al. 2017a), and 
miR-145 in GC (Hu et al. 2017). Several new lncRNAs are 
found only in a single cancer and implicated in some basic 
biological processes. Table 1 summarizes the functions and 
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clinical relevance of a wide range of lncRNAs in terms of 
digestive system cancer type.

lncRNA and tumor chemoresistance 
in digestive system cancers

Even though chemotherapy is currently an effective treat-
ment in cancer, chemoresistance is still one of the major 
barriers that leads to cancer relapse and eventually treatment 
failure (Zheng 2017). One of the underlying mechanisms 
of chemotherapy is to induce apoptosis, however, cancer 
cells may improve survival via autophagy and so show poor 
sensitivity to chemotherapy (Yang and Klionsky 2010). 
Some biological processes, such as epithelial–mesenchy-
mal transition (EMT) process could confer drug resistance 
(Mitra et al. 2015). Prominent activation of some signal-
ing pathways (e.g., Erk/MAPK and p38/MAPK pathways) 
has been reported in case of chemoresistance (Chung et al. 
2012). Interestingly, the regulation of lncRNA can induce 
drug resistance by interfering with the drug efflux system, 
drug metabolism, DNA repair, cell cycle, EMT, and oth-
ers. Table 2 summarizes the involvement and critical roles 
played by lncRNA in chemoresistance to several commonly 
used chemotherapy drugs in the treatment of digestive sys-
tem cancers.

Chemoresistance to 5‑fluorouracil (5‑Fu)

Among all the chemotherapeutic drugs, 5-Fu is the most 
commonly used in digestive cancers. LncRNA SLC25A25-
AS1 expression was significantly decreased in both serum 
and tumor tissues of CRC patients. In addition, it was 
reported that SLC25A25-AS1 was associated with EMT 
process. Upregulation of SLC25A25-AS1 led to declined 
mesenchymal characteristics such as mesenchymal marker 
vimentin and snail expression. Elevated levels of Erk phos-
phorylation and p38 downregulation were found in cell line 
which suggests that SLC25A25-AS1 affects the activation of 
these pathways. Downregulation of SLC25A25-AS1 appar-
ently increased chemoresistance, whereas overexpression 
increased the sensitivity to 5-Fu and DOX in CRC cell line 
(Li et al. 2016).

Another example of EMT-related lncRNA was LEIGC in 
GC. The overexpression of LEIGC promoted the sensitivity 
of GC cells to 5-Fu by inhibiting EMT (Han et al. 2014). 
lncRNA CRNDE was upregulated in CRC tissue sample 
and miR-181a-5p was identified as the inhibitory target. An 
increasing serial of concentrations of 5-Fu was applied to 
make lncRNA CRNDE knockdown or overexpression in 
CRC cells. The results indicated that CRNDE knockdown 
and miR-181a-5p overexpression increased the sensitivity of 

CRC cells to 5-Fu therapy, but the sensitivity was decreased 
in CRNDE overexpression and miR-181a-5p knockdown 
group (Han et al. 2017).

Another lncRNA HOTAIR also contributes to 5-Fu 
resistance by inhibiting miR-218 and promoting NF-κB 
signaling pathway in CRC (Yu et al. 2017b), by inhibit-
ing miR-203a-3p and activating Wnt/β-catenin signaling 
pathway (Xiao et al. 2018). The expression of miR-31 was 
up-regulated in 5-Fu-resistant cell line, while lncRNA 
ENST00000547547 could bind to miR-31 and suppress its 
expression, indicating that ENST00000547547 diminished 
the chemoresistance to 5-Fu via competitively binding to 
miR-31 (LI et al. 2017b).

Thymidylate synthase (TYMS) was thought to be a criti-
cal target when 5-Fu exerts its anticancer effect (Marquez-
Jurado et al. 2018). The expression of lncRNA XIST was 
reported to be increased in 5-Fu resistant CRC cell lines 
and knockdown of XIST could boost the sensitivity through 
regulating TYMS expression (Xiao et al. 2017b). Another 
research showed that TYMS was the direct downstream tar-
get of lncRNA TUG1, knockdown of which could re-sensi-
tize the cells to 5-Fu and cause CRC cell apoptosis (Wang 
et al. 2019c).

ABCC1 was highly linked to the emergence of chem-
oresistance in cancer cells (Gottesman et al. 2002). High 
level of lncRNA ANRIL was demonstrated in CRC tissues 
and cells. Knockdown of ANRIL enhanced the sensitivity 
to 5-Fu in HCT116 and SW480. Further study revealed that 
ANRIL could affect the expression of ABCC1 by regulating 
Let-7a (Zhang et al. 2018h).

Autophagy also played an important role in chemother-
apy. SIRT1-mediated autophagy could be upregulated by 
lncRNA H19 via modulating miR-194-5p to confer 5-Fu 
resistance in CRC (Wang et al. 2018d). Another lncRNA, 
i.e., SNHG6, also regulates autophagy to induce 5-Fu 
chemoresistance by sponging miR-26a-5p both in vitro and 
in vivo, where the cell lines with knockdown of SNHG6 
could be more sensitive to 5-Fu, which improved 5-Fu ther-
apy in mouse tumor model(Wang et al. 2019e). Knockdown 
of lncRNA NEAT1 also increased 5-Fu sensitivity by target-
ing miR-34a and consequently attenuating autophagy (Liu 
et al. 2020).

There are some other lncRNAs examples related to 
5-Fu resistance. SCARNA2 expression increased in CRC 
tissue, which induced the resistance to 5-Fu by inhibiting 
miR-342-3p signaling pathway (Zhang et al. 2019b). MiR-
204-mediated HMGA2/PI3K signaling pathway was inhib-
ited by lncRNA PCAT6 to enhance the 5-Fu-based ther-
apy, which was confirmed in CRC cells (Wu et al. 2019). 
Linc00467/miR-133b/ferritin light chain (FTL) formed 
an axis in the chemoresistance to 5-Fu in CRC, where 
linc00467 regulates FTL expression through miR-133b to 
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Table 2  lncRNAs involves in chemoresistance to several commonly used drugs in digestive system cancers treatment

Chemotherapy drug lncRNA Regulation mode Cancer type References

Digestive system (CRC = colorectal cancer; GC = gastric cancer; PC = pancreatic cancer)
5-Fluorouracil 

(5-Fu)
SLC25A25-AS1 EMT CRC Li et al. (2016)
LEIGC EMT GC Han et al. (2014)
CRNDE Regulate miR-181a-5p CRC Han et al. (2017)
HOTAIR Regulate miR-218 and NF-κB signaling 

pathway, regulate miR-203a-3p and Wnt/β-
catenin signaling pathway

CRC Li et al. (2017e), Xiao et al. (2018)

ENST00000547547 Regulate miR-31 CRC LI et al. (2017b)
XIST Regulate thymidylate synthase CRC Xiao et al. (2017b)
TUG1 Regulate thymidylate synthase CRC Wang et al. (2019c)
ANRIL Regulate ABCC1 CRC Zhang et al. (2018h)
H19 Autophagy CRC Wang et al. (2018d)
SNHG6 Autophagy CRC Wang et al. (2019e)
NEAT1 Autophagy CRC Liu et al. (2020)
SCARNA2 Regulate miR-342-3p CRC Zhang et al. (2019b)
PCAT6 Regulate miR-204 and HMGA2/PI3K signal-

ing pathway
CRC Dong et al. (2019a)

Linc00467 Regulate miR-133b CRC Yang et al. (2019a)
HAND2-AS1 Regulate miR-20a CRC Jiang et al. (2020)
LINC00152 Regulate miR-139-5p CRC Bian et al. (2017), Chen et al. (2018a)
Linc01296 Regulate miR-26a CRC Liu et al. (2018a)
FGD5-AS1 Regulate miR-153-3p GC Gao et al. (2020)

Oxaliplatin (OXA) MEG3 Regulate miR-141 CRC Li et al. (2017c), Wang et al. (2018b)
MALAT1 EMT CRC Li et al. (2017e)
CACS15 Regulate ABCC1 CRC Gao et al. (2019)
KCNQ1OT1 Autophagy CRC Li et al. (2019b)
LINC00152 Regulate miR-193a-3p CRC Yue et al. (2016)
CCAL Regulate β-catenin pathway CRC Deng et al. (2020)
BLACAT1 Regulate ABCB1 GC Wu et al. (2018)
H19 Regulate stemness CRC Ren et al. (2018b)
lnc273–31/34 Regulate stemness CRC Zhao et al. (2019)
MACC1-AS1 Regulate stemness GC He et al. (2019a)

Cisplatin (DDP) HOTTIP Regulate miR-218 GC Wang et al. (2019b)
MALAT1 Autophagy GC Zhang et al. (2020a), Xi et al. (2019), 

YiRen et al. (2017)
ARHGAP5-AS1 Autophagy GC Zhu et al. (2019a)
HOXD-AS1 Regulate EZH2 GC Ye et al. (2019b)
PCAT-1 Regulate EZH2, regulate miR-128 GC Li et al. (2020a), Guo et al. (2019)
FOXD1-AS1 Regulate PI3K/AKT/mTOR pathway GC Wu et al. (2020b)
SNHG14 Regulate miR-186 CRC Han et al. (2020)
FGF9 Regulate β-catenin signaling pathway CRC Zhang et al. (2020b)
PVT1 Regulate miR-3619-5p CRC, GC Ping et al. (2018), Wu et al. (2020a)
CASC2 Regulate miR-19a GC Li et al. (2018b)
DANCR Regulate miR-125b-5p CRC Shi et al. (2020)
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promote metastasis and chemoresistance in CRC (Li et al. 
2019c). HAND2-AS1/miR-20a/PDCD axis was also iden-
tified to inhibit 5-Fu resistance in CRC both in vitro and 
in vivo (Jiang et al. 2020). Furthermore, LINC00152 was 
implicated in conferring 5-Fu resistance (Bian et al. 2017; 
Chen et  al. 2018a). Linc01296 upregulation advocated 
tumorigenesis and chemoresistance of CRC both in vitro 
and in vivo (Liu et al. 2018a). Chemoresistance response 
to 5-Fu was suppressed in GC by downregulating lncRNA 
FGD5-AS1, which showed significant antitumor effect on 
GC proliferation both in vitro and in vivo (Gao et al. 2020).

Chemoresistance to oxaliplatin (OXA)

OXA is a platinum compound which is often used to treat 
CRC and GC (Dy et al. 2009). Similar obstacle as 5-Fu, 
large proportion of patients turned into chemoresistant and 
metastatic (Goldberg et al. 2004). LncRNA MEG3 was 
downregulated in OXA resistant CRC cell lines, while over-
expression of MEG3 could partially reverse the chemoresist-
ance to OXA in CRC. Investigation also reported that MEG3 
could improve OXA-induced apoptosis in CRC cells (Li 
et al. 2017c). The mechanism lies in that MEG3 as a ceRNA 
regulated OXA sensitivity by modulating miR-141/PDCD4 
axis, where MEG3 bound and suppressed miR-141 directly 
through binding site. As the target of miR-141, PDCD4 con-
tained a binding site of miR-141, and MEG3 could increase 
PDCD4 expression by binding miR-141 as ceRNA. MEG3 
overcame OXA resistance by regulating miR-141/PDCD4 
axis (Wang et al. 2018b).

MALAT1 is another lncRNA associated with OXA and 
overexpressed in CRC patients as an oncogene, linked to 
poor response to OXA treatment. The 3’ end region of 

MALAT1 interacted with EZH2 to inhibit E-cadherin 
expression. Such a negative regulation of E-cadherin expres-
sion in CRC indicates that MALAT1 is involved in OXA-
induced EMT process (Sha et al. 2017).

As mentioned in 5-Fu chemoresistance, ABCC1 is also 
a critical factor in OXA resistance, which was positively 
regulated by lncRNA CACS15 via sponging miR-145. 
The silencing of CASC15 was proved to overcome OXA 
resistance of CRC in vivo (Gao et al. 2019). It is eluci-
dated that LncRNA KCNQ1OT1 can promote the protec-
tive autophagy of CRC cells by increasing the expression 
of Atg4B via regulating miR-34a, so that the chemore-
sistance to OXA was enhanced in vitro and in vivo (Li 
et al. 2019b). Another lncRNA, linc00152, was mentioned 
above in 5-Fu chemoresistance, which also reported that 
functioned as ceRNA through sponging miR-193a-3p to 
confer OXA resistance in CRC both in vitro and in vivo 
(Yue et al. 2016).

LncRNA CCAL was associated with apoptosis and lower 
OXA chemoresistance in CRC cells, which could be a poten-
tial target to reverse the chemoresistance (Deng et al. 2020). 
LncRNA BLACAT1 was upregulated in OXA-resistant GC 
tissue and cells. Knockdown of BLACAT1 could inhibit 
ABCB1 expression and invasion in vitro and in vivo as well 
as OXA resistance with higher apoptosis (Wu et al. 2018).

Stemness is a significant factor in cancer stemness main-
tenance and chemoresistance. For example, lncRNA H19 
not only overcame 5-Fu resistance, but also confer OXA 
resistance, in terms of carcinoma-associated fibroblast 
(CAF). OXA resistance in CRC was markedly promoted 
by overexpression of H19, while knocking down of H19 
suppressed the tumor growth in xenograft model. The 
study indicated that CAF-derived exosomes increase the 

Table 2  (continued)

Chemotherapy drug lncRNA Regulation mode Cancer type References

Gemcitabine SLC7A11-AS1 Regulate stemness PC Yang et al. (2020)

HOTTIP Regulate HOXA13 PC Li et al. (2015)

GSTM3TV2 Regulate let-7 PC Xiong et al. (2019)

Linc-DYNC2H1-4 EMT PC Gao et al. (2017b)

SNHG14 Autophagy PC Zhang et al. (2019d)

HOST2 Unknown PC An and Cheng (2020)

PVT1 Regulate miR-1207, miR-619-5p PC You et al. (2018), Zhou et al. (2020)

TUG1 Regulate ERK pathway PC Yang et al. (2018a)

HOTAIR Regulate stemness PC Wang et al. (2017b)

GAS5 Regulate miR-181c-5p PC Gao et al. (2018)

HOTTIP Regulate HOXA13 PC Li et al. (2015)

AGAP2-AS1 Regulate miR-497 CRC Hong et al. (2020)
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expression of H19, stemness and OXA resistance of CRC 
cells both in vitro and in vivo (Ren et al. 2018b). Other two 
lncRNAs, name as lnc273–31 and lnc273–34 were reported 
to be upregulated by p53-R273H then enhancing CRC stem 
cell stemness and chemoresistance of OXA both in vitro and 
in vivo (Zhao et al. 2019). The combination use of 5-Fu and 
OXA is also common seen in treatment. The mesenchymal 
stem cells (MSCs) play a critical role in tumor progression 
and anticancer drug resistance (Houthuijzen et al. 2012). 
LncRNA MACC1-AS1 was overexpressed in GC, and the 
study revealed that MSC boosted MACC1-AS1 expression 
which subsequently positively regulated fatty acid oxidation-
dependent stemness and 5-Fu/OXA resistance were verified 
both in vitro and in vivo (He et al. 2019a).

Chemoresistance to cisplatin (DDP)

DDP-based chemotherapy is the backbone of GC treatment. 
Yet, cisplatin resistance may lead to tumor recurrence (Ama-
ble 2016). Body of evidence suggests that cancer-derived 
exosomes can advocate tumor progression and metastasis 
(Kahlert and Kalluri 2013), and the exosomes related to che-
mosensitive or resistant cells might influence the therapeutic 
response through transferring specific lncRNAs (Xu et al. 
2016; Qu et al. 2016). In DDP-resistant GC cells, EMT and 
higher level of lncRNA HOTTIP were observed. Downregu-
lation of HOTTIP could decrease cisplatin sensitivity. Exo-
somal HOTTIP activated HMGA1 to induce DDP-resistance 
in GC cells (Wang et al. 2019b).

Autophagy increased in DDP-resistant GC cells but could 
be suppressed by MALAT1 via binding with miR-30e to 
coordinate the expression of ATG5. Silencing of MALAT1 
could prohibit chemo-induced autophagy, thus overcome 
chemoresistance in GC cell lines as well as in GC xeno-
graft mice model (Zhang et al. 2020a). Another investiga-
tion stated that MALAT1 sequestered miR-30b from ATG5 
to increase its expression and potentiated autophagy-related 
DDP resistance (Xi et al. 2019). When MALAT1 seques-
tered miR-23b-3p, then the expression of its target ATG12 
increased, which contributed to autophagy-related chemore-
sistance to DDP and the drug-sensitivity assay were per-
formed both in vitro and in vivo (YiRen et al. 2017). Previ-
ous studies found that MALAT1 was a promising target for 
DDP resistance in GC. Another lncRNA ARHGAP5-AS1 
can also promote DDP resistance in GC by autophagy and 
adds more evidence that autophagy was a critical process in 
chemoresistance (Zhu et al. 2019a).

The mechanism underlying DDP resistance conferred 
by lncRNA HOXD-AS1 may be epigenetically silencing of 
PDCD4 via recruiting EZH2 in GC (Ye et al. 2019b). EZH2 
also can be recruited by lncRNA PCAT-1 via epigenetically 
silencing of PTEN. Downregulation of PCAT-1 could pro-
mote sensitivity of DDP-resistant GC cells to DDP (Li et al. 

2020a). Hence, EZH2-related lncRNA provided a novel 
therapeutic strategy targeting DDP chemoresistance in GC. 
DPP resistance is also conferred by PCAT-1 via another axis 
(i.e., miR-128/ZEB1). PCAT-1 acted as a sponge of miR-
128 and the target was ZEB1. Knockdown of PCAT-1 could 
improve DDP sensitivity in GC tumors in vivo (Guo et al. 
2019). The resistance of GC cells to DDP was promoted 
by FOXD1-AS1, so that depletion of FOXD1-AS1 reversed 
DDP resistance both in vitro and in vivo by targeting PI3K/
AKT/mTOR pathway (Wu et al. 2020b).

DDP was also used in CRC treatment, even not commonly 
as 5-Fu and OXA, additional example about autophagy 
in chemoresistance is lncRNA SNHG14 in CRC, which 
stimulated CRC cell autophagy via miR-186/ATG14 axis 
(Han et al. 2020). There are some other lncRNAs examples 
related to DDP resistance. For example, silencing of lncRNA 
FGF9 could reverse DDP resistance via regulation of Wnt/
β-catenin signaling pathway in CRC (Zhang et al. 2020b). 
Silencing of PVT1 could inhibit DDP resistance in CRC 
cells (Ping et al. 2018) and GC cells both in vitro and in vivo 
(Wu et al. 2020a). The overexpression of CASC2 could over-
come DDP resistance in GC by binding to miR-19a (Li et al. 
2018b). LncRNA DANCR could promoted DDP resistance 
through miR-125b-5p/HK2 axis both in vitro and in vivo 
(Shi et al. 2020).

Chemoresistance to gemcitabine

Gemcitabine-based chemotherapy is the first-line treatment 
for PC. Just as in CRC and GC, gemcitabine resistance has 
been major barrier in treating PC (Ju et al. 2015). LncRNA 
SLC7A11-AS1 was overexpressed in PC tissues and gem-
citabine-resistant cell lines. Knockdown of SLC7A11-AS1 
can boost pancreatic cancer cell sensitivity to gemcitabine. 
This implies that SLC7A11-AS1 is a promising target for 
stemming gemcitabine resistance in PC (Yang et al. 2020). 
The knockdown of lncRNA HOTTIP could promote the 
chemosensitivity of PC cells to gemcitabine by modulating 
HOXA13 both in vitro and in vivo was reported in previous 
paper (Li et al. 2015).

GSTM3TV2 is a lncRNA associated with higher chem-
oresistance to gemcitabine in pancreatic cancer in vitro and 
in vivo by acting as a ceRNA to sponge let-7 and regulate the 
expression of its direct targets LAT2 and OLR1 (Xiong et al. 
2019). Linc-DYNC2H1-4 is upregulated in gemcitabine-
resistant PC cells and knockdown of Linc-DYNC2H1-4 
could suppress EMT via sponging miR-145, which targeted 
EMT markers (Gao et al. 2017b). SNHG14 is also a poten-
tial autophagy-related target in PC. It interreacted with 
miR-101 to stimulate autophagy and increase gemcitabine 
resistance (Zhang et al. 2019d). Downregulation of lncRNA 
HOST2 could improve the sensitivity to gemcitabine in PC, 
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but the detailed mechanism of which is still unknown (An 
and Cheng 2020). Inhibition of lncRNA PVT1 led to higher 
efficacy of gemcitabine by targeting miR-1207 (You et al. 
2018). The recent study indicated PVT1 could promote 
gemcitabine resistance of PC both in vitro and in vivo. The 
study demonstrated that PVT1 induced gemcitabine resist-
ance was associated with elevated increased Wnt/β-catenin 
signaling pathway and autophagic activity. MiR-619-5p was 
directly targeted by PVT1, and the gemcitabine resistance 
was reversed by miR-619-5p in PC (Zhou et al. 2020). In 
addition, many other lncRNAs, such as TUG1, HOTAIR, 
GAS5, and HOTTIP, are also implicated in regulating gem-
citabine resistance in PC (Yang et al. 2018a; Wang et al. 
2017b; Gao et al. 2018; Li et al. 2015).

LncRNA AGAP2-AS1 worked as a ceRNA of miR-
497 which targeted on fibroblast growth factor receptor 1. 
Gemcitabine resistance could be diminished by silencing 
AGAP2-AS1, which also cause G1/M phase cell cycle arrest 
in CRC cells (Hong et al. 2020).

Chemoresistance to other chemotherapy

Besides the commonly used drugs mentioned above, there 
are other chemotherapy drugs used in digestive system can-
cer treatment. Doxorubicin (DOX) is an anthracycline drug 
used to treat many malignancies and chemoresistance is the 
major treatment challenge. XIST is upregulated in CRC tis-
sues and cells while knockdown of XIST could curb DOX 
resistance via interacting with miR-124, thereby positively 
regulate SGK1 expression in DOX-resistant CRC cells. 
The antitumor effect of DOX was improved further both 
in vitro and in vivo (Zhu et al. 2018a). lncRNAs D63785 
and NEAT1 were also reported to regulate DOX resistance 
in GC (Zhou et al. 2018b; Zhang et al. 2018a).

Oxymatrine plays a role in anti-arrhythmia, antifibrosis, 
anti-inflammation, and antitumor in CRC and PC (Zhang 
and Huang 2004; Liang and Huang 2016; Chen et al. 2013). 
In oxymatrine-resistant CRC cells, lncRNA MALAT1 was 
upregulated, while knockdown of MALAT1 could partially 
reverse EMT. MALAT1 is a stimulator for oxymatrine resist-
ance in CRC, which can inform better therapy treatment of 
CRC patients (Xiong et al. 2018). Carboplatin chemotherapy 
also face the challenge of chemoresistance. The expression 
of lncRNA BORG could enhance the viability of CRC cells 
by downregulating p53 so that downregulation of BORG 
could be a novel clue to overcoming the chemoresistance 
(Li et al. 2020b).

Some lncRNAs are implicated in multiple chemoresist-
ance, such as XIST. It can modify the resistance to 5-FU, 
mitomycin, DDP, and DOX by collaborating with miR-30a 
in CRC cells (Zhang et al. 2019c). LncRNA GIHCG is asso-
ciated with chemoresistance to 5-Fu and OXA and CRC 

progression (Jiang et al. 2019b). Apart from in 5-Fu chem-
oresistance, knockdown of CRNDE can increase sensitivity 
to chemotherapeutic drugs. This is also confirmed for OXA 
(Han et al. 2017). Similar sensitivity recovery was found in 
5-Fu and OXA when ANRIL was knocked down (Zhang 
et al. 2018h). Overexpression of SLC25A25-AS1 not only 
increased the sensitivity to 5-Fu, but also to DOX in CRC 
cell line (Li et al. 2016). Knockdown of HULC contributed 
to the sensitivity of GC cells to DDP, DOX and 5-Fu (Zhang 
et al. 2016a). Knockdown of CASC9 significantly reduced 
the resistance to paclitaxel and DOX in GC cells (Shang 
et al. 2017).

Future perspectives

LncRNAs have attracted great attention in the past dec-
ade with increasing number of studies reporting on novel 
lncRNAs involved in various digestive system cancers. Due 
to its huge potential in modulating cancer development, 
it is very motivating to elucidate the lncRNAs regulatory 
mechanisms, especially those controlling the gene expres-
sion responsible for carcinogenesis or overcoming chemore-
sistance. It is also encouraging to note that several clinical 
trials involving lncRNAs and cancers, specifically thyroid 
cancer and breast cancer, have already completed their stud-
ies while others are still recruiting (https:// clini caltr ials. gov/ 
ct2/ home). Although the results of these trials have not been 
published yet, their promising roles have been verified both 
in vitro and in vivo by numerous studies, and thus, signifies 
the potential of lncRNAs as therapeutic targets and/or bio-
markers in cancer diagnosis and therapy.
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