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Abstract
Several tonnes of shellfish wastes are generated globally due to the mass consumption of shellfish meat from crustaceans like 
prawn, shrimp, lobster, crab, Antarctic krill, etc. These shellfish wastes are a reservoir of valuable by-products like chitin, 
protein, calcium carbonate, and pigments. In the present scenario, these wastes are treated chemically to recover chitin by the 
chitin and chitosan industries, using hazardous chemicals like HCl and NaOH. Although this process is efficient in removing 
proteins and minerals, the unscientific dumping of harmful effluents is hazardous to the ecosystem. Stringent environmental 
laws and regulations on waste disposal have encouraged researchers to look for alternate strategies to produce near-zero 
wastes on shellfish degradation. The role of enzymes in degrading shellfish wastes is advantageous yet has not been explored 
much, although it produces bioactive rich protein hydrolysates with good quality chitin. The main objective of the review 
is to discuss the potential of various enzymes involved in shellfish degradation and their opportunities and challenges over 
chemical processes in chitin recovery.
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Introduction

Health benefits associated with seafood consumption have 
created a demand for consuming them, resulting in waste 
generation. Crustacean processing industries generate about 
6–8 million tonnes of shellfish wastes annually (Yan and 
Chen 2015). Normally seafood wastes are dumped in the 

landfill sites inviting unwanted pests; burned or dumped into 
the water bodies, contaminating the ecosystem (Yadav et al. 
2019; Xu et al. 2013). Over the years, chitin and chitosan 
industries are partly utilizing these shellfish wastes to pro-
duce chitin and chitosan using harsh chemicals like acids 
and strong bases (Casadidio et al. 2019; Santos et al. 2020). 
These chemical methods are not environmentally friendly as 
they release chemical effluents into the environment. There-
fore, safe and eco-friendly methods are suggested for the 
management of these shellfish wastes (Mathew et al. 2020).

The shellfish wastes are comprised of calcium carbonate 
(20–50%), protein (20–40%), and chitin (15–40%), lipids, 
and pigments, which can be exploited for commercial appli-
cations (Yan and Chen 2015). Among them, chitin is the val-
uable polymer that is found in abundance, next to cellulose. 
They exist naturally in three forms based on their microfibril 
orientation as alpha chitin (antiparallel chains), betachains 
(parallel chains) and gamma chitin (mixture of parallel and 
antiparallel chains) (Kaya et al. 2015). Chitin is recovered 
from calcium carbonate in the shellfish by demineraliza-
tion using acids like HCl, mild acids like citric acid, acetic 
acid, formic acid, lactic acid or by using microbes producing 
organic acids (Mathew et al. 2020; Mahmoud et al. 2007). 
The proteins are separated by deproteination, which is done 

 *	 Raveendran Sindhu 
	 sindhurgcb@gmail.com; sindhufax@yahoo.co.in

1	 Microbial Processes and Technology Division, 
CSIR-National Institute for Interdisciplinary Science 
and Technology (CSIR- NIIST), Trivandrum 695019, India

2	 Department of Life Sciences, National Chung Hsing 
University, No. 145, Xingda Road, South District, 
Taichung City 402, Taiwan

3	 Department of Chemical and Biological Engineering, Korea 
University, Seoul 136713, Republic of Korea

4	 College of Natural Resources and Environment, Northwest 
A & F University, Yangling 712100, Shaanxi, China

5	 Department of Biotechnology and Food Science, Durban 
University of Technology, Durban 4000, South Africa

6	 Center for Innovation and Translational Research, 
CSIR- Indian Institute of Toxicology Research (CSIR-IITR), 
31 MG Marg, Lucknow 226001, India

http://orcid.org/0000-0002-7368-3792
http://crossmark.crossref.org/dialog/?doi=10.1007/s13205-021-02912-7&domain=pdf


	 3 Biotech (2021) 11:367

1 3

367  Page 2 of 13

with the help of strong chemicals like NaOH. However, the 
application of harsh chemicals for deproteination and dem-
ineralization affects the quality of chitin resulting in partial 
deacetylation and depolymerization of the chitin polymer 
and the release of highly acidic/basic effluents (Kumari and 
Rath 2012). Therefore, green technologies using enzymatic 
approaches or microbial fermentation are preferred due to 
environmental concerns.

Enzymatic deproteination is achieved using proteolytic 
organisms or commercial enzymes like alcalase, trypsin, 
delvolase, papain, pancreatin, etc. (Fernandes 2016). The 
steps of demineralization (DM) and deproteination (DP) 
can be reversed based on the accessibility of these enzymes 
to remove the protein, a process that gives maximum chi-
tin yield with near-zero waste being produced (Yadav et al. 
2019). In the process of deproteination, crude enzymes are 
obtained from the microorganism itself or from the viscera 
of fish (Sila et al. 2012a, b), or proteolytic microbes in the 
shellfish are used (Guo et al. 2019). The use of commercial 
enzymes can be expensive but greener compared to chemi-
cal methods. In enzymatic deproteination, about 5–10% of 
protein remains adhered to chitin and are not completely 
removed in comparison to chemical methods (Kaur and 
Dhillon 2015).

The shellfish wastes of crustaceans are comprised of chi-
tin fibres adhered with proteins along with the attachment of 
minerals like calcium. The shell wastes contain carotenoid 
pigments like astaxanthin, proteins, chitin, calcium carbon-
ate, and lipids. These constituents vary from species to spe-
cies and between organisms of the same species depend-
ing on their habitat, climatic conditions, growth phase, and 
feeding. Proteins associated with the shellfish matrix acts 
as lower modulus matrix covering chitin. Microscopic stud-
ies and X-ray diffractive studies have confirmed that chitin 
and protein occur as distinct phases and are connected at 
the interphase (Díaz-Rojas et al. 2006). The proteins in the 
shell wastes prevent excess hydration and the degradation 
of chitin caused by chitinases by sclerotization caused by 
o-dihydric phenol cross-linking. It has been observed that 
the protein associate with chitin to form a chitin proteogly-
can matrix with amino acids like aspartic acid and histidine 
(Guo et al. 2019). At least 55% of the proteins are attached to 
chitin via covalent bonds and the remaining soluble proteins 
are linked by Van der Waals’ forces, hydrogen bond, and 
ionic bonds (Machałowski et al. 2020). Although chemical 
methods are effective in the removal of proteins from the 
shells, the extracted proteins are denatured and harmful in 
formulating animal feeds (Suryawanshi et al. 2019).

The proteins derived by enzymatic and microbial 
conversion of crustacean shell processing are employed 
as additives in animal feeds, as they are rich in essen-
tial amino acids with a rich nutritive value comparable 
to soybean meal (Mathew et al. 2020). Hence, enzymatic 

methods are highly preferred over chemical methods for 
shellfish waste degradation to obtain protein hydrolysate 
rich in essential amino acids (Likhar and Chudasama 
2021; Sumardiono and Siqhny 2018; Yan and Chen 2015). 
There are no specific reviews on the utilization of enzymes 
in shellfish waste degradation, though many reviews have 
discussed the chemical and microbial fermentation of 
shellfish wastes. Therefore, this review aims to discuss the 
different types of enzymes involved in shellfish degrada-
tion, their opportunities, and challenges over conventional 
methods.

Conventional process for shellfish waste 
processing

The traditional process of recovering chitin includes dem-
ineralizing the shellfish wastes using harsh acids like HCl, 
HNO3, and H2SO4 (Gadgey and Bahekar 2017) or organic 
acids like formic acid, acetic acid (Regis et al. 2015), and 
lactic acid. The protein removal is achieved by hydrolyzing 
the waste with strong bases like NaOH, Na2CO3, NaHCO3, 
KOH, K2CO3, Ca(OH)2, Na2SO4, NaHSO4, CaHSO4, 
Na3PO4, and Na2S (Younes and Rinaudo 2015). The 
extracted chitin contains pigments like astaxanthin, which 
are separated using hydrogen peroxide, and other strong oxi-
dizing agents to obtain colourless chitin (Arnold et al. 2020). 
However, this chemical process is disadvantageous resulting 
in the release of hazardous chemicals along with essential 
minerals and amino acids that are impossible to be recycled. 
It also affects the crystallinity of the recovered chitin causing 
low molecular weight (Mathew et al. 2020).

Chitin is deacetylated with NaOH concentration rang-
ing between 25 and 50%, to obtain chitosan, a valuable and 
desired biopolymer used in versatile applications like food 
packaging, agriculture, wastewater treatment, biomedical 
applications, and wound healing (Suryawanshi et al. 2019; 
Shamshina et al. 2019; Priyadarshi and Rhim 2020; Satitsri 
and Muanprasat 2020). Chitosanase converts chitin to chi-
tooligosaccharides, which have wide applications in medi-
cine (Kaczmarek et al. 2019; Aam et al. 2010). Depending 
on the nature of chitosan required for various industrial 
applications, chitin is deacetylated to chitosan at room tem-
perature (homogenous deacetylation) or at higher tempera-
tures (heterogeneous deacetylation) to attain chitosan with 
varying molecular weights (Tharanathan and Kittur 2003). 
However, excess alkali has to be thoroughly washed from the 
chitosan flakes, which is time-consuming (Weinhold et al. 
2009). El Knidri et al. (2016) established a thermo-chemical 
process in chitosan conversion using the microwave irra-
diation method resulting in high molecular weight chitosan 
from shrimp shells with 80% deacetylation.
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Enzymatic methods for shellfish waste 
processing

Enzymes from various sources like plants, animals, prawn/
shrimp, fishes, and microbes are used for the processing 
of shellfish waste.

Fish proteases for degradation of shellfish wastes

Fish proteinases are valuable for various industrial appli-
cations due to their high proteolytic activity at different 
pH and temperature ranges (Coppola et al. 2021). Table 1 
discusses the deproteination efficiency of fish proteases 
on shellfish wastes. Various enzymes, namely proteases, 
chitinase, hyaluronidase, protease, etc., are reported to be 
isolated from shellfish and fish wastes (Caruso et al. 2020; 
Shahidi and Kamil 2001; Venugopal 1995). Alkaline pro-
teases from the fish viscera of goby (Zosterises sorophio-
cephalus), thornback ray (Raja clavata) and scorpionfish 
(Scorpaena scrofa) were used in the deproteination of 
dry shrimp waste powder. The deproteination efficiency 
using E/S of 10 at 45 °C for 3 h resulted in a DP range of 
76–80% (Nasri et al. 2011).

Proteases from Grey triggerfish (Balistes capriscus) at 
concentrations of 20 U/mg were used for the deproteina-
tion of Metapenaeus monoceros (shrimp) shells leading to 
deproteination efficiency of 78 ± 2%when incubated for 3 h 
at 45 °C (Younes et al. 2014). Other proteolytic enzymes 
from Bacillus species, Vibrio metschnikovii J1 and Asper-
gillus clavatus ES1, and fish alkaline proteases were also 
attempted (Younes et al. 2014). Trypsin purified from the 
pyloric ceca of bluefish Pomatomus saltatrix was used for 

the extraction of carotenoprotein from the Penaeus mono-
don (Klomklao et al. 2009).

Proteases from microbes

Biological methods for recovering chitin and other value-
added products are preferred as an alternative compared to 
chemical processes. Therefore, biofermentation of these 
crustacean wastes, namely; crab waste (Jung et al. 2006; 
Oh et al. 2007; Jo et al. 2008), crayfish shell (Bautista et al. 
2001; Cremades et al. 2003), prawn carapace (Fagbenro 
1996) and shrimp waste (Xu et al. 2008; Younes et al. 2012; 
Cira et al. 2002) and Scampi wastes (Zakaria et al. 1998) are 
executed using proteolytic microbes.

Different deproteination efficiencies were observed using 
purified enzymes and proteolytic microorganisms (Table 2). 
Bustos and Michael (1994) did a comparative study of puri-
fied proteases from P. maltophila along with the whole 
microorganism. When P. maltophila was used directly, it 
resulted in 82% deproteination after 6 days incubation com-
pared to purified proteases, resulting in only 64% DP effi-
ciency. Bhaskar et al. (2007) biofermented shrimp wastes 
with Pediococcus acidilactici CFR2182 and optimized their 
fermentation conditions by response surface methodology to 
obtain chitin by demineralization and deproteination.

Alkaline proteases isolated from Micromonosporachai-
yaphumensisS103 were used to recover chitin from P. kera-
thurus waste shells (Mhamdi et al. 2017). A 93% deproteina-
tion efficiency was achieved using an E/S ratio of 20 U/mg 
of shrimp waste for 3 h at 45 °C and pH 8.0, whereas in 
the absence of enzyme, the deproteination degree was 30% 
probably due to the breaking down of electrostatic or hydro-
gen bonds due to thermal treatment. Some proteins linked by 
covalent bonds require enzymatic and chemical approaches 
for separating the protein from chitin (Mhamdi et al. 2017). 

Table 1   Fish proteases in shellfish waste degradation

Crustacean shell wastes Enzymes used Incubation time 
and temperature

Enzyme/substrate ratio DP (%) References

Shrimp waste (Penaeus 
longirostris)

Purified trypsin from Bar-
buscallensis

1 h, 30°C 1.0 U/g shrimp shells NA Sila et al. (2012a; b)

Penaeus monodon Trypsin from Pomatomus 
saltatrix

1 h at 25°C 1.2 U/g shrimp shells NA Klomklao et al. (2009)

Shrimp waste (Metapenaeus 
monoceros)

Crude alkaline protease 
from Balistes capriscus

3 h 45°C, pH 9.0 5 U/mg 78 ± 2 Jellouli et al. (2009), Younes 
et al. (2014)

Shrimp waste (Metapenaeus 
monoceros)

Crude alkaline protease 
from Sardinella aurita

3 h, 45°C, pH 8.0 20 U/mg 75 ± 2 Ben Khaled et al. (2011), 
Younes et al. (2014)

Shrimp waste (Metapenaeus 
monoceros)

Crude alkaline protease 
from Z. ophiocephalus

3 h, 45°C, pH 9.0 10 U/mg, 20 U/mg 76 ± 2 Nasri et al. (2011), Younes 
et al. (2014)

Shrimp waste Crude alkaline protease 
from Raja clavata

3 h, 45°C, pH 8.0 10 U/mg 76 Nasri et al. (2011)

Shrimp waste Crude alkaline protease 
from Scorpaena scrofa

3 h, 45°C, pH 10.0 10 U/mg 80 Nasri et al. (2011)
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A maximum deproteination of 88% was obtained using 20 
U/mg proteases of B. cereus SVI on shrimp wastes (Manni 
et al. 2010). Ghorbel-Bellaaj et al. (2012b) used six protease-
producing Bacillus species (B. licheniformis RP1, B. cereus 
SV1, B. subtilis A26, B. amyloliquefaciens, B. mojaven-
cisA21 and B. pumilusA1) for chitin extraction from shrimp 
shell wastes. The addition of 5% glucose to these strains 
promoted demineralization and the obtained protein hydro-
lysates showed high antioxidant activity. Response surface 
methodology was further employed to analyze the shrimp 
shell using B. pumilus A1 (Ghorbel-Bellaaj et al. 2013). The 
optimized conditions with shrimp shell concentration of 7%, 
glucose 5% with pH 5.0 at 35 °C for 6 days using B. pumilus 
A1 resulted in 88% demineralization and 94% deproteina-
tion. B. licheniformis strains deficient in chitinase were used 
for the deproteination of the shrimp shell wastes along with 
0.9% lactic acid resulting in deproteination efficiency of 99% 
and demineralization of 98.8%, resulting in high-quality 
chitin (Waldeck et al. 2006). Protease from Pseudomonas 
aeruginosa K-187 was used for the deproteination of shrimp 
and crab shell powder (SCSP), shrimp wastes of Penaeus 
japonicas resulting in deproteination efficiency of 55, 48, 
and 61% after incubating for 7, 5 and 5 days, respectively 
(Wang and Chio 1998). The mineralized and demineralized 
lobster shell wastes were deproteinated with crude protease 
from Erwinia chrysanthemi resulting in 87.6% and 96% 
DP values (Giyose et al. 2010). The crude protease of E. 
chrysanthemi had 22.4 U/mL enzyme activity that was bet-
ter than the protease activity recorded in B. subtilis, which 
was20.2 U/mL (Yang et al. 2000).

Bioconversion of squid pens, shrimp, and crab shells with 
B. cereus TKU006 produced protein hydrolysates containing 

proteases and chitinases (Wang et al. 2009). Hence, shell-
fish wastes can be utilized as a cheap alternative for carbon 
and nitrogen source in the generation of industrial enzymes 
(Doan et al. 2019). Maruthiah et al. (2015) used Bacillus 
sp. APCMST-RS3 proteases for the deproteination of crus-
tacean shell wastes from shrimp, crab lobster shells yielding 
a DP efficiency of 84.35% after 7 days fermentation that 
was tolerant to organic solvent and salts. Jo et al. (2008) 
deproteinated snow crab wastes with proteolytic bacteria 
Serratia marcescens FS-3 resulting in 84% DP efficiency 
after 7 days of fermentation. The deproteination efficien-
cies using various commercial enzymes, namely Delvolase®, 
Cytolase PCL5®, EconaseCEPi®, Econase MP 1000®, Max-
azme™ NNP®, and Cellupulin MG® was also analyzed, of 
which Delvolase showed better deproteination efficiency of 
the crab shells. When 1% of commercial enzyme Delvolase® 
was blended with 10% inoculum of S. marcescens FS-3, it 
resulted in 85% of deproteination.

Valdez-Peña et al. (2010) screened several commercial 
enzymes for chitin recovery from shrimp heads. The com-
mercial enzymes likeAlcalase® 2.4 L FG (Novozymes, the 
source is B. licheniformis), papain, Trypsin Vl, Flavorzyme® 
500 MG (Novozymes, the source from Aspergillus oryzae) 
were incubated with shrimp heads for 6 h at 37 °C at 40 rpm. 
From their study, high-quality chitin was obtained by demin-
eralization using microwave-assisted technology along with 
enzymatic deproteination. In similar research, Baron et al. 
(2017) screened 11 commercial proteases that could func-
tion at lower pH ranging from 3.5 to 4.0 to carry out a single 
biorefinery process for chitin extraction and deproteination 
of shrimp shell wastes to obtain above 95% deproteination. 
These commercial proteases belonged to fungal sources (T. 

Table 2   Proteolytic microorganisms involved in shellfish deproteination

Proteolytic microorganism Crustacean source Deproteination 
(DP) in %

References

Aspergillus niger 0576 Shrimp shell 96.7 ± 0.3 Teng et al. (2001)
Aspergillus niger 0307 Shrimp shell 97.2 ± 0.5 Teng et al. (2001)
Aspergillus niger 0474 Shrimp shell 97.1 ± 0.3 Teng et al. (2001)
B. subtilis Shrimp waste of Metapenaeus dobsoni 84 Sini et al. (2007)
Pseudomonas aeruginosa F722 Crab shell 63 Oh et al. (2007)
B. cereus 8-1 Shrimp shell 97.1 Sorokulova et al. (2009)
Exiguobacterium acetylicum Shrimp shell 92.8 Sorokulova et al. (2009)
B. subtilis A26 Shrimp shells from Metapenaeus monoceros) 91.55 Ghorbel-Bellaaj et al. (2012b)
Bacillus mojavensis A21 Shrimp shells from Metapenaeus monoceros) 90.05 Ghorbel-Bellaaj et al. (2012b)
B. cereus SV1 Shrimp (Metapenaeus monoceros) 95.65 Ghorbel-Bellaaj et al. (2012b)
Bacillus licheniformis RP1 Shrimp shells from Metapenaeus monoceros) 94.4 Ghorbel-Bellaaj et al. 2012b
Bacillus pumilus A1 Shrimp shells from Metapenaeus monoceros) 94 Ghorbel-Bellaaj et al. (2013)
Bacillus amyloliquefaciens An6 Shrimp shells from Metapenaeus monoceros) 83.4 Ghorbel-Bellaaj et al. (2012b)
Pseudomonas aeruginosa A2 Metapenaeus monoceros (shrimp waste) 90 Ghorbel-Bellaaj et al. (2012a)
Paenibacillus woosongensis TKB2 Shell wastes of Penaeus monodon 80 Paul et al. (2015)
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reesei, A. oryzae and A. niger), aspartate protease and pep-
sin (gastric mucosa). The important parameters for enzy-
matic hydrolysis of crustacean wastes are temperature, pH, 
duration of hydrolysis, enzyme/substrate (E/S ratio) and pH 
(Diniz and Martin 1997; Deng et al. 2002).

Commercial enzymes

Some commercial enzymes were traditionally exploited 
by the seafood processing industries for applications like 
shrimp deveining, descaling, etc. The enzymes that have 
been utilized in shellfish degradation are mentioned in 
Table 3.

Papain

The plant-based enzyme, papain derived from Carica 
papaya was reported to be used in the extraction of chi-
tin (Jasmine et al. 2006). Broussignac (1968) observed that 
commercial enzymes like papain, pepsin, and trypsin pro-
duced good quality chitin with little deacetylation. Papain 
facilitated the production of high-grade chitosan from 
shellfish wastes (Gopalakannan et al. 2000). The shrimp 
shell wastes of Penaeus indicus were demineralized with 
1.75 N glacial acetic acid followed by deproteination with 
papain to yield values of 73.1% compared to the chemical 
process having a DP value of 98%. The degree of deacetyla-
tion (DD) using enzymatic approaches gave good quality 
chitosan of 19.4% than chemical approaches having DD of 
17.2%. Muzzarelli et al. (1994) used covalently immobilized 
papain to depolymerise lobster chitosan in its lactate salt 
under acidic conditions and other modified chitosans. The 
usage of this plant-based low-cost commercial enzyme was 
widely accepted for the production of chitosan hydrolysates 

in comparison to using lysozyme and other chitinases for 
various applications.

Chymotrypsin

Chymotrypsin can be isolated from the shrimp (Fennero-
penaeus chinensis) (Shi et al. 2008) and fish viscera of 
sardine (Sardinops sagax caerulea) (Castillo-Yañez et al. 
2009). Chymotrypsin type II (EC 3.4.21.1) and papain were 
employed for the deproteination of demineralized shrimp 
shell wastes by Response surface methodology (Gagné and 
Simpson 1993). Optimum conditions for chymotrypsin 
were 40 °C at pH 8.0 with an E/S ratio of 7:1000 (w/w) for 
deproteination of shrimp wastes, whereas the conditions for 
papain enzymes were 38 °C, pH of 8.7 and E/W ratio of 
10:1000 (w:w).

Alcalase

Alcalase is a commercially available protease used for the 
treatment of crustacean wastes to produce hydrolysates rich 
in bioactives (Gildberg and Stenberg 2001). Alcalase 2.4 
L belongs to bacterial serine endopeptidases produced by 
Bacillus licheniformis (Dey and Dora 2014). Shrimp wastes 
from Pandalus borealis were treated with Alcalase enzyme 
(2.4 L FG) to obtain protein hydrolysates containing amino 
acids, nitrogen, and carotenoid astaxanthin. Australian rock 
lobster (Jasus edwardsii) shells were treated with Alcalase 
2.4 L FG (Novozymes) followed by microwave intensified 
enzymatic deproteination that enhanced the deproteination 
efficiency from 58% to 85.8%. This method released higher 
yields of bioactive compounds with a reduction in chitin 
recovery time with minimum solvent usage (Xiao et al. 
2008). The cooked and minced lobster shells were treated 
with Alcalase (1:1) at 55 °C using a microwave (input energy 
40 W, stirring 95%) for deproteination (Nguyen et al. 2016).

Table 3   Commercial enzymes in shellfish waste degradation

Commercial enzymes Crustacean source Deproteination (%) References

Alcalase 2.4 L Demineralised shrimp shells (Crangon 
crangon)

95.5 ± 0.53 Synowiecki and Al-Khateeb (2000)

Alcalase 2.4 L Shrimp (Xiphopenaeus kroyeri) 93.41 De Holanda and Netto (2006)
Alcalase® Shrimp head NA Valdez-Peña et al. (2010)
Alcalase 2.4 L added along with sodium 

sulphite and NaOH
Shrimp (P. semisulcatus) 99.13 Mizani and Aminlari (2007)

Swine pancreatin Shrimp (Xiphopenaeus kroyeri) 92.23 De Holanda and Netto (2006)
Pepsin White shrimp shell 92 Duong and Nghia (2014)
Protease Litopenaeus vannamei 91.1 Hongkulsup et al. (2016)
Bluefish trypsin Penaeus monodon NA Klomklao et al. (2009)
Delvolase Snow crabs (Chionoecetes opilio) 90 ± 2.9 Jo et al. (2008)
Crude protease from Bacillus cereus SV1 Shrimp shell from Metapenaeus monoc-

eros)
88.8 ± 0.4 Manni et al. (2010)
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Significant by-products like chitin, protein, and astaxan-
thin from shrimp shell wastes of Xiphopenaeus kroyeri were 
obtained using two different commercial enzymes, namely 
Alcalase and swine pancreatin. Alcalase gave better recov-
ery of protein hydrolysates (65%) with the reduction in bit-
ter taste and improvement in functional characteristics (De 
Holanda and Netto 2006). In a similar study, the shrimp 
wastes of P. monodon were treated with four microbial 
food-grade proteases namely Alcalase, Neutrase, Protamex 
(Bacillus protease complex) and Flavourzyme 500 MG (fun-
gal protease derived from A. oryzae) which are functional at 
alkaline pH (Dey and Dora 2014; Aunstrup 1980). Optimiza-
tion by central composite design showed that the Alcalase 
enzyme showed deproteination compared to other enzymes 
(Dey and Dora 2014). Alcalase treated shrimp shell wastes 
showed better protein hydrolysis than others, releasing more 
peptides and amino acids than other enzymes (Valdez-Peña 
et al. 2010; Synowiecki and Al-Khateeb 2000). Mizani et al. 
(2005) used a successful method to develop protein powder 
rich in amino acids from the shrimp head of P. semisulcatus 
using Alcalase along with Triton X-100 and sodium sulphite. 
The addition of mild acids like lactic acid and gluconic acid 
for demineralization of shellfish wastes followed by enzy-
matic conversion with Alcalase can release by-products like 
calcium lactate and calcium gluconate used as fortificant in 
soymilk (Dechapinan et al. 2017).

Trypsin

Trypsin is a member of serine proteases that hydrolyze the 
protein at the carboxyl side of arginine and lysine residues 
(Sriket 2014; Klomklao et al. 2006, 2009). Carotenoproteins 
are extracted from the shellfish wastes using trypsin from 
fish viscera and Bovine (Klomklao et al. 2009). Although 
chemical applications using solvents and oil helped in an 
efficient carotenoid recovery, it affected the stability of the 
pigment because of oxidation (Mezzomo and Ferreira 2016). 
In the crustacean shell wastes, a third of the constituents 
belonged to proteins, mainly carotenoids. These caroteno-
proteins are extracted from shellfish wastes like crab, shrimp 
and lobster using trypsin along with the extraction buffer 
(Klomklao et al. 2009).

Different astaxanthin and protein removal efficiencies 
were observed using shrimp discards treated with bovine 
trypsin and Atlantic cod trypsin. Better carotenoprotein 
retrieval of 64% was observed using Atlantic cod trypsin 
than bovine trypsin with 49% (Cano-Lopez et al. 1987). 
Application of commercial enzymes like trypsin for astax-
anthin recovery for food-related applications due to their sta-
bility and GRAS status (Lee et al. 1999). Trypsin was added 
along with EDTA for extracting carotenoids from shrimp 
wastes (Sowmya et al. 2014). Lee et al. (1999) used an effec-
tive method for the extraction of carotenoid pigments from 

cooked shrimp wastes of Pandalus borealis using proteolytic 
enzymes (concentrates) derived from various organisms, 
namely Aspergillus melleus, A. oryzae and Bacillus licheni-
formis. Proteolytic enzymes from B. licheniformis showed 
maximum astaxanthin recovery of 91.9% with EDTA. Snow 
crab waste treated with trypsin removed the carotenoids. 
Simpson et al. (1992) recovered carotenoproteins from lob-
ster (Homarus americanus) shell wastes using trypsin from 
Atlantic cod offals and bovine pancreas.

The shrimp shell wastes of Metapenaeus monoceros 
were extracted for carotenoprotein using three commer-
cial enzymes namely trypsin, papain, and pepsin. Trypsin 
showed the highest carotenoid recovery of 55% after 4 h at 
28 °C using citrate phosphate buffer at pH 7.6. Under similar 
temperature and incubation conditions, 50% of the protein 
was obtained using papain with citrate buffer (pH 6.2) and 
50% protein using pepsin with pH 4.6 (Chakrabarti 2002). 
The shrimp shells were ground and mixed in the ratio 3:7 
with citrate phosphate buffer (corresponding pH 5.0), sub-
sequently adding enzyme in the ratio of 1:3000 based on 
shell waste protein.

Pepsin

Duong and Nghia (2014) utilized pepsin enzymes for the 
deproteination of demineralized white shrimp shell wastes 
for chitin recovery. Pepsincould carry out deproteination at 
a lower pH of 2.0 at optimized conditions of factors like 
temperature, time, and enzyme concentration. This resulted 
in a 0.92 degree of deproteination when the enzyme con-
centration was 20 U/g protein incubated at 40 °C for 16 h. 
This process was beneficial as it reduced the utilization of 
chemicals in chitin recovery.

Proteinase K

Crab shell wastes were enzymatically degraded using pro-
teinase K, leading to amino acid production which can be 
used as a nutrient supplement in seed cultivation and micro-
bial growth (Padmalochana and Prema 2016). In addition, 
an efficient method was devised for the removal of minerals 
and proteins from cray shell waste powder using enzymatic 
action using proteinase K and fermentation with B. coagu-
lans LA204 resulting in DP value of 93%, DM of 91% and 
chitin recovery of 94% (Dun et al. 2019).

Pectinase

Commercial pectinase enzyme, Pectinex™ produced by 
Aspergillus niger was reported to hydrolyze insoluble chitin 
(Roy et al. 2003). The chitinolytic activity of PectinexTM on 
chitin was comparatively higher than lysozyme or even chi-
tinase enzyme from Serratia marcescens (Roy et al. 2003).
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Endogenous enzymes

A cost-effective technology was employed by using 
autochthonous microorganisms from the shellfish wastes 
for the breakdown of the shellfish wastes. Endogenous 
enzymes from the shrimp head of Pandalus borealis 
along with fermentation with Bacillus licheniformis was 
used for retrieving protein hydrolysates and chitin (Guo 
et al. 2019). Mixed cultures from various sources like 
endogenous microflora from Indonesian shrimp shells 
and cultures from C. crangon shrimps, from the soil, sew-
age sludge (SS), ground beef meat (GM), and sauerkraut. 
The cultures from SS and GM were added to wet and dry 
shrimp shells resulting in high deproteination values rang-
ing from 83 to 98% in P. monodon and approximately 98% 
for C. crangon (Xu et al. 2008). High-quality chitin was 
derived in this process. Chitin was extracted by the auto-
fermentation of Penaeus vannamei shells (Sjaifullah and 
Santoso 2016). Hamdi et al. (2017) used alkaline protease 
from the digestive prawn viscera of P. segnis for the depro-
teination of shellfish wastes from Portunus segnis (Blue 
crab) and P. kerathurus (shrimp). The deproteination effi-
ciency was 84.69% for blue crab and 91% for P. kerathurus 
by incubating 5 U/mg protein for 3 h at 50 °C.

Chemical demineralization followed 
by deproteination with enzymes

Minerals like calcium carbonate are dislodged from the 
chitin-protein complex before enzymatic treatments. As 
mentioned earlier, mild concentrations of organic or inor-
ganic acids facilitate demineralization, which is succeeded 
by the addition of enzymes. Hamdi et al. (2017) demin-
eralized blue crab shell wastes with 1:10 w/v of 0.55 M 
HCl followed by the addition of crude protease from the 
prawn waste of P. segnis incubated at pH 8.0 at 50 °C for 
3 h resulting in a deproteination value of 85%. Shrimp 
shell powder was demineralized with 1.5 NHCl, 1:2 w/v 
for 2 h incubation at room temperature followed by depro-
teination with crude proteases of Erwinia chrysanthemi 
incubated at 37 °C for 16 h resulting in a DP of 95% (Sami 
2010). Shrimp wastes demineralized with 1:10 (w/v) of 
1.5 M HCl incubated for 6 h, 25 °C followed by depro-
teination with proteases (1:2) from B. cereus SV1 resulted 
in 89% deproteination (Manni et al. 2010). Younes et al. 
(2016) demineralized shrimp shells 1:10 (w/v), 0.5 M 
HCl followed by deproteination with crude proteases 
from Bacillus mojavensis A2 (7.75 U/mg) and crude pro-
tease from Scorpaena scrofa (10 U/mg) resulting in 96% 
deproteination.

Conversion of chitin to chitosan using 
enzymes

Enzyme-based conversion of chitin and chitosan is widely 
preferred and is gaining interest. Hydrolysis of chitin and 
chitosan is attained with enzymes like chitinases, chitosan-
ases, chitin deacetylases, and lytic polysaccharide monooxy-
genases (LPMO) (Kaczmarek et al. 2019). Chitinases (EC 
3.2.1.14) are enzymes that break down the β-1, 4 linkages 
of the chitin polymer in crustacean shells to form N-acetyl-
glucosamine units. Degradation of chitin occurs in two parts 
(1) breakdown of chitin to chitooligosaccharides (2) break-
down of chitooligosaccharides to form N-acetyl glucosamine 
units (Chavan and Deshpande 2013; Adrangi and Faramarzi 
2013). Details are depicted in Fig. 1. N-acetyl glucosamine 
(GlcNAc) is produced from chitin-containing materials by 
chitinolytic enzymes like β-N-acetyl-d-hexosaminidase (Sla-
mova et al. 2010; Yang et al. 2008) and Lytic polysaccha-
ride monooxygenases (LPMO) (Vaaje-Kolstad et al. 2010). 
Chitin deacetylases convert chitin to chitosan, a polymer 
preferred over chitin due to their soluble nature, high molec-
ular weight, and degree of deacetylation (DD) (Tsigos et al. 
2000). Ideally, microbes secreting chitinolytic enzymes are 
preferred for the bioconversion of chitin and chitosan to their 
respective oligosaccharides. Ilyina et al. (2000) immobilized 
chitinolytic enzyme from Streptomyces kurssanovii for the 
preparation of water-soluble chitosan (devoid of acid) from 
crab with a molecular weight of 2–9 kDa. Chitinase from 
Aeromonas hydrophila H-2330 degraded α chitin resulting 
in 77% of N-acetyl glucosamine (Sashiwa et al. 2002).

Fig. 1   Enzymatic conversion of shellfish wastes to partially acety-
lated chitooligosaccharides (paCOS)
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Other enzymes like cellulases and lysozymes were 
exploited for the digestibility of chitin. Commercial cellulase 
from T. reesei and Acremonium cellulolyticus was beneficial 
for the production of N-acetyl glucosamine from the chitin 
of powdered squid pen and crab shells. The yield of N-acetyl 
glucosamine enhanced the mixing of T. reesei cellulase and A. 
cellulolyticus cellulase (Sashiwa et al. 2003). Chitinases from 
Bacillus sp. PI-7S showed higher digestibility of chitin from 
squid pen and shrimp shells and deacetylated chitins in com-
parison to using commercial lysozyme from Hen egg white 
(Shigemasa et al. 1994).

Sabry (1992) analyzed the degradation of shrimp shell 
wastes using microbes secreting chitinase enzyme. Lobster 
shells were degraded using chitinases from Streptomyces 
species, which exhibited high deproteination, demineraliza-
tion, and chitinolytic efficiency. These digested shell extracts 
were reported to control the infection caused by Pseudomonas 
syringae and Botrytis cinerea on Arabidopsis plants (Ilangu-
maran et al. 2017). Shrimp wastes were completely degraded 
by chitinase enzymes from marine isolates of Paenibacillu-
sAD for the production of chitinases and chitooligosaccharides 
(Kumar et al. 2018). The enzymatic conversion of chitin from 
crab shells to N,N -diacetylchitobiose (GlcNAc)2 with the pre-
treatment of sub and supercritical water was achieved using 
chitinase from Streptomyces griseus (Osada et al. 2012, 2015) 
in another method.

Chitin-active LPMOs are copper-based enzymes that 
belong to auxiliary activity enzyme families of groups 10, 
11, and 15. These enzymes may aid in the hydrolysis of chi-
tin by oxidation, leading to the easy accessibility of chitin by 
chitinases. Unlike the chitinases and chitosanases, which are 
glycosyl hydrolases; LPMOs can directly attack the glycoside 
linkage in highly crystalline chitin and require the presence 
of external reducing agents like H2O2 (Mutahir et al. 2018; 
Arnold et al. 2020). Vaaje-Kolstad et al. (2010) studied the 
role of chitin-specific LPMO for the Chitin binding protein 
(CBP21) from Serratia marcescens AA10. Chitinases were 
produced during the bioconversion of shellfish wastes like crab 
and shrimp using B. subtilis W-118 (Wang et al. 2006). The 
derived chitinase hydrolysates contained chitooligosaccharides 
with inhibitory activity against human leukemia cell lines and 
Fusarium oxysporum (Wang et al. 2006). Wang et al. (2018) 
used a potent recombinant chitinase from Bacillus subtilis 
expressed in E. coli for the degradation of crab shells. Thus, 
recombinant chitinases are used in the degradation of shellfish 
wastes.

Opportunities and challenges associated 
with shellfish wastes processing

Enzyme technology is gaining attention in recent years, 
mainly in the seafood-processing sector. These enzymes 
are mainly categorized under proteases named ficin, 
papain, subtilisin, bacillolysin (Neutrase®), trypsin, and 
Protamex® (a combination of bacillolysin and subtilisin) 
that function endogenously or exogenously and aid in 
shrimp peeling, deskinning and descaling of fishes (Fer-
nandes, 2016). Combining endoproteases and exoproteases 
namely, Endocut-03L and 0.25% Exocut-A0 resulted in 
100% peeling of Pandalus borealis shrimps (Dang et al. 
2018). These commercial enzymes are generally expen-
sive than microbial enzymes that are easy to produce on a 
large scale (Younes et al. 2014). The gut of invertebrates 
is also a reservoir of active proteases that can be used 
for enzyme preparation. These non-commercial enzymes 
(microbial and fish proteases) were studied to carry out 
the deproteination of shellfish wastes (Younes et al. 2014). 
Deproteination of about 77 ± 3% and 78 ± 2% was recorded 
using Bacillus mojavensis A21 and Balistes capriscus pro-
teases, respectively, after 3 h of hydrolysis at 45 °C using 
an enzyme/substrate ratio of 20 U/mg.

Enzymes are beneficial as they minimize or generate 
near-zero wastes by converting the shellfish wastes from 
crustaceans to value-added products like chitin and protein 
hydrolysates. This method is effective in reducing wastes 
dumped into the environment. Enzymes are preferred over 
chemicals in the conversion of shellfish wastes as the chemi-
cal effluents released are either highly acidic or basic, which 
need to be neutralized before disposal. Usage of chemicals 
in chitin recovery is expensive, as they require high tem-
peratures and several steps of washing. Furthermore, alkali 
deproteinized shellfish waste hydrolysates cannot be used as 
animal feed (Gortari and Hours 2013; Zargar et al. 2015). 
In the case of enzymes, the hydrolysates obtained can be 
concentrated and used as feed applications in animals, fishes, 
and shrimps and used as soup concentrates (Mathew et al. 
2020; Das et al. 2013). The derived hydrolysates act as bio-
actives, displaying antioxidant activity.

The production of the enzymes can be enhanced 
through the heterologous expression of enzymes in a cost-
effective manner. Harnessing enzymes produced by marine 
microflora isolated from crustacean shells can reduce the 
optimization conditions through computational prediction 
models. In addition, these enzymes are effective in tolerat-
ing harsh processing conditions like high pH, temperature, 
etc. Thus, using enzymes for degrading shellfish wastes is 
a promising greener alternative to chemicals.

The demerits of using enzymes in shellfish depro-
teination are that the costs of commercial enzymes are 
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comparatively expensive. In addition, the usage of 
enzymes retains 5–10% of proteins attached to the chi-
tin, compared to the complete removal of proteins using 
chemicals in a shorter duration (Younes and Rinaudo 
2015). The enzyme-based application studies are still at a 
laboratory scale and require pilot-scale bioprocessing for 
promoting this technology in shell waste degradation on a 
wider platform industrially.

Conclusion and future prospects

Greener technologies are accepted globally to eliminate 
toxic and hazardous effluents from the environment. The 
usage of enzymes in shellfish waste management is a cleaner 
way to protect the ecosystem over chemicals that affects the 
ecosystem. As enzyme technology is yet to be implemented 
on an industrial scale for shellfish waste degradation, there 
is a need to prioritize and develop cheaper and environmen-
tally friendly ways over chemical approaches. This can be 
achieved by combining several cheaper commercial enzymes 
or using microbial enzymes for the effective degradation of 
shellfish wastes. The application of physical methods like 
microwave-assisted treatment or ultrasound extraction of 
shellfish wastes followed by enzymatic treatment is another 
economical and greener way of reducing the enzyme load 
and reducing the cost in the future. Furthermore, the val-
orized products obtained by enzymatic methods can be 
exploited to develop eco-friendly biopolymers like chitin. 
The protein hydrolysates from the enzymatic treatment are 
rich in oligopeptides and can also be used in the develop-
ment of animal, fish, and poultry feed on a large scale. These 
enzyme-based methods are environmentally friendly and 
sustainable compared to chemical methods and generate 
near-zero wastes.
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