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Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disease, also regarded as “type 3 diabetes” for the last few years 
because of the brain insulin resistance (IR) and dysregulation of insulin signaling in the brain, which can further promote 
pathological progression of AD. IRS-1/PI3K/Akt insulin signaling pathway disorder and its downstream cascade reaction are 
responsible for cognitive decline in the brain. In recent years, a growing number of studies has documented that dysregula-
tion of insulin signaling is a key feature of AD and has crucial correlations with serine/tyrosine (Ser/Tyr) phosphorylation of 
insulin receptor substance-1(IRS-1). Phosphorylation of this protein has been identified as an important molecule involved 
in the process of amyloid-β (Aβ) deposition into senile plaques (SPs) and tau hyperphosphorylation into neurofibrillary 
tangles (NFTs). In this paper, we review the links between IRS-1 and the PI3K/Akt insulin signaling pathway, and highlight 
phosphorylated IRS-1 which negatively regulated by downstream effector of Akt such as mTOR, S6K, and JNK, among oth-
ers in AD. Furthermore, anti-diabetic drugs including metformin, thiazolidinediones, and glucagon-like peptide-1 (GLP-1) 
analogue could modulate IRS-1 phosphorylation, brain IR, PI3K/Akt insulin signaling pathway, and other pathologic pro-
cesses of AD. The above suggest that anti-diabetic drugs may be promising strategies for AD disease-modifying treatments.

Keywords  Alzheimer’s disease · Anti-diabetic drugs · Brain insulin resistance · IRS-1 · IRS-1 phosphorylation · PI3K/Akt 
insulin signaling pathway

Introduction

The number of individuals living with Alzheimer’s disease 
(AD) is rapidly increasing, mainly as populations continue to 
age, which poses a growing problem for families and socie-
ties worldwide (Nichols et al. 2019). According to the World 
Alzheimer Report 2019, approximately over 50 million peo-
ple worldwide are living with dementia and this number is 
projected to increase to 152 million by 2050 (Alzheimer’s 

Disease International 2019). AD, one of the most pressing 
epidemics of our time, is a progressive, age-related neu-
rodegenerative disease that is characterized clinically by 
cognitive deterioration, behavioral changes, memory loss, 
and executive function impairments. Pathologically, AD 
is characterized by neuropathologic hallmarks, amyloid-β 
(Aβ), which forms extracellular senile plaques (SPs), and 
intracellular neurofibrillary tangles (NFTs) consisting of 
aggregated hyperphosphorylated tau proteins, along with 
neuroinflammation, synaptic dysfunction, neuronal loss and 
dystrophy, among others (Arranz and De Strooper 2019; De 
Strooper and Karran 2016). Nevertheless, despite our under-
standing the advanced molecular pathogenesis of AD from 
the “amyloid cascade hypothesis” perspective, the preven-
tion and/or clearance of Aβ plaques from the brain has failed 
to translate into effective therapies for AD patients and has 
not alleviated cognitive degeneration (Blanchard and Tsai 
2019; Weller and Budson 2018). It has been suggested that 
underlying pathogenic mechanisms influence the modulation 
of the “amyloid cascade hypothesis”.
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Over the past 2 decades, a growing body of research has 
revealed that dysregulation of insulin signaling and brain 
insulin resistance (IR) are associated with sporadic AD, 
and that both exert a fundamental role in the progression of 
AD pathogenesis (Akhtar et al. 2020a, b; Eric Steen et al. 
2005; Ferreira et al. 2014; Spinelli et al. 2020; Talbot et al. 
2012). Indeed, the insulin signaling pathway is central to 
neuronal survival, regulation of synapse number, dendritic 
plasticity, and glial functions (Chiu et al. 2008; McNay and 
Recknagel 2011; Van der Heide et al. 2005). In post-mortem 
AD brain tissue, insulin and insulin receptor expression is 
strikingly decreased, and alterations in downstream insu-
lin signaling molecules are observed, including diminished 
IRS-1/2, IRS-associated PI3K, and p-Akt levels (Eric Steen 
et al. 2005; Moloney et al. 2010). Moreover, aberrantly dis-
tributed insulin receptor proteins are concentrated within 
neurons in AD (Moloney et al. 2010). In AD animal models 
using 3xTg-AD and Tg2576 mice, for example, brain IR has 
been observed along with perturbed brain levels of IRS-1, 
p-PI3K, p-Akt, and GSK-3β, among other proteins, which 
suggests an impaired insulin signaling pathway (Velazquez 
et al. 2017). Brain insulin receptor sensitivity and IRS-1/2 
expression levels are reduced in association with increased 
levels of IRS-1 phosphorylation at Ser-312 (pSer312-IRS-1) 
(Kleinridders 2016; Moloney et al. 2010); this suggests that 
brain IR is compromised in AD. Furthermore, Aβ42 is the 
main neurotoxic isoform composition of Aβ plaques, and 
defective insulin signaling drives the accumulation of Aβ42 
neurotoxic isoform but not Aβ40 in the brain of APP/PS1 
mice (Chua et al. 2012), the formation of hyperphosphoryl-
ated tau proteins and dystrophic neurites (Yarchoan et al. 
2014), impairs hippocampal long-term potentiation (LTP) 
and learning (Grillo et al. 2015), and stimulates neuroinflam-
mation and the accumulation of reactive oxygen species (de 
la Monte 2014).

Type 2 diabetes mellitus (T2DM) is a multifactorial dis-
ease characterized by IR, which is associated with distur-
bances in insulin signaling in cellular level, and has been 
demonstrated as a substantial risk factor for AD develop-
ing. Compared with the general population, individuals with 
T2DM have a more than 1.5 times greater risk of developing 
AD, especially in Eastern populations (Zhang et al. 2017). 
Besides, further clinical studies support a link between 
T2DM and AD (Beeri and Bendlin 2020). Results of some 
studies assessing the effect of anti-diabetic drugs involving 
metformin, thiazolidinediones, and glucagon-like peptide-1 
(GLP-1) analogue on individuals diagnosed as mild cogni-
tive impairment (MCI) or AD, in some extend, pose a nota-
ble cognitive benefit (Kellar and Craft 2020; Munoz-Jimenez 
et al. 2020; Rotermund et al. 2018). Above these suggest-
ing that a considerable overlap in pathogenesis exists across 
these two conditions, AD and T2DM. This association 
may due in large part to dysregulation of insulin signaling 

pathway which mediates IR (Boccardi et al. 2019). Brain 
IR is simply defined as inactivated insulin signaling path-
way, especially the IRS/PI3K/Akt pathway, which is crucial 
for maintaining synaptic plasticity and cognitive functions 
(Bedse et al. 2015; Boucher et al. 2014). IR, the linking 
mechanism between T2DM and AD, which potentiates the 
formation of Aβ plaques by reducing the degradation and 
clearance of Aβ, and especially impairs the downstream 
insulin signaling pathway PI3K/Akt, leading to enhanced 
production of Aβ and hyperphosphorylated tau in the brain 
with AD (Diehl et al. 2017; Zlokovic 2011) (Fig. 1). Fur-
thermore, the impaired insulin signaling pathway PI3K/
Akt downstream effectors involving mTOR, S6K, JNK, and 
GSK3, among others could elicit defect in energy metabo-
lism, oxidative stress, neuroinflammation, mitochondrial 
dysfunction, and autophagy dysfunction (Boccardi et al. 
2019; Chen et al. 2021; Khan et al. 2019) (Fig. 1). Results of 
experimental studies also suggested that anti-diabetic drugs 
might act in the brain to mitigate IR, modulate dysfunction 
of insulin signaling, and other mechanisms including Aβ 
deposition, tau hyperphosphorylation, neuroinflammation, 
and oxidative stress (Boccardi et al. 2019; Chen et al. 2021; 
Escribano et al. 2010; Khan et al. 2019). Given the impor-
tant role of IR in the brain for learning and memory, it is 
essential to further understand the insulin signaling pathway 
that implicated in AD pathophysiology, as well as how its 
crucial molecule–insulin receptor substrate-1 (IRS-1) related 
to brain IR in AD.

The most important representative of the IRS protein 
family (termed IRS1-6), IRS-1, is by definition one of the 
crucial molecules in the insulin signaling pathway that is 
involved in brain IR. It is appreciated that aberrant phos-
phorylation of IRS-1 is also extensively associated with 
brain IR in addition to with skeletal muscle, adipose tis-
sue, and liver (Mullins et al. 2017a). Moreover, research 
on the relationship between brain insulin signaling and AD 
pathogenesis has shown that low levels of IRS-1 expres-
sion are associated with phosphorylated tau proteins and 
that aberrant hyperphosphorylation of IRS-1 is related to 
tau hyperphosphorylation (De Felice 2013; Moloney et al. 
2010; Mullins et al. 2017a). One study recently revealed that 
AD brain atrophy is associated with IRS-1 expression, which 
indicates a positive relationship with IRS-1pan-Tyr phos-
phorylation and a negative relationship with pSer312-IRS-1, 
in a spatial pattern (Mullins et al. 2017b). Overall, decreas-
ing levels of IRS-1 and increasing levels of pSer-IRS-1 are 
convincing changes in insulin signaling pathway disorder, 
and accumulating evidence suggests that pSer-IRS-1 is an 
indicator of IR in both the peripheral and the brain (Hiro-
sumi et al. 2002; Kleinridders 2016; Moloney et al. 2010; 
Talbot et al. 2012). In contrast to previous reviews (Akhtar 
and Sah 2020; Candeias et al. 2012; Daisuke et al. 2019; 
Dineley et al. 2014), here, we outline the insulin signaling 
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pathway crucial molecule, IRS-1, and highlight its actions 
with respect to PI3K/Akt insulin signaling pathway. We also 
summarize downstream effector of Akt involving mTOR, 
S6K, JNK, and GSK3 which could negatively regulate pSer-
IRS-1 and how it affects hyperphosphorylated tau protein 
and Aβ plaques development in AD (Fig. 2), and the role of 
anti-diabetic drugs including metformin, thiazolidinediones, 
and GLP-1 analogue treating individuals with AD.

The molecular structure of IRS

IRS-1 and IRS-2 are widely distributed, and are the most 
well-characteristic protein among the IRS1-6; IRS-1 has 
a central role in the cerebral cortex and skeletal muscle, 
whereas IRS-2 is expressed primarily in the hypothalamus 
and liver (Arnold et al. 2018). The N terminus of IRS pro-
teins contains pleckstrin-homology domains (PH domains) 
and phosphotyrosine-binding domains (PTB domains) that 
bind to the activated IR-β subunit. Near the C terminus tail 
of IRS proteins are as many as 20 tyrosine-phosphorylation 
binding sites for Src-homology-2 (SH2)-containing pro-
teins (Shc), such as the regulatory subunit p85 PI3K and 
the adaptor molecule growth factor receptor-bound pro-
tein 2 (Grb2). These binding sites are also specific for SH2 
domain-containing tyrosine phosphatase-2 (Shp2) proteins 
and for cytoplasmic tyrosine kinases (Fig. 3) (Copps and 
White 2012; Taniguchi et al. 2006). Shc activates the RAS-
mitogen-activated protein kinase (MAPK) pathway, which 
activates extracellular signal-regulated kinase1/2 (ERK1/2); 

ERK1/2 in turn regulates cell proliferation, survival and 
gene transcription (Ferreira et al. 2014; Kleinridders et al. 
2014). In contrast, phosphorylation at tyrosine sites in IRS 
mostly activates the phosphoinositide 3‑kinase (PI3K)/
Akt (also known as PKB) cascade, which largely mediates 
metabolism, protein/lipid/glycogen synthesis, glucose trans-
port, and autophagy, among others processes (Arnold et al. 
2018; Boucher et al. 2014). Besides, the PI3K/Akt insulin 
signaling pathway is implicated in promoting learning and 
memory, which occurs by regulating synaptic plasticity and 
improving memory consolidation (Chiang et al. 2010; Hor-
wood et al. 2006), and thus, most of the discussion below 
focuses on the PI3K/Akt insulin signaling pathway regulat-
ing IRS-1 phosphorylation.

IRS and the PI3K/Akt insulin signaling 
pathway

Insulin receptor is a tetramer protein composed of extracel-
lular α subunits and transmembrane β subunits. Ligand such 
as insulin or insulin-like growth factors (IGF1) binds to insu-
lin receptor α subunits that regulates the activity of intracel-
lular tyrosine kinase on β subunits, and then insulin recep-
tor undergoes a conformational change: the dimerization of 
intracellular β subunits. Subsequently, tyrosine autophos-
phorylation in the β subunits activates intrinsic tyrosine 
kinases and recruits intracellular effectors (mainly IRS-1 and 
IRS-2). The activated insulin receptor phosphorylates mul-
tiple tyrosine residues of IRS-1 or/and IRS-2, which elicits 

Fig. 1   Schematic representa-
tion of the shared mechanisms 
between AD and T2DM. IR 
could stimulate amyloid deposi-
tion by reducing the degradation 
of Aβ by IDE and clearance 
of Aβ by impairing BBB. 
Furthermore, IR makes insulin 
signaling pathway conduction 
abnormal, leading to PI3K/Akt 
signaling pathway and its down-
stream molecules dysfunction. 
The impaired insulin signaling 
pathway elicits oxidative stress, 
energy metabolism dysfunction, 
neuroinflammation, mitochon-
drial dysfunction, autophagy 
dysfunction, and neuronal death 
ultimately, all of which promote 
cognitive impairment in AD. 
AD Alzheimer’s disease, T2DM 
Type 2 diabetes mellitus, IR 
Insulin resistance, Aβ amyloid-β 
peptide, IDE insulin-degrading 
enzyme, BBB blood–brain 
barrier
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Fig. 2   The feedback regulation between IRS-1 phosphorylation and 
IRS-1/PI3K/Akt insulin signaling pathway in AD. Insulin binds to 
insulin receptor which stimulates autophosphorylation of itself and 
subsequently activates tyrosine residues of IRS-1 triggering cas-
cade events. IRS-1 recruits and activates PI3K complex, which then 
phosphorylates and activates Akt. Activated Akt ultimately leads to 
the translocation of GLUT4 to the cell membrane for uptake of glu-
cose into neurons. Akt-mediated activation of mTOR and the down-
stream targets of mTOR, like S6K and 4EBP1, serve to regulate pro-
tein synthesis, lipid synthesis and autophagy, among other processes. 
Phosphorylation of GSK3 by Akt inhibits the constitutive activity 
of this kinase. Activated Akt also can directly phosphorylate JNK/
IKK. IR results in increased pSer-IRS-1 phosphorylation which fur-
ther enhance PI3K/Akt signaling pathway and its downstream mol-

ecules dysfunction, leading to pathological process of AD involving 
hyperphosphorylated tau protein, Aβ plaques, autophagy dysfunc-
tion, glucose metabolism dysfunction, neuroinflammation, and oxida-
tive stress. Dark green solid arrows represent activation upon insulin 
stimulation and blocked arrow shows inhibition. Red dotted arrows 
represent downstream molecules that can phosphorylate Ser residues 
in IRS-1 leading to inactivation of IRS-1/PI3K/Akt signaling pathway 
by feedback inhibition loop (Arnold et al. 2018; Stanley et al. 2016). 
PI3K phosphoinositide 3 kinase, GLUT4 Glucose transporter 4, 
mTOR mammalian target of rapamycin, TSC1/2 tuberous sclerosis ½, 
S6K ribosomal protein S6 kinase, 4EBP1 4E-binding protein 1, GSK3 
glycogen synthase kinase 3, FOXO fork-head family box O, IKK 
inhibitor of nuclear factor-κB kinase, JNK c-Jun-N-terminal kinase, 
IR insulin resistance, AD Alzheimer’s disease, Aβ amyloid-β peptide

Fig. 3   A schematic representation of the IRS-1 protein in mice/rats 
(1233/1235 amino acid sequences) and human (1242). The IRS-1 
sequence has 2 major functional structural regions near the N-termi-
nus portion. A pleckstrin-homolog (PH) domain (light blue) spans 
between amino acids 12 and 115, and a phosphotyrosine-binding 
(PTB) domain (dark blue) between 155 and 259. The serine residues 
(S) and tyrosine residues (Y) are also shown. Red circles represent 
sites of negative regulation, whereas green circles represent sites of 
positive regulation. The black line shows a series of binding sites 
for PI3K kinase, and some black arrows indicate exact binding sites 

Y891-893 for Grb2 and Y1179/1222 for SHP2. More than one pro-
tein phosphorylates S307 site such as IKK, JNK, PKC θ, and S6K, 
S612 site such as Akt/PKB, ERK, and mTOR, and S632 site such as 
ERK and mTOR (Copps and White 2012; Gual et al. 2005; Tanigu-
chi et al. 2006). PI3K phosphoinositide 3 kinase, Grb2 growth factor 
receptor-bound protein-2, SHP2 Src-homology-domain-containing 
tyrosine phosphatase-2, GSK3β glycogen synthase kinase 3β, IKK 
inhibitor of nuclear factor-κB kinase, JNK c-Jun-N-terminal kinase, 
PKC θ protein kinase C θ, S6K ribosomal protein S6 kinase, mTOR 
mammalian target of rapamycin
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IRS-1 or/and IRS-2 self-activation leading to the recruitment 
and activation of the lipid kinase PI3K complex. Notably, 
IRS plays a pivotal switch in insulin signaling pathway, the 
phosphorylation of IRS-1 on serine (Ser) residues can inhibit 
IRS-1 activity, resulting in insulin resistance (Yarchoan et al. 
2014). PI3K phosphorylates 3 phosphoinositide dependent 
protein kinase (PDK1), which then directly phosphorylates 
and activates threonine (Thr) residues in Akt; this initiates 
the PI3K/Akt insulin signaling pathway, and consequently, 
triggers many downstream effects (Chatterjee and Mudher 
2018; Diehl et al. 2017).

Glucose transporter 4 (GLUT4) mainly expressed in neu-
rons in hippocampus and cortex, and it is often co-expressed 
with GLUT3 (Apelt et al. 1999). GLUT4 functions primarily 
to uptake glucose into some neurons, muscle and adipose 
cells for energy (Fernando et al. 2008); Akt phosphorylates 
AS160, the 160 kDa substrate of Akt, which consequently 
induces the translocation of GLUT-4 to the cell membrane. 
Results of patients with AD demonstrated that downregula-
tion of GLUT1 and GLUT3 proteins are detected in cerebral 
cortex and hippocampus (Liu et al. 2008; Mooradian et al. 
1997; Yan et al. 2020). The downregulation of GLUT1 and 
GLUT3 proteins as an early pathogenetic mechanism of AD 
aggravate the deposition of Aβ and hyperphosphorylation of 
tau (Zhu et al. 2014). Glycogen synthase kinase 3β (GSK3β) 
is also mediated by Akt, which inhibits its constitutive activ-
ity through serine phosphorylation. GSK3β also plays a vital 
role in the regulation of microtubule-associated proteins 
including tau, which can form NFTs, one of the features of 
AD (Pardeshi et al. 2017; Stanley et al. 2016). Activated Akt 
also phosphorylates tuberous sclerosis 1/2 (TSC1/2) protein, 
which ultimately activates the mammalian target of rapamy-
cin (mTOR) and its downstream factors ribosomal protein 
S6 kinase (S6K) and 4E-binding protein 1 (4EBP1); this in 
turn modulates protein synthesis. Additionally, inhibitor of 
nuclear factor-κB kinase (IKK) and c-Jun N-terminal kinase 
(JNK) are also directly activated by Akt kinase, as well as 
fork-head family box O (FOXO) transcription factors, which 
can regulate mitochondrial function (Fernandez and Tor-
res-Aleman 2012). More importantly, several kinases, S6K, 
JNK, mTOR and GSK3 themselves, for example, permit the 
inhibition of IRS-1 activity through the negative feedback 
regulation of IRS-1 site-specific serine phosphorylation, 
thus contributing to inactivation of the insulin signaling 
pathway (Fig. 2) (Copps and White 2012).

IRS‑1 phosphorylation in AD

The tail regions of IRS proteins are enriched in Ser/Thr/
Tyr residues, and multiple phosphorylations of IRS Ser/
Thr/Tyr residues regulate IRS function, which further 
influences downstream molecules such as IRS-1/PI3K/Akt 

insulin signaling either positively or negatively. It has been 
previously demonstrated that the phosphorylation pattern of 
IRS-1 dictates signal capacity, as well as its capacity to bind 
to receptors (Gual et al. 2005), which suggests that aberrant 
IRS-1 phosphorylation at tyrosine and serine residues may 
evoke a pathologic state of insulin receptor; this is asso-
ciated with the IRS-1/PI3K/Akt insulin signaling pathway 
(Copps and White 2012; Hancer et al. 2014; Herschkovitz 
et al. 2007; Samuel and Shulman 2012). Indeed, phospho-
rylation of IRS-1 at tyrosine residues contributes to signal-
ing functions, whereas phosphorylation at serine residues 
inhibits the dissociation of IRS-1 from the insulin receptor 
and diminishes tyrosine phosphorylation, which results in 
insulin signaling dysregulation (White 2003). Homeostasis 
between tyrosine and serine residues phosphorylation in 
IRS-1 is therefore important in the IRS-1/PI3K/Akt insulin 
signaling pathway.

In neural-derived blood exosomes from preclinical sub-
jects (asymptomatic amyloidosis subjects who are cogni-
tively intact at 1–10 years before their diagnosis of AD) or 
AD patients, the total IRS-1 level is decreased to a lesser 
extent compared with the extent of phosphorylation of pan-
Tyr in IRS-1, which is significantly diminished (Kapogiannis 
et al. 2015). In contrast, the pSer312-IRS-1 level is apparently 
increased; the IR index means the ratio of pSer312-IRS-1 to 
P-pan-Tyr-IRS-1 in preclinical subjects or AD patients that 
is also higher than that in age- and gender-matched control 
(Kapogiannis et al. 2015). On the other hand, because IRS-1 
phosphorylation or IR index could predict the development 
of AD up to 10 years prior to clinical onset, and some sug-
gest, in some extend, IRS-1 phosphorylation or IR index 
may serve as biomarkers of AD (Kapogiannis et al. 2015). 
The levels of pSer612-IRS-1 and pSer636-IRS-1, which play 
a pivotal role in IR, are significantly elevated. This has been 
demonstrated in the brains of AD transgenic mice (APP/PS1 
mice) as well as in the brains of individuals with AD with 
increased levels of pSer616-IRS-1and pSer636/639-IRS-1, and 
this phosphorylation pattern is positively associated with Aβ 
oligomer levels (Bomfim et al. 2012; Mao et al. 2016; Talbot 
et al. 2012). Increased IRS-1 phosphorylation in serine sites 
ultimately lead to IRS-1 inhibition, which has been shown in 
the brains of AD transgenic mice, in that IRS-1 phosphoryla-
tion at serine residues may disrupt the IRS-1/PI3K/Akt insu-
lin signaling pathway and further accelerate AD progression 
(Bomfim et al. 2012). In hippocampal neurons stimulated 
by Aβ oligomers, the pSer307-IRS-1 and pSer312/616-IRS-1 
levels are prominently elevated, whereas IRS-1 phosphoryla-
tion at tyrosine-465(pTyr465-IRS-1) is inhibited, which trig-
gers defective brain insulin signaling (Bomfim et al. 2012). 
Chenodeoxycholic acid (CDCA) lowers pSer307-IRS-1 lev-
els and increases Akt activation and GLUT4 levels, which 
helps mitigate IR in the hippocampus (Bazzari et al. 2019). 
Taken together, IRS-1 phosphorylation at tyrosine and serine 
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residues is crucial to the IRS-1/PI3K/Akt insulin signaling 
pathway in AD pathology and to the negative feedback con-
trol process. Importantly, the IRS-1 downstream components 
mTOR, S6K, GSK3, IKK and JNK, play a negative regula-
tory role in IRS-1 Ser/Tyr phosphorylation, and the detailed 
phosphorylation site is presented in Table 1.

mTOR and S6K

mTOR, a major downstream effector of IRS-1/PI3K/
Akt insulin signaling, acts as two functional complexes, 
mTORC1 and mTORC2, which are implicated in the regu-
lation of protein and lipid synthesis, mitochondrial function, 
insulin signaling, and autophagy (Butterfield and Halliwell 
2019). Research indicates that IRS-1 tyrosine phospho-
rylation increases when the PI3K/Akt/mTOR pathway is 
suppressed by PI3K inhibition, Akt or mTOR inhibition, 
whereas phosphorylation of IRS-1 at Ser302, 307, 318 decreases 
(Hancer et al. 2014). mTOR enhances the phosphorylation 
of serine residues in IRS-1. Moreover, aberrant mTOR acti-
vation could further exacerbate brain IR in both AD and 
MCI patients after induction with Aβ monomers and/or solu-
ble oligomers through phosphorylation of S6K proteins, a 
downstream target of mTOR; this includes an approximate 
twofold increase in advanced phosphorylation of the IRS-1 
inhibitory Ser residue (Ser307) by a negative feedback pro-
cess (Tramutola et al. 2015). Moreover, activated mTOR 
signaling contributes to the buildup of SPs and NFTs, two 
hallmarks of AD neuropathology, through inhibition of 
autophagy as well as activation of downstream targets S6K 
and 4EBP1, which contribute to hyperphosphorylation of tau 
proteins (Di Domenico et al. 2018; Tramutola et al. 2015).

S6K, a critical signaling molecule in IR development, is a 
downstream target of mTOR that also induces IR by mediat-
ing IRS-1 Ser1101 phosphorylation (Tremblay et al. 2007). 
Another study indicated that activating mTORC1/S6K leads 
to increased IRS-1 Ser636 phosphorylation and diminished 
IRS-1 tyrosine phosphorylation, which are part of a feed-
back inhibition loop of insulin signaling (Gao et al. 2015). In 

SH-SY5Y cells, biliverdin reductase A inactivation is con-
comitant with increased p-mTOR and IRS-1 Ser307 phospho-
rylation levels; this is also observed in 3xTg AD mice, which 
suggests that elevated levels of p-mTOR parallels either IR 
or impaired biliverdin reductase A (Barone et al. 2016). On 
the contrary, hyperactivation of the mTORC1/S6K pathway 
instigates aberrant IRS-1 serine phosphorylation and degra-
dation, which disrupts insulin signaling (Shah et al. 2004). 
Overall, in MCI and AD brains, this is a negative feedback 
mechanism by which overactivated mTOR induces IRS-1 
serine residue phosphorylation to promote IRS-1 inactiva-
tion, which halts the normal activation of downstream tar-
gets in the insulin signaling pathway (Gupta and Dey 2012; 
Perluigi et al. 2015; Tramutola et al. 2015).

JNK/IKK

JNK, a serine/threonine protein kinase, inhibits insulin 
signaling by regulating phosphorylated IRS, and growing 
evidence indicates the role of elevated p-JNK in the induc-
tion of IRS-1 serine phosphorylation in AD brains (Zick 
2005). Moreover, one study that investigated post-mortem 
brain tissues and cerebrospinal fluid (CSF) samples from 
AD patients showed that increased JNK and p-JNK levels 
are associated with Aβ42 levels, which reflects the degree of 
cognitive decline (Gourmaud et al. 2015). Aβ peptide forms 
abnormal plaques due to its abnormal aggregation, which 
can promote the release of tumor necrosis factor-α (TNF-α), 
a proinflammatory factor, by activating microglial cells; sub-
sequently, this results in elevated levels of TNF-α that can 
activate the JNK and/or IKK signaling pathways (Park and 
Bowers 2010; Ribe and Lovestone 2016). Aβ triggers IRS-1 
serine phosphorylation via JNK activation by TNF-α, which 
ultimately leads to the dysfunction of insulin signaling.

A technique revealing the interaction between IRS pro-
teins and insulin receptor/insulin-like growth factor recep-
tor demonstrated that, by altering the interaction kinetics 
between IRS and insulin receptor, JNK phosphorylates ser-
ine residues of IRS, which contributes to IR (Lanzerstorfer 

Table 1   PI3K/Akt downstream components play a negative regulatory role in IRS-1 phosphorylation

Downstream 
components

IRS phosphorylation References

mTOR Increased phosphorylation of serine site 302, 307, 318 and 
decreased phosphorylation of tyrosine site

Tramutola et al. (2015)

S6K Increased phosphorylation of serine site 307, 636, 1101 and 
decreased phosphorylation of tyrosine site

Barone et al. (2016), Gao et al. (2015) and Tremblay et al. 
(2007)

IKK/JNK Increased phosphorylation of serine site 307, 318, 616, 612 and 
decreased phosphorylation of tyrosine site

Yoon et al. (2012) and Zhang et al. (2016)

GSK3 Increased phosphorylation of serine site 332 and decreased phos-
phorylation of tyrosine site

Eldar-Finkelman and Krebs (1997) and Liberman and Eldar-
Finkelman (2005)
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et al. 2015). In addition, JNK/TNF-α is activated by Aβ 
oligomers, leading to the phosphorylation of multiple ser-
ine residues within IRS-1 and the physiologic inhibition 
of IRS-1tyrosine phosphorylation, which also contributes 
to IR in primary hippocampal neurons and AD transgenic 
mouse models (Bomfim et al. 2012). Further research in vivo 
demonstrated that intracerebroventricular injection of Aβ 
oligomers causes IRS-1 serine phosphorylation and JNK 
activation in cynomolgus monkeys hippocampi (Bomfim 
et al. 2012). On the contrary, as Aβ oligomers enhance JNK 
pathway activation, IRS-1Ser616 phosphorylation and Tau 
Ser422 phosphorylation are increased (Yoon et al. 2012). 
Additionally, Aβ oligomers induce endoplasmic reticulum 
stress (ERS), which interferes with insulin signaling by 
JNK-dependent IRS-1 serine phosphorylation in AD patho-
genesis (Zhang et al. 2016). Moreover, IRS-1 Ser307,318,612 
phosphorylation is enhanced and accompanied by increased 
tau Thr181 hyperphosphorylation (Zhang et al. 2016). Those 
findings are concordant with those in previous studies (Ma 
et al. 2009). Furthermore, inhibition of JNK activation can 
diminish SPs formation and hyperphosphorylation of tau 
proteins and is thus able to mitigate cognitive deficits (Zhang 
et al. 2016; Zhou et al. 2015). Therefore, JNK could modu-
late IRS-1 Ser/Tyr phosphorylation by elevating TNF-α lev-
els or by ERS, which interferes with insulin signaling and 
contributes to inactivation of IRS-1/PI3K/Akt downstream 
molecules through the feedback mechanism.

Akt/GSK3

GSK3 refers to two isoforms, GSK3α and GSK3β, and is 
a multifunctional serine/threonine kinase that, when phos-
phorylated, exerts its effects through Akt. GSK3 regulates 
microtubule-associated proteins and the phosphorylation and 
buildup of tau proteins through the IRS-1/PI3K/Akt path-
way (Arnold et al. 2018; Hanger et al. 1992). GSK3 activity 
is diminished through the phosphorylation of Ser9 in the 
GSK3β N-terminal as well as by phosphorylation of Ser21 
in GSK3α. In AD pathogenesis, brain IR evokes GSK3β 
overactivation, which partly exacerbates tau hyperphos-
phorylation (includes misfolded tau and fibril aggregation) 
(Bhat et al. 2003). In autopsied frontal cortex brain tissue 
from AD patients, decreased levels of IRS-1, p-Akt, and 
p-GSK3β (Ser9) have been observed, which suggests that 
GSK3β activity is increased and results in tau phosphoryla-
tion; GSK3β expression also colocalizes with NFTs (Liu 
et al. 2011). It has been documented that overexpression of 
GSK3 in AD results in diminished LTP induction, which 
leads to learning and memory deficits that present early 
in AD (Salcedo-Tello et al. 2011). Additionally, activated 
GSK3 triggers IRS-1 serine phosphorylation and suppresses 
phosphorylation of tyrosine residues within IRS-1, which 

indicates that a role for GSK3 is the promotion of IR; this in 
turn leads to IRS-1/PI3K/Akt insulin signaling deficiency 
(Eldar-Finkelman and Krebs 1997). GSK3, as the first iden-
tified physiological target of PI3K/Akt, is overactivated 
on account of aberrant IRS-1/PI3K/Akt insulin signaling, 
which results in tau hyperphosphorylation and LTP inhi-
bition (Dubey et al. 2020; Liu et al. 2011; Salcedo-Tello 
et al. 2011). This leads to diminished synaptic plasticity, 
which suggests a crucial role for GSK3 in AD pathogenesis 
(Jaworski et al. 2019).

Therapeutic approaches to brain IR/insulin 
signal pathway in AD

Results of epidemiologic, clinical and experimental com-
pellingly support a link between T2DM and AD that bear 
interrelated disease mechanisms involving insulin resistance 
and dysfunction of insulin signaling, and moreover anti-
diabetic drugs could modify the pathological and clinical 
progression of AD and improve cognition in some extend 
(Munoz-Jimenez et al. 2020; Rotermund et al. 2018; Yar-
choan and Arnold 2014). Abnormal Ser/Tyr phosphoryla-
tion of IRS-1 is observed in the brain and neural-derived 
exosomes extracted from the blood of AD patients, and 
notably, is related to brain atrophy, all of which indicate a 
correlation between abnormal Ser/Tyr phosphorylation of 
IRS-1 and cognitive dysfunction (Kapogiannis et al. 2015; 
Mullins et al. 2017b; Rahman et al. 2019). Research on AD 
patients documented that the deposition of Aβ promotes Ser 
phosphorylation of IRS-1, which further elicits the impair-
ment of downstream insulin signaling pathway, leading to 
brain IR, and these processes in turn further expedite Aβ 
accumulation and tau hyperphosphorylation (Mullins et al. 
2017a; Talbot et al. 2012). Antidiabetic drugs involving 
sulfonylureas, metformin, thiazolidinediones, and GLP-1 
analogues improve brain IR, impaired insulin signaling, 
neuroinflammation, oxidative stress, Aβ accumulation, tau 
hyperphosphorylation and other pathological processes in 
AD experimental and clinical research (Table 2). Despite 
the controversial findings of clinical studies, a number of 
literature and several compelling hypotheses still suggest 
that antidiabetic therapies hold potential as treatments for 
dementia (Bendlin 2019). We mainly summarize the effects 
of metformin, thiazolidinediones, and GLP-1 analogues on 
AD from experimental and clinical studies, and discussed 
below.

Metformin is a biguanide derivative that could increase 
insulin sensitivity and glucose uptake in individuals with 
T2DM, and also can cross the blood brain barrier (BBB) and 
has an impact on the brain biochemical pathways (Chaud-
hari et al. 2020; Pasquale et al. 2016). One study showed 
that metformin exerts a beneficial effect on both Aβ and tau 
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pathologies in APP/PS1 mice (Chen et al. 2021). Findings 
from the study showed that metformin ameliorated micro-
glial autophagy impairment, promoted the phagocytosis 
of pathological Aβ and tau proteins, and then limited the 
propagation of Aβ and tau aggregates in dystrophic neurites 
surrounding Aβ plaques. Additionally, metformin increased 
the protein levels of p-AMPK and insulin-degrading enzyme 
(IDE) in the brain of APP/PS1 mice, restored the antioxi-
dant status, reduced the neuroinflammation, thus improv-
ing the cognitive decline (DiTacchio et al. 2015; Garg et al. 
2017; Lu et al. 2020). In vitro, metformin is neuroprotective 
against Aβ-induced cytotoxicity and can enhance excitatory 
synaptic transmission in hippocampal CA1 neurons, increase 
glycolytic lactate production, and improve neuronal insulin 
resistance (Blumrich and Dringen 2019; Chen et al. 2016a, 
b; Chen et al. 2020; Gupta et al. 2011). However, results 
of other studies indicate that metformin exerts paradoxical 
effects on tau pathology, possibly leading to increased tau 
aggregation, and metformin induce mitochondrial dysfunc-
tion and promote the aggregation of toxic amyloid pre-fibril-
lar in brain cortex region (Barini et al. 2016; Pasquale et al. 
2016). Results from clinical studies should that long-term 
treatment with metformin may decrease the risk of cognitive 
decline in individuals with T2DM (Hsu et al. 2011; Tze et al. 
2014). Notably, however, the results of another study sug-
gested that individuals with T2DM treated with metformin 
for a long-term had a slightly higher risk of developing AD 
than the T2DM patients treating with sulfonylureas or thia-
zolidinediones (Imfeld et al. 2012). Besides, in a pilot rand-
omized placebo controlled clinical trial comparing placebo 
individuals, metformin improves total recall of the selective 
reminding test (SRT) in amnestic mild cognitive impair-
ment patients (Luchsinger et al. 2016). Results of the other 
randomized placebo-controlled crossover study suggest that 
metformin was associated with improved executive function-
ing, and trends suggested improvement in learning/memory 
and attention in AD (Aaron et al. 2017). Overall, the results 
from experimental and clinical studies assessing the effect of 
metformin on cognitive decline and AD are mostly promis-
ing, and the further study, such as a 2-year metformin clini-
cal trial (ClinicalTrials.gov NCT04098666) results should 
be expected (Munoz-Jimenez et al. 2020).

Thiazolidinediones, also known as glitazones, that 
include rosiglitazone and pioglitazone, are peroxisome 
proliferator-activated receptor gamma (PPARγ) agonists. 
Recent progress indicated that PPARγ agonists could mod-
ulated different cellular targets in AD and improve cogni-
tive impairments. Results of several experimental studies 
indicated that rosiglitazone could promote the phagocytic 
ability of microglia, reduce the expression of proinflamma-
tory factors, decrease Aβ and tau pathology in the brain of 
AD transgenic mice, and restore neural networks compro-
mised by AD (Denner et al. 2012; Escribano et al. 2010). Ta
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Pioglitazone also reversed behavioral deficits in AD model 
mice by decreasing hippocampal Aβ and tau proteins 
deposits, enhancing short- and long-term plasticity, attenu-
ating neuroinflammation, activating phosphorylated ERK 
(p-ERK) during memory consolidation (Jahrling et al. 2014; 
Mandrekar-Colucci et al. 2012; Searcy et al. 2012). Fur-
thermore, pioglitazone successfully reverts metabolic dys-
function in cortex, restore the energy metabolism, lower Aβ 
levels and deposition in AD model mice (Chang et al. 2019; 
Wong et al. 2020). Besides, the initial clinical results with 
rosiglitazone for AD patients were positive influence, but 
the later clinical trials evidence from larger patient groups 
and from the systematic review and meta-analysis are insuf-
ficient to support the use of rosiglitazone in MCI and AD 
patients to improve cognitive performance (Liu et al. 2015; 
Risner et al. 2006; Tzimopoulou et al. 2010; Watson et al. 
2005). Moreover, rosiglitazone only has a neutral effect 
on the risk of dementia in T2DM, and individual patient 
level data suggest that treated with rosiglitazone is associ-
ated with a potential risk of cardiovascular disease (Tseng 
2019; Wallach et al. 2020) risk. By contrast, pioglitazone 
seems to be promising therapeutic approach to AD patients. 
Results of clinical trials showed that pioglitazone improves 
memory and cognitive performance in mild AD patients, 
reduces dementia risk in patients with T2DM, and indicated 
the greatest efficacy compared to placebo (Cao et al. 2018; 
Cheng et al. 2016; Sato et al. 2011; Tseng 2018). However, 
the another several studies also demonstrated that pioglita-
zone has no beneficial effect on cognitive performance in 
patients with AD or MCI (Geldmacher et al. 2011; Hildreth 
et al. 2015). Overall, the controversial effects on MCI or AD 
patients exerted by thiazolidinediones are worthy of more 
investigation, and the possible explanations for the differ-
ence results of the research could be the unblind selection 
of patients, the small samples, the status of ApoE4(−/ +), 
and the brain bioavailability of the drugs (Chang et al. 2015; 
Hildreth et al. 2015; Iketani et al. 2018). Thus, the efficacy 
of thiazolidinediones as a disease-modifying drug on indi-
viduals with MCI or/and AD needs to be further confirmed 
by rigorous well-designed with large-scale randomized con-
trolled trials.

GLP-1 analogue, such as liraglutide and exenatide (syn-
thetic form of exendin-4) facilitate insulin signaling, and can 
cross the BBB reaching the brain to target GLP-1 receptors, 
which alleviate brain IR and insulin signaling pathway disor-
ders, decrease the levels of hippocampal pSer-IRS-1 in AD 
model mice, thus improving cognitive dysfunction (Bomfim 
et al. 2012; Hunter and Hölscher 2012; Salameh et al. 2020; 
Talbot and Wang 2014). Liraglutide could improve learning 
and memory impairments in AD models by decreasing Aβ 
plaque load and modulating tau hyperphosphorylation, as 
well as regulating brain IR, PI3K/Akt pathway and insulin 
signal transduction (Batista et al. 2018; Jantrapirom et al. 

2020; Liu et al. 2016; Qi et al. 2016). Exenatide adminis-
tration prevented cognitive decline through alleviating Aβ 
deposition, tau hyperphosphorylation, improving brain glu-
cose metabolism, mitigating mitochondrial toxicity by PI3K/
Akt-mediated pathway as well as regulating IRS-1 phospho-
rylation (An et al. 2019; Bomba et al. 2013; Bomfim et al. 
2012; Garabadu and Verma 2019). Overall, the in vivo and 
in vitro studies of GLP-1 analogues treating AD demonstrate 
an effect of this treatment on amyloid and tau pathologies as 
well as brain IR, abnormal insulin signaling pathway, oxi-
dative stress, synaptic plasticity, apoptosis, and other core 
neuronal functions (Hansen et al. 2015; Liu et al. 2016; 
McClean et al. 2015; McClean et al. 2011; Perry et al. 2002, 
2003; Qi et al. 2016). The multiple mechanism of action of 
liraglutide and exenatide for the treatment or prevention of 
AD progression are detailed presented in Table 2. Indeed, 
treatment with liraglutide or exenatide has consistently been 
associated with improvements in cognition and memory in 
preclinical model of AD.

Several more recent studies indicated that GLP-1 ana-
logues such as liraglutide and exenatide, are potential can-
didate for AD disease-modifying treatment (Ballard et al. 
2020; Talbot 2014). A randomized, placebo-controlled, 
double-blind clinical study in individuals with AD indi-
cated that, compared with placebo, liraglutide treatment 
prevented the decline of glucose metabolism in the brain, 
which is associated with cognitive degeneration and syn-
aptic dysfunction, and declining brain glucose metabo-
lism often indicate dysfunction in brain activities (Gejl 
et al. 2016). Further research indicated that the underlying 
mechanism for this effect was an increased blood–brain 
glucose transport at the BBB (Gejl et al. 2017). Besides, a 
double-blind randomized placebo-controlled study which 
included only 21 participants, indicated that exenatide 
could lower plasma neuronal extracellular vesicles (EV) 
Aβ42 level, a biomarker in clinical trials in AD, and, how-
ever, only marginally improve cognitive outcomes in AD 
patients (Mullins et  al. 2019). Given the very limited 
power of this study, early termination, small sample size 
as well as at a single-center study, these observations may 
underpowered and cannot be meaningfully interpreted 
(Ballard et al. 2020; Mullins et al. 2019). Clinical trial of 
Parkinson’s disease (PD) treatment with exenatide dem-
onstrated that, compared with the control group, exena-
tide improved motor function and cognitive measures in 
individuals with PD, which was identified as potential 
disease-modifying treatment in neurodegenerative disease 
(Athauda et al. 2017; Aviles-Olmos et al. 2013). Thus, 
these results of GLP-1 analogues are promising and pro-
vide increasing evidence that these drugs are potential for 
the treatment of AD, and the further results of Evaluat-
ing Liraglutide in Alzheimer’s disease (ELAD) trial are 
eagerly awaited (Femminella et al. 2019).
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Conclusion

In recent years, cumulative studies have elucidated that 
brain IR, which is a crucial pathological feature of AD, is 
associates with cognitive dysfunction, Aβ plaques, hyper-
phosphorylated tau protein and impaired cerebral glucose 
metabolism. Here, we highlight a key molecule in brain 
IR, IRS-1, which is phosphorylated at Ser/Tyr residues 
and is related to neuropathologic hallmarks of AD such 
as Aβ plaques and hyperphosphorylated tau proteins, and 
we present their potential mechanisms. In conclusion, dys-
regulation of IRS-1 Ser/Tyr phosphorylation could exacer-
bate disturbances in the IRS-1/PI3K/Akt insulin signaling 
pathway and the pathway’s interaction with mTOR, S6K, 
JNK/IKK and Akt/GSK3, among others. Anti-diabetic 
drugs could modulate the insulin signaling pathway, brain 
IR and other pathological process of AD, which provide 
a potential strategy for AD disease-modifying treatments, 
and future studies will contribute to the precise mechanism 
of Ser/Tyr phosphorylation in IRS-1 in the regulation of 
IRS-1/PI3K/Akt insulin signaling pathway in AD.
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