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Abstract

Long noncoding RNAs (IncRNAs) are implicated in various biological processes, such as cell proliferation, differentiation,
apoptosis, migration, and invasion. They are also key players in various biological pathways. LncRNA was considered as
‘translational noise’ before 1980s. It has been reported that IncRNAs are aberrantly expressed in different cancers, either as
oncogene or tumor suppressor gene. Therefore, more and more IncRNAs are recognized as potential diagnostic biomarkers
and/or therapeutic targets. As competitive endogenous RNA, IncRNAs can interact with microRNA to alter the expression
of target genes, which may have extensive clinical implications in cancers, including diagnosis, treatment, prognosis, and
chemoresistance. This review comprehensively summarizes the functions and clinical relevance of IncRNAs in digestive

system cancers, especially as a potential tool to overcome chemoresistance.

Keywords Long noncoding RNA - Diagnostic biomarker - Colorectal cancer - Gastric cancer - Pancreatic cancer -

Chemoresistance

Introduction

Noncoding RNA is a type of RNA that is transcribed, but
not translated into protein, such as transfer RNA, ribosomal
RNA, and microRNA. It has been demonstrated that non-
coding RNAs can act as key regulators of gene expression
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in diverse cellular systems, biological processes, and various
pathways (Yu et al. 2019b; Ferre et al. 2016; Barangi et al.
2019; Lin and Yang 2018). Long noncoding RNA (IncRNA)
is defined as the transcripts exceeding 200 nucleotides that
are not translated into protein. In the late 1980s and early
1990s, IncRNA H19 and Xist were first found in mouse
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I. LncRNA functions
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Fig.1 A The type of IncRNAs. Sense, antisense, bidirectional or
divergent IncRNA respectively, represent the transcription direction
of IncRNA and its neighboring protein-coding genes, either in the
same, or opposite, or at different directions. Intronic and intergenic
IncRNA represent whether a IncRNA is transcribed from the intron
region of the gene or from the intergenic region. B The roles and
functions of IncRNA. I LncRNA can mediate gene expression in
different ways: IncRNA can form complex with chromatin, different
proteins or ribonucleoprotein, IncRNA can acts as cis-acting element

(Brannan et al. 1990; Brockdorff et al. 1991). Since then,
IncRNA has attracted significant attention and becomes
one of the hot topics of research interest. IncRNAs can be
divided into several subclasses (Fig. 1A) according to their
genomic position related to the neighboring genetic code
gene: sense, antisense, bidirectional or divergent, intronic
and intergenic IncRNA (Herrera-Solorio et al. 2017). Sense,
antisense, bidirectional, or divergent IncRNA, respectively,
represent the transcription direction of IncRNA and its
neighboring protein-coding genes, either in the same, or
opposite, or at different directions. Conversely, intronic and
intergenic IncRNA represent whether a IncRNA is tran-
scribed from the intron region of the gene or from the inter-
genic region. IncRNAs are generally, but not exclusively,
spliced and transcribed by RNA polymerase II and were
considered as ‘translational noise’ previously (Quinn and
Chang 2016). However, increasing evidence has proven that
IncRNAs perform many functions, such as mediating chro-
matin remodeling, acting as scaffold linking different pro-
teins interaction and regulate transcription regulation (Chen
and Carmichael 2010). At the transcriptional level, the pro-
duction of mRNA can be affected by IncRNAs. Some IncR-
NAs gene are located at the promoter region, upstream of
the coding gene, and can be transcribed into corresponding
IncRNAs, which then acts as a cis-acting element to inter-
fere with the transcription of downstream genes; thereby,
affecting the production of mRNA (Martens et al. 2004).
Previous studies have also found that IncRNA can form a
complex with ribonucleoprotein to regulate gene expression
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to interfere with the transcription of downstream mRNA production,
target gene will be released from miRNA when IncRNA sponge to
miRNA. II LncRNAs are involved in many biological processes
which are investigated in cancer study such as cell proliferation,
apoptosis, migration, invasion, and lymph node metastasis. Aberrant
expression of IncRNAs is usually found in cancers, and it has been
proved to play an important role in various pathways as well as in
chemoresistance study

(Ponting et al. 2009). At post-transcriptional level, IncRNA
can form complex with pre-mRNA, therefore, regulate the
gene expression at post-transcription stage (Beltran et al.
2008). Also, IncRNA can bind to miRNA and indirectly
affect the downstream process.

LncRNAs are involved in many biological processes,
including cell proliferation, migration, and invasion (Liu
et al. 2017), differentiation (Chen et al. 2017¢), metasta-
sis (Chen et al. 2017d), inflammation (Du et al. 2017b),
angiogenesis (Li et al. 2017d), and metabolism (Fan et al.
2017), and so can regulate the pathophysiological processes
in cancer and other human diseases. Aberrant expression
of IncRNAs is usually found in cancers, which is associ-
ated with tumorigenesis by promoting malignant biological
behaviors of tumor cells, such as proliferation, invasion, and
metastasis (Xiao et al. 2017a; Weidle et al. 2017). Cancer-
related IncRNAs can be oncogene or tumor suppressor gene
depending on their dysregulated expression and correspond-
ing function.

The number of IncRNA-related studies is increasing rap-
idly and new IncRNAs are identified continuously, but their
functions have not been completely characterized. In this
mini-review, we briefly summarize the IncRNAs implicated
in digestive system cancers and their clinical relevance,
with a particular focus on the multiple roles of IncRNAs
in genetic alteration, molecular mechanisms and signaling
pathways involved in tumor progression, metastasis, and
chemoresistance.
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IncRNAs in cancers

Numerous reports have showed aberrant expression, various
functions as well as chemoresistance of IncRNAs in different
cancers (the functions and roles of IncRNAs are displayed
in Fig. 1B). Some IncRNAs are up-regulated, as oncogenes,
while others are down-regulated, as tumor suppressors.

Some IncRNAs are involved in many biological processes
such as cell proliferation, migration, invasion, apoptosis,
lymph node metastasis, and pathological differentiation
(Liu et al. 2018f), although the specific mechanisms remain
unclear so far. Some IncRNAs are functional in different
pathways such as Wnt/p-catenin signaling pathway (Zhou
et al. 2019a), p53 pathway, and AKT/mTOR signaling path-
way (Yu et al. 2017b). In addition, there are IncRNAs that
are involved in more than one pathway such as IncRNA
MEG3, NF-kB pathway, p53 signaling pathway, and PI3K/
Akt pathway (Zhang et al. 2017a, 2018g; Zhu et al. 2019b).
miRNA is a type of noncoding RNA with 19-25 nucleotides.
miRNA is involved in many aspects of biological regulation,
including regulation of cell cycle, differentiation, develop-
ment, metabolism, and body aging. miRNA also serves as
a potential tumor molecular marker. A change in miRNA
expression is related to the progression of the tumor (Lee
and Dutta 2009). IncRNAs may act as a regulator by target-
ing miRNA, functioning as a ‘sponge’ or competing endog-
enous RNA (ceRNA). Thus, it can diminish the regulatory
effect of miRNAs on target mRNA. For instance, 3’-untrans-
lated region of IncRNA FOXD2-AS1 could directly bind to
miR-150-5p in breast cancer (Jiang et al. 2019a); NR2F2-
AS]1 functions as ceRNA that directly binds to miR-320b to
regulate downstream target gene and promote tumorigen-
esis in nonsmall cell lung cancer (Zhang et al. 2018e); and
IncRNA UCA1 regulates colorectal cancer through modu-
lating miR-28-5p, where UCA1 binds to miR-28-5p, then
targets HOXB3 to mediate cell proliferation and migration
of colorectal cancer cells (Cui et al. 2019). These IncRNAs
can be potential therapeutic targets because they play piv-
otal functions via miRNA to modulate the malignancy and
tumorigenesis of diverse cancers.

IncRNAs in digestive system cancers

Colorectal cancer (CRC) and gastric cancer are among the
most common malignant cancers associated with high mor-
bidity and mortality. With the increasing cases of colorectal
cancer, the development of diagnostic indicators for early
diagnosis and treatment has become a common concern
of many scientific and clinical researchers. It is currently
known that the carcinoembryonic antigen level is a good
tumor marker and can be used as a reference or an indicator

in judging the disease development, treatment efficacy,
as well as in monitoring and prognostic evaluation. How-
ever, the lack of high specificity and sensitivity is making
it unsuitable and ineffective as an early diagnosis tool of
colorectal cancer (Wang et al. 2014).

A study has shown that after a 5-year follow-up, around
70% patients with gastric cancer (GC) died from this dis-
ease globally (Verdecchia et al. 2007). Smoking, alcohol
drinking, eating habits, and Helicobacter pylori infection are
significant risks of GC. The interaction between host-related
factors and environmental factors is a key factor in the high
mortality rate of GC. The patients were often diagnosed as
GC in late stages, when the metastasis has occurred, and the
prognosis is quite poor while the palliative chemotherapy
is the main treatment method (Digklia and Wagner 2016).
Pancreatic cancer (PC) is not common, but aggressive at
high growth rate, often diagnosed at late stages. Owing to
the poor early diagnosis, most patients have already lost the
surgery opportunities when diagnosed. Although the median
survival period after diagnosis is around 2-8 months, the
S-year survival rate is only 5% which is largely contributed
to the poor prognosis of the disease. The etiology of pancre-
atic cancer is unclear so far, and its occurrence and develop-
ment are an extremely complex process. Epidemiological
investigation results have shown that the occurrence and
development of pancreatic cancer are related to a variety of
risk factors. Long-term smoking, high-fat diet, and chronic
pancreatitis or concomitant diabetes are nongenetic factors
in the onset of pancreatic cancer (Rebelo et al. 2017).

In the recent years, more studies have shown that IncRNA
participates in the regulation of tumors at both molecular and
cellular levels, rendering their potential as important indica-
tors for the diagnosis, treatment, and prognosis of digestive
system cancer (Lv and Huang 2019; Deng et al. 2020; Gao
et al. 2020). In addition, miRNAs have been proven to be
involved in tumorigenesis and development, angiogenesis,
metastasis, invasion, and apoptosis by inhibiting/promoting
the expression of oncogene. The ceRNA regulatory network
composed of IncRNA-miRNA-mRNA network has been
revealed in digestive system cancer study (Gong et al. 2018;
Lv and Huang 2019; Chen et al. 2017b). IncRNAs can bind
to miRNAs as ceRNA, suppress the expression of miRNA,
and negatively regulate the downstream target gene. Thus,
by interfering the IncRNA expression, the proliferation, and
invasion of cancer cells can be inhibited, and cancer pro-
gression can be prevented. Some IncRNAs are shared by
different digestive system cancers, but function via different
mechanisms. For example, IncRNA CRNDE acts as a regu-
lator by targeting miR-217, miR-136, miR-181a-5p (Han
et al. 2017) in CRC, miR-384 in PC (Wang et al. 2017a), and
miR-145 in GC (Hu et al. 2017). Several new IncRNAs are
found only in a single cancer and implicated in some basic
biological processes. Table 1 summarizes the functions and
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clinical relevance of a wide range of IncRNAs in terms of
digestive system cancer type.

IncRNA and tumor chemoresistance
in digestive system cancers

Even though chemotherapy is currently an effective treat-
ment in cancer, chemoresistance is still one of the major
barriers that leads to cancer relapse and eventually treatment
failure (Zheng 2017). One of the underlying mechanisms
of chemotherapy is to induce apoptosis, however, cancer
cells may improve survival via autophagy and so show poor
sensitivity to chemotherapy (Yang and Klionsky 2010).
Some biological processes, such as epithelial-mesenchy-
mal transition (EMT) process could confer drug resistance
(Mitra et al. 2015). Prominent activation of some signal-
ing pathways (e.g., Ertk/MAPK and p38/MAPK pathways)
has been reported in case of chemoresistance (Chung et al.
2012). Interestingly, the regulation of IncRNA can induce
drug resistance by interfering with the drug efflux system,
drug metabolism, DNA repair, cell cycle, EMT, and oth-
ers. Table 2 summarizes the involvement and critical roles
played by IncRNA in chemoresistance to several commonly
used chemotherapy drugs in the treatment of digestive sys-
tem cancers.

Chemoresistance to 5-fluorouracil (5-Fu)

Among all the chemotherapeutic drugs, 5-Fu is the most
commonly used in digestive cancers. LncRNA SLC25A25-
AS1 expression was significantly decreased in both serum
and tumor tissues of CRC patients. In addition, it was
reported that SLC25A25-AS1 was associated with EMT
process. Upregulation of SLC25A25-AS1 led to declined
mesenchymal characteristics such as mesenchymal marker
vimentin and snail expression. Elevated levels of Erk phos-
phorylation and p38 downregulation were found in cell line
which suggests that SLC25A25-AS1 affects the activation of
these pathways. Downregulation of SLC25A25-AS1 appar-
ently increased chemoresistance, whereas overexpression
increased the sensitivity to 5-Fu and DOX in CRC cell line
(Lietal. 2016).

Another example of EMT-related IncRNA was LEIGC in
GC. The overexpression of LEIGC promoted the sensitivity
of GC cells to 5-Fu by inhibiting EMT (Han et al. 2014).
IncRNA CRNDE was upregulated in CRC tissue sample
and miR-181a-5p was identified as the inhibitory target. An
increasing serial of concentrations of 5-Fu was applied to
make IncRNA CRNDE knockdown or overexpression in
CRC cells. The results indicated that CRNDE knockdown
and miR-181a-5p overexpression increased the sensitivity of
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CRC cells to 5-Fu therapy, but the sensitivity was decreased
in CRNDE overexpression and miR-181a-5p knockdown
group (Han et al. 2017).

Another IncRNA HOTAIR also contributes to 5-Fu
resistance by inhibiting miR-218 and promoting NF-xB
signaling pathway in CRC (Yu et al. 2017b), by inhibit-
ing miR-203a-3p and activating Wnt/B-catenin signaling
pathway (Xiao et al. 2018). The expression of miR-31 was
up-regulated in 5-Fu-resistant cell line, while IncRNA
ENSTO00000547547 could bind to miR-31 and suppress its
expression, indicating that ENST00000547547 diminished
the chemoresistance to 5-Fu via competitively binding to
miR-31 (LI et al. 2017b).

Thymidylate synthase (TYMS) was thought to be a criti-
cal target when 5-Fu exerts its anticancer effect (Marquez-
Jurado et al. 2018). The expression of IncRNA XIST was
reported to be increased in 5-Fu resistant CRC cell lines
and knockdown of XIST could boost the sensitivity through
regulating TYMS expression (Xiao et al. 2017b). Another
research showed that TYMS was the direct downstream tar-
get of IncRNA TUGI, knockdown of which could re-sensi-
tize the cells to 5-Fu and cause CRC cell apoptosis (Wang
et al. 2019c¢).

ABCCI1 was highly linked to the emergence of chem-
oresistance in cancer cells (Gottesman et al. 2002). High
level of IncRNA ANRIL was demonstrated in CRC tissues
and cells. Knockdown of ANRIL enhanced the sensitivity
to 5-Fu in HCT116 and SW480. Further study revealed that
ANRIL could affect the expression of ABCC1 by regulating
Let-7a (Zhang et al. 2018h).

Autophagy also played an important role in chemother-
apy. SIRT1-mediated autophagy could be upregulated by
IncRNA H19 via modulating miR-194-5p to confer 5-Fu
resistance in CRC (Wang et al. 2018d). Another IncRNA,
i.e., SNHG6, also regulates autophagy to induce 5-Fu
chemoresistance by sponging miR-26a-5p both in vitro and
in vivo, where the cell lines with knockdown of SNHG6
could be more sensitive to 5-Fu, which improved 5-Fu ther-
apy in mouse tumor model(Wang et al. 2019e). Knockdown
of IncRNA NEATT also increased 5-Fu sensitivity by target-
ing miR-34a and consequently attenuating autophagy (Liu
et al. 2020).

There are some other IncRNAs examples related to
5-Fu resistance. SCARNAZ2 expression increased in CRC
tissue, which induced the resistance to 5-Fu by inhibiting
miR-342-3p signaling pathway (Zhang et al. 2019b). MiR-
204-mediated HMGA2/PI3K signaling pathway was inhib-
ited by IncRNA PCAT®6 to enhance the 5-Fu-based ther-
apy, which was confirmed in CRC cells (Wu et al. 2019).
Linc00467/miR-133b/ferritin light chain (FTL) formed
an axis in the chemoresistance to 5-Fu in CRC, where
linc00467 regulates FTL expression through miR-133b to
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Table 2 IncRNAs involves in chemoresistance to several commonly used drugs in digestive system cancers treatment

Chemotherapy drug

IncRNA

Regulation mode

Cancer type References

Digestive system (CRC = colorectal cancer; GC = gastric cancer; PC = pancreatic cancer)

5-Fluorouracil
(5-Fu)

Oxaliplatin (OXA)

Cisplatin (DDP)

SLC25A25-AS1
LEIGC

CRNDE
HOTAIR

ENST00000547547

XIST
TUGI1
ANRIL
H19
SNHG6
NEAT1
SCARNA2
PCAT6

Linc00467
HAND2-AS1
LINCO00152
Linc01296
FGD5-AS1
MEG3
MALATI1
CACS15
KCNQI1OT1
LINCO00152
CCAL
BLACAT1
H19
Inc273-31/34
MACCI1-AS1
HOTTIP
MALATI1

ARHGAPS5-AS1
HOXD-ASI1
PCAT-1
FOXD1-AS1
SNHG14

FGF9

PVT1

CASC2
DANCR

EMT
EMT
Regulate miR-181a-5p

Regulate miR-218 and NF-«xB signaling
pathway, regulate miR-203a-3p and Wnt/p-
catenin signaling pathway

Regulate miR-31

Regulate thymidylate synthase
Regulate thymidylate synthase
Regulate ABCC1

Autophagy

Autophagy

Autophagy

Regulate miR-342-3p

Regulate miR-204 and HMGA?2/PI3K signal-
ing pathway

Regulate miR-133b
Regulate miR-20a
Regulate miR-139-5p
Regulate miR-26a
Regulate miR-153-3p
Regulate miR-141
EMT

Regulate ABCC1
Autophagy

Regulate miR-193a-3p
Regulate pB-catenin pathway
Regulate ABCB1
Regulate stemness
Regulate stemness
Regulate stemness
Regulate miR-218
Autophagy

Autophagy

Regulate EZH2

Regulate EZH2, regulate miR-128
Regulate PI3K/AKT/mTOR pathway
Regulate miR-186

Regulate pB-catenin signaling pathway
Regulate miR-3619-5p

Regulate miR-19a

Regulate miR-125b-5p

CRC
GC

CRC
CRC

CRC
CRC
CRC
CRC
CRC
CRC
CRC
CRC
CRC

CRC
CRC
CRC
CRC
GC

CRC
CRC
CRC
CRC
CRC
CRC
GC

CRC
CRC
GC

GC

GC

GC

GC

GC

GC

CRC
CRC
CRC, GC
GC

CRC

Liet al. (2016)

Han et al. (2014)

Han et al. (2017)

Li et al. (2017e), Xiao et al. (2018)

LIetal. (2017b)
Xiao et al. (2017b)
Wang et al. (2019¢c)
Zhang et al. (2018h)
Wang et al. (2018d)
Wang et al. (2019¢)
Liu et al. (2020)
Zhang et al. (2019b)
Dong et al. (2019a)

Yang et al. (2019a)

Jiang et al. (2020)

Bian et al. (2017), Chen et al. (2018a)
Liu et al. (2018a)

Gao et al. (2020)

Lietal. (2017c), Wang et al. (2018b)
Lietal. (2017e)

Gao et al. (2019)

Li et al. (2019b)

Yue et al. (2016)

Deng et al. (2020)

Wu et al. (2018)

Ren et al. (2018b)

Zhao et al. (2019)

He et al. (2019a)

Wang et al. (2019b)

Zhang et al. (2020a), Xi et al. (2019),
YiRen et al. (2017)

Zhu et al. (2019a)

Ye et al. (2019b)

Li et al. (2020a), Guo et al. (2019)
Wu et al. (2020b)

Han et al. (2020)

Zhang et al. (2020b)

Ping et al. (2018), Wu et al. (2020a)
Li et al. (2018b)

Shi et al. (2020)
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Table 2 (continued)

Chemotherapy drug IncRNA Regulation mode Cancer type References

Gemcitabine SLC7A11-AS1 Regulate stemness PC Yang et al. (2020)
HOTTIP Regulate HOXA13 PC Li et al. (2015)
GSTM3TV2 Regulate let-7 PC Xiong et al. (2019)
Linc-DYNC2H1-4 EMT PC Gao et al. (2017b)
SNHG14 Autophagy PC Zhang et al. (2019d)
HOST2 Unknown PC An and Cheng (2020)
PVT1 Regulate miR-1207, miR-619-5p PC You et al. (2018), Zhou et al. (2020)
TUG1 Regulate ERK pathway PC Yang et al. (2018a)
HOTAIR Regulate stemness PC Wang et al. (2017b)
GASS Regulate miR-181c-5p PC Gao et al. (2018)
HOTTIP Regulate HOXA13 PC Liet al. (2015)
AGAP2-AS1 Regulate miR-497 CRC Hong et al. (2020)

promote metastasis and chemoresistance in CRC (Li et al.
2019¢). HAND2-AS1/miR-20a/PDCD axis was also iden-
tified to inhibit 5-Fu resistance in CRC both in vitro and
in vivo (Jiang et al. 2020). Furthermore, LINC00152 was
implicated in conferring 5-Fu resistance (Bian et al. 2017;
Chen et al. 2018a). Linc01296 upregulation advocated
tumorigenesis and chemoresistance of CRC both in vitro
and in vivo (Liu et al. 2018a). Chemoresistance response
to 5-Fu was suppressed in GC by downregulating IncRNA
FGD5-AS1, which showed significant antitumor effect on
GC proliferation both in vitro and in vivo (Gao et al. 2020).

Chemoresistance to oxaliplatin (OXA)

OXA is a platinum compound which is often used to treat
CRC and GC (Dy et al. 2009). Similar obstacle as 5-Fu,
large proportion of patients turned into chemoresistant and
metastatic (Goldberg et al. 2004). LncRNA MEG3 was
downregulated in OXA resistant CRC cell lines, while over-
expression of MEG3 could partially reverse the chemoresist-
ance to OXA in CRC. Investigation also reported that MEG3
could improve OXA-induced apoptosis in CRC cells (Li
et al. 2017¢). The mechanism lies in that MEG3 as a ceRNA
regulated OXA sensitivity by modulating miR-141/PDCD4
axis, where MEG3 bound and suppressed miR-141 directly
through binding site. As the target of miR-141, PDCD4 con-
tained a binding site of miR-141, and MEG3 could increase
PDCD4 expression by binding miR-141 as ceRNA. MEG3
overcame OXA resistance by regulating miR-141/PDCD4
axis (Wang et al. 2018b).

MALATT1 is another IncRNA associated with OXA and
overexpressed in CRC patients as an oncogene, linked to
poor response to OXA treatment. The 3’ end region of
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MALATI interacted with EZH2 to inhibit E-cadherin
expression. Such a negative regulation of E-cadherin expres-
sion in CRC indicates that MALAT]1 is involved in OXA-
induced EMT process (Sha et al. 2017).

As mentioned in 5-Fu chemoresistance, ABCC1 is also
a critical factor in OXA resistance, which was positively
regulated by IncRNA CACS15 via sponging miR-145.
The silencing of CASC15 was proved to overcome OXA
resistance of CRC in vivo (Gao et al. 2019). It is eluci-
dated that LncRNA KCNQ1OT1 can promote the protec-
tive autophagy of CRC cells by increasing the expression
of Atg4B via regulating miR-34a, so that the chemore-
sistance to OXA was enhanced in vitro and in vivo (Li
et al. 2019b). Another IncRNA, 1inc00152, was mentioned
above in 5-Fu chemoresistance, which also reported that
functioned as ceRNA through sponging miR-193a-3p to
confer OXA resistance in CRC both in vitro and in vivo
(Yue et al. 2016).

LncRNA CCAL was associated with apoptosis and lower
OXA chemoresistance in CRC cells, which could be a poten-
tial target to reverse the chemoresistance (Deng et al. 2020).
LncRNA BLACAT1 was upregulated in OXA-resistant GC
tissue and cells. Knockdown of BLACATI could inhibit
ABCBI expression and invasion in vitro and in vivo as well
as OXA resistance with higher apoptosis (Wu et al. 2018).

Stemness is a significant factor in cancer stemness main-
tenance and chemoresistance. For example, IncRNA H19
not only overcame 5-Fu resistance, but also confer OXA
resistance, in terms of carcinoma-associated fibroblast
(CAF). OXA resistance in CRC was markedly promoted
by overexpression of H19, while knocking down of H19
suppressed the tumor growth in xenograft model. The
study indicated that CAF-derived exosomes increase the
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expression of H19, stemness and OXA resistance of CRC
cells both in vitro and in vivo (Ren et al. 2018b). Other two
IncRNAs, name as Inc273-31 and Inc273-34 were reported
to be upregulated by p53-R273H then enhancing CRC stem
cell stemness and chemoresistance of OXA both in vitro and
in vivo (Zhao et al. 2019). The combination use of 5-Fu and
OXA is also common seen in treatment. The mesenchymal
stem cells (MSCs) play a critical role in tumor progression
and anticancer drug resistance (Houthuijzen et al. 2012).
LncRNA MACCI-AS1 was overexpressed in GC, and the
study revealed that MSC boosted MACC1-AS1 expression
which subsequently positively regulated fatty acid oxidation-
dependent stemness and 5-Fu/OXA resistance were verified
both in vitro and in vivo (He et al. 2019a).

Chemoresistance to cisplatin (DDP)

DDP-based chemotherapy is the backbone of GC treatment.
Yet, cisplatin resistance may lead to tumor recurrence (Ama-
ble 2016). Body of evidence suggests that cancer-derived
exosomes can advocate tumor progression and metastasis
(Kahlert and Kalluri 2013), and the exosomes related to che-
mosensitive or resistant cells might influence the therapeutic
response through transferring specific IncRNAs (Xu et al.
2016; Qu et al. 2016). In DDP-resistant GC cells, EMT and
higher level of IncRNA HOTTIP were observed. Downregu-
lation of HOTTIP could decrease cisplatin sensitivity. Exo-
somal HOTTIP activated HMGAL to induce DDP-resistance
in GC cells (Wang et al. 2019b).

Autophagy increased in DDP-resistant GC cells but could
be suppressed by MALAT1 via binding with miR-30e to
coordinate the expression of ATGS. Silencing of MALAT1
could prohibit chemo-induced autophagy, thus overcome
chemoresistance in GC cell lines as well as in GC xeno-
graft mice model (Zhang et al. 2020a). Another investiga-
tion stated that MALAT1 sequestered miR-30b from ATGS5
to increase its expression and potentiated autophagy-related
DDP resistance (Xi et al. 2019). When MALATI1 seques-
tered miR-23b-3p, then the expression of its target ATG12
increased, which contributed to autophagy-related chemore-
sistance to DDP and the drug-sensitivity assay were per-
formed both in vitro and in vivo (YiRen et al. 2017). Previ-
ous studies found that MALAT1 was a promising target for
DDP resistance in GC. Another IncRNA ARHGAP5-AS1
can also promote DDP resistance in GC by autophagy and
adds more evidence that autophagy was a critical process in
chemoresistance (Zhu et al. 2019a).

The mechanism underlying DDP resistance conferred
by IncRNA HOXD-AS1 may be epigenetically silencing of
PDCD4 via recruiting EZH2 in GC (Ye et al. 2019b). EZH2
also can be recruited by IncRNA PCAT-1 via epigenetically
silencing of PTEN. Downregulation of PCAT-1 could pro-
mote sensitivity of DDP-resistant GC cells to DDP (Li et al.

2020a). Hence, EZH2-related IncRNA provided a novel
therapeutic strategy targeting DDP chemoresistance in GC.
DPP resistance is also conferred by PCAT-1 via another axis
(i.e., miR-128/ZEB1). PCAT-1 acted as a sponge of miR-
128 and the target was ZEB1. Knockdown of PCAT-1 could
improve DDP sensitivity in GC tumors in vivo (Guo et al.
2019). The resistance of GC cells to DDP was promoted
by FOXD1-AS1, so that depletion of FOXD1-AS1 reversed
DDP resistance both in vitro and in vivo by targeting PI3K/
AKT/mTOR pathway (Wu et al. 2020b).

DDP was also used in CRC treatment, even not commonly
as 5-Fu and OXA, additional example about autophagy
in chemoresistance is IncRNA SNHG14 in CRC, which
stimulated CRC cell autophagy via miR-186/ATG14 axis
(Han et al. 2020). There are some other IncRNAs examples
related to DDP resistance. For example, silencing of IncRNA
FGF9 could reverse DDP resistance via regulation of Wnt/
B-catenin signaling pathway in CRC (Zhang et al. 2020b).
Silencing of PVT1 could inhibit DDP resistance in CRC
cells (Ping et al. 2018) and GC cells both in vitro and in vivo
(Wu et al. 2020a). The overexpression of CASC2 could over-
come DDP resistance in GC by binding to miR-19a (Li et al.
2018b). LncRNA DANCR could promoted DDP resistance
through miR-125b-5p/HK2 axis both in vitro and in vivo
(Shi et al. 2020).

Chemoresistance to gemcitabine

Gemcitabine-based chemotherapy is the first-line treatment
for PC. Just as in CRC and GC, gemcitabine resistance has
been major barrier in treating PC (Ju et al. 2015). LncRNA
SLC7A11-AS1 was overexpressed in PC tissues and gem-
citabine-resistant cell lines. Knockdown of SLC7A11-AS1
can boost pancreatic cancer cell sensitivity to gemcitabine.
This implies that SLC7A11-AS1 is a promising target for
stemming gemcitabine resistance in PC (Yang et al. 2020).
The knockdown of IncRNA HOTTIP could promote the
chemosensitivity of PC cells to gemcitabine by modulating
HOXA13 both in vitro and in vivo was reported in previous
paper (Li et al. 2015).

GSTM3TV2 is a IncRNA associated with higher chem-
oresistance to gemcitabine in pancreatic cancer in vitro and
in vivo by acting as a ceRNA to sponge let-7 and regulate the
expression of its direct targets LAT2 and OLR1 (Xiong et al.
2019). Linc-DYNC2H1-4 is upregulated in gemcitabine-
resistant PC cells and knockdown of Linc-DYNC2H1-4
could suppress EMT via sponging miR-145, which targeted
EMT markers (Gao et al. 2017b). SNHG14 is also a poten-
tial autophagy-related target in PC. It interreacted with
miR-101 to stimulate autophagy and increase gemcitabine
resistance (Zhang et al. 2019d). Downregulation of IncRNA
HOST?2 could improve the sensitivity to gemcitabine in PC,
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but the detailed mechanism of which is still unknown (An
and Cheng 2020). Inhibition of IncRNA PVT]1 led to higher
efficacy of gemcitabine by targeting miR-1207 (You et al.
2018). The recent study indicated PVT1 could promote
gemcitabine resistance of PC both in vitro and in vivo. The
study demonstrated that PVT1 induced gemcitabine resist-
ance was associated with elevated increased Wnt/B-catenin
signaling pathway and autophagic activity. MiR-619-5p was
directly targeted by PVT1, and the gemcitabine resistance
was reversed by miR-619-5p in PC (Zhou et al. 2020). In
addition, many other IncRNAs, such as TUGI, HOTAIR,
GASS, and HOTTIP, are also implicated in regulating gem-
citabine resistance in PC (Yang et al. 2018a; Wang et al.
2017b; Gao et al. 2018; Li et al. 2015).

LncRNA AGAP2-AS1 worked as a ceRNA of miR-
497 which targeted on fibroblast growth factor receptor 1.
Gemcitabine resistance could be diminished by silencing
AGAP2-AS1, which also cause G1/M phase cell cycle arrest
in CRC cells (Hong et al. 2020).

Chemoresistance to other chemotherapy

Besides the commonly used drugs mentioned above, there
are other chemotherapy drugs used in digestive system can-
cer treatment. Doxorubicin (DOX) is an anthracycline drug
used to treat many malignancies and chemoresistance is the
major treatment challenge. XIST is upregulated in CRC tis-
sues and cells while knockdown of XIST could curb DOX
resistance via interacting with miR-124, thereby positively
regulate SGK1 expression in DOX-resistant CRC cells.
The antitumor effect of DOX was improved further both
in vitro and in vivo (Zhu et al. 2018a). IncRNAs D63785
and NEAT1 were also reported to regulate DOX resistance
in GC (Zhou et al. 2018b; Zhang et al. 2018a).

Oxymatrine plays a role in anti-arrhythmia, antifibrosis,
anti-inflammation, and antitumor in CRC and PC (Zhang
and Huang 2004; Liang and Huang 2016; Chen et al. 2013).
In oxymatrine-resistant CRC cells, IncRNA MALAT1 was
upregulated, while knockdown of MALAT1 could partially
reverse EMT. MALAT1 is a stimulator for oxymatrine resist-
ance in CRC, which can inform better therapy treatment of
CRC patients (Xiong et al. 2018). Carboplatin chemotherapy
also face the challenge of chemoresistance. The expression
of IncRNA BORG could enhance the viability of CRC cells
by downregulating pS3 so that downregulation of BORG
could be a novel clue to overcoming the chemoresistance
(Li et al. 2020b).

Some IncRNAs are implicated in multiple chemoresist-
ance, such as XIST. It can modify the resistance to 5-FU,
mitomycin, DDP, and DOX by collaborating with miR-30a
in CRC cells (Zhang et al. 2019c). LncRNA GIHCG is asso-
ciated with chemoresistance to 5-Fu and OXA and CRC

Pielase clla)l auan .
KACST 3.015lq rogle Ll @ Springer

progression (Jiang et al. 2019b). Apart from in 5-Fu chem-
oresistance, knockdown of CRNDE can increase sensitivity
to chemotherapeutic drugs. This is also confirmed for OXA
(Han et al. 2017). Similar sensitivity recovery was found in
5-Fu and OXA when ANRIL was knocked down (Zhang
et al. 2018h). Overexpression of SLC25A25-AS1 not only
increased the sensitivity to 5-Fu, but also to DOX in CRC
cell line (Li et al. 2016). Knockdown of HULC contributed
to the sensitivity of GC cells to DDP, DOX and 5-Fu (Zhang
et al. 2016a). Knockdown of CASC9 significantly reduced
the resistance to paclitaxel and DOX in GC cells (Shang
et al. 2017).

Future perspectives

LncRNAs have attracted great attention in the past dec-
ade with increasing number of studies reporting on novel
IncRNAs involved in various digestive system cancers. Due
to its huge potential in modulating cancer development,
it is very motivating to elucidate the IncRNAs regulatory
mechanisms, especially those controlling the gene expres-
sion responsible for carcinogenesis or overcoming chemore-
sistance. It is also encouraging to note that several clinical
trials involving IncRNAs and cancers, specifically thyroid
cancer and breast cancer, have already completed their stud-
ies while others are still recruiting (https://clinicaltrials.gov/
ct2/home). Although the results of these trials have not been
published yet, their promising roles have been verified both
in vitro and in vivo by numerous studies, and thus, signifies
the potential of IncRNAs as therapeutic targets and/or bio-
markers in cancer diagnosis and therapy.
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