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Abstract
Gold nanoparticles (AuNPs) have found a wide range of biomedical and environmental monitoring applications (viz. drug 
delivery, diagnostics, biosensing, bio-imaging, theranostics, and hazardous chemical sensing) due to their excellent opto-
electronic and enhanced physico-chemical properties. The modulation of these properties is done by functionalizing them 
with the synthesized AuNPs with polymers, surfactants, ligands, drugs, proteins, peptides, or oligonucleotides for attaining 
the target specificity, selectivity and sensitivity for their various applications in diagnostics, prognostics, and therapeutics. 
This review intends to highlight the contribution of such AuNPs in state-of-the-art ventures of diverse biomedical applica-
tions. Therefore, a brief discussion on the synthesis of AuNPs has been summarized prior to comprehensive detailing of their 
surface modification strategies and the applications. Here in, we have discussed various ways of AuNPs functionalization 
including thiol, phosphene, amine, polymer and silica mediated passivation strategies. Thereafter, the implications of these 
passivated AuNPs in sensing, surface-enhanced Raman spectroscopy (SERS), bioimaging, drug delivery, and theranostics 
have been extensively discussed with the a number of illustrations.

Keywords  Gold nanoparticles · Synthesis approaches · Surface functionalization strategies · Biomedical applications

Introduction

Advancement in nanomaterial researches have shown a great 
impact in clinical diagnostics, therapeutics, and energy gen-
erations (Chandra et al. 2010; Kumar et al. 2018; Mahato 
et al. 2018a; Prasad et al. 2016). The common properties 
shown by nanoparticles (NPs) are (1) high surface-to-vol-
ume ratio, (2) ease of functionalization enabling specific 
target-binding properties, (3) tuneable optoelectronic prop-
erties, and (4) high robustness of the NPs (Baranwal et al. 
2016), which enables them in various biomedical applica-
tions. In recent years, NPs of various materials viz. met-
als, non-oxide ceramics, metal oxides, silicates, polymers, 
biopolymers, and carbon have been used for such applica-
tions (He et al. 2000; Baranwal et al. 2018a). Noble metal 
NPs especially gold (Au) and silver (Ag) have fascinated 
researchers for decades and are being extensively used due 
to their excellent compatibility towards the biological sys-
tems (Baranwal et al. 2018b; Elahi et al. 2018). Among all, 
AuNPs are considered as a most important candidate due 
to its chemical inertness, environmentally benign nature, 
and biocompatibility when functionalized with appropriate 
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ligand/group of ligands (Blanco et al. 2015; Sahoo et al. 
2017). The first scientific note on AuNPs synthesis was 
reported by Michael Faraday in the early nineteenth cen-
tury where the synthesis was done using chloroauric acid 
and phosphorous as the reducing agent (Faraday 1857). In 
this context, Turkevich and co-workers delivered the major 
breakthrough by demonstrating the synthetic mechanism 
of AuNPs formation in colloidal systems (Turkevich et al. 
1951; Daniel and Astruc 2004). In recent years, numer-
ous methods of AuNPs synthesis along with its numerous 
applications have been reported (Chen et al. 2018; Strozyk 
et al. 2018), however, the whole essence of these advance-
ments was driven for obtaining the facile synthetic process, 
characterization, functionalization, and applications of these 
uniquely fabricated AuNPs (Mandal et al. 2018; Chandra 
et al. 2013b). Chemically, elemental gold ([Xe]4f145d106s1) 
contains electrons that can move freely throughout the metal 
and exhibits three oxidation states including Au [0], aurous 
(+ 1 Au [I]), and auric (+ 3 Au [III]) form. The availability 
of free electrons at the atomic surface and multiple oxida-
tion states of metal facilitates the formation of stable nano-
structures. Depending on the synthetic procedure, nature of 
solvent, solution pH, and surface passivating agents, these 
nanostructures are obtained of varied sizes and shapes. Due 
to its immense capabilities of exhibiting varied tunable opti-
cal, fluorescence, SPR, and magnetic properties, it has found 
a wide range of clinical and biomedical applications (Biju 
2014). The other factors including greater stability, biocom-
patibility, selectivity, and lesser toxicity in the biological 
environment have led AuNPs for reliable commercial usage 
(Kumar et al. 2018). Surface modifications of AuNPs play 
a crucial role in achieving the enhanced properties for vari-
ous biomedical applications. So far, various molecules of 
chemical and biochemical origin have been used to obtain 
such functionalized AuNPs by tuning the physicochemical 
behavior of AuNPs, i.e., the surface charges, ligand-binding 
ability, etc. These modifications of AuNPs commonly done 
using thiols, amines, phosphines, silica, carboxy-terminated 
groups, etc., eventually help to conjugate a number of bio-
molecules (Alex and Tiwari 2015).

Methodologically, these passivating processes fol-
low either covalent-based modifications or non-covalent 
interactions. A strong Au–S covalent interaction has been 
reported using organothiols, disulfides, and cysteine groups, 
whereas the non-covalent interaction has been achieved by 
physiosorption and electrostatic interactions of surface-
ionized ligands (Alex and Tiwari 2015). Based on their 
reaction involved in the covalent process, these modifica-
tions have been categorized under the direct and indirect 
covalent coupling. The direct coupling rely on the attach-
ment of the ligand on the AuNPs surface, however, when 
the direct binding is not favorable, the linking process is 
done with the shell of stabilizing molecules encapsulating 

the AuNPs using various bio-conjugation techniques viz. 
carbodiimide, biotin-streptavidin, and silane coupling reac-
tions (Craig et al. 2010). So far, the functionalized AuNPs 
have been exploited for a wide range of biomedical applica-
tions, not only in research and development sector but also 
in various commercially viable point of care systems viz. 
cyto-sensors (Koh et al. 2011), immuno-sensors (Noh et al. 
2012), drug delivery (Baranwal et al. 2018b), cancer imag-
ing (Wu et al. 2015), apta-sensing (Chandra et al. 2013a), 
and most advanced theranostics devices (Song et al. 2016). 
In this context, theranostic devices are one of the modern 
advents in biomedical devices, which delivers the precise 
sensing and accurate therapeutic effect synergistically.

The intention of this review is to summarize the exten-
sively used various strategies for AuNPs synthesis and func-
tionalization followed by its biomedical applications. For 
that, we have provided a brief introduction to the AuNPs 
synthesis before discussing its functionalization strategies 
to put wider insight to the readers. Thereafter, we have 
discussed diverse kind of passivating strategies used for 
AuNPs, where we have covered majorly employed tech-
niques viz. thiol, amine, polymer, and silica-based modi-
fication. In the next section, we have described the appli-
cation of such passivated AuNPs in various domains viz. 
biosensing, bioimaging, therapeutics, drug delivery, and 
most advent theranostics.

Synthesis of AuNPs

Methodologically, the synthesis of AuNPs follows two 
types of approaches, including “top-down” (physical 
manipulations) and “bottom-up” (chemical transforma-
tions) approaches (Mandal et  al. 2018; Teimouri et  al. 
2018; Abalde-Cela et al. 2018; Elahi et al. 2018; Catherine 
and Olivier 2017). In the top-down strategy, bulk gold is 
gradually eroded by physicochemical mechanisms until the 
desired size and shape is achieved. For example, gold clus-
ters have been made from the bulk using attrition and pyroly-
sis. In attrition-based techniques, the bulk gold have been 
grounded into macro- or micro-scale particles by reducing 
the size, however, these size reducing mechanisms rarely 
produce a homogenous range of NPs. In pyrolysis, the bulk 
gold is heated to atoms and those atoms reform to gold clus-
ters viz. physical vapor deposition and chemical vapor depo-
sition. In these processes, the bulk gold is thermally heated 
to atoms under an inert atmosphere and the cooled metal 
atoms are deposited on a cold finger to form metal clusters. 
When the process is finished, the metal clusters can be col-
lected from the cold finger (Schmid 2005). The limitations 
associated with top-down strategies are the requirement of 
stronger interactions between metal and capping ligands and 
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the techniques used in this strategy involve expensive cum-
bersome instruments.

For the biomedical applications, NPs synthesized by the 
bottom-up approaches are considered to be more suitable, 
due to their relatively uniform shapes and sizes (Baranwal 
et al. 2016). It involves the reduction of Au+3 salts in the 
presence of various reducing and stabilizing agents, where 
Au atoms form clusters and subsequently to the particles by 
undergoing the nucleation process (Turkevich et al. 1951; 
Yeh et al. 2012). In this process, the stabilizing agent passi-
vates the nanoparticle’s surface and thereby prevents further 
aggregation. Commonly, there are two types of passivating 
agents used for stabilizing the AuNPs formed in bottom-up 
approaches, which are either from chemicals or extracted 
biochemical (Baranwal et al. 2016). There are a number 
of methods been reported for AuNPs synthesis using such 
chemicals or extracted bio-chemicals. These reducing bio-
chemicals are commonly obtained from various vegetation 
sources including plant, algae, bacteria, and fungi (Shankar 
et al. 2003a, b; Dhas et al. 2012; Nair and Pradeep 2002). 
Since, the chemical-based AuNPs syntheses were achieved 
with well-defined compositions of pure reducing agents 
found a great advantage of scaling up of the synthetic pro-
cess, while the extracted reducing soup from the biological 
sources facilitates the complex synthetic process that might 
lead to complex downstream purification and lower scaling 
capabilities (Sau and Rogach 2012). Due to easy fabrication 
and facile nano-manipulations, the chemically synthesized 
AuNPs are widely used in various application including 
biosensing, bio-imaging and nano-medicine (Chandra et al. 
2010, 2012). Figure 1 shows a schematic representation of 
the bottom-up and top-down synthesis strategies.

Surface modification strategies

Surface modification using sulfur‑containing 
ligands

Direct conjugation to form thiol‑protected AuNPs

Surface modifications of AuNPs involve the binding of linker 
molecule onto the surface, where thiol-based coupling have 
extensively been employed. These alterations provide the con-
trol over reactivity and induction of hydrophobicity/hydrophi-
licity to the NPs. These NPs are obtained by following the 
direct conjugation of thiol containing molecules during the 
synthesis of AuNPs (shown in Fig. 2). In an example, synthetic 
process follows the dissolution of chloroauric salts (HAuCl4) 
to obtain AuCl4− ions in water followed by phase extraction 
of AuCl4− ions at tetraoctyl ammonium bromide (TOAB) dis-
solved in toluene. Thereafter, the process was followed by the 
treatment of reducing agent (sodium borohydride; NaBH4) 

and 1-dodecanethiol in the solution. The rapid color change 
(orange to deep brown) of the solution in presence of 1-dode-
canethiol authenticates the formation of thiol-capped AuNPs. 
In final steps, the thiolated AuNPs were purified following the 
phase extraction and thorough washing of AuNPs. The overall 
reaction has been summarized in Eqs. (1) and (2):

(1)
AuCl4

−(aq) + N
(

C8H17

)

4

+(

C6H5Me
)

→ N
(

C8H17

)

4

+
AuCl4

−
(

C6H5Me
)

,

Fig. 1   Schematic representation of NP syntheses using (1) top-down 
and (2) bottom up approaches
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In the above case, mainly AuNPs of cuboctahedral and 
icosahedral structures shape were synthesized in size range 
of 2–8 nm with a dispersion of about 4–6%, however, the 
particle’s shapes and sizes can be tuned by altering the reac-
tion conditions; such as, gold/thiol molar ratio, temperature, 
and reduction rates. For instance, the fast reductant addition 
and low solution temperature have been reported with the 
smaller and monodisperse particles. In addition, the tuning 
of size has also been achieved by introducing a sterically 
bulky group for immediate quenching of reaction (Temple-
ton et al. 2000). In addition to these, the optimization of 
reducing temperature and rate of injection of reductant have 
also been reported to alter the size and dispersity index of 
AuNPs (Schaaff and Whetten 2000). To achieve thiol-coated 
AuNPs, a number of methods have been employed to syn-
thesize, where Brust–Schiffrin procedure is well known for 
monolayer-protected clusters (MPCs) formation, wherein 
further steps, the purification was performed using TOAB 
to obtain high yield (Waters et al. 2003). Apart from these, 
catalyst-less synthesis of MPCs has also been reported 
without trace ionic impurities by coupling the two different 
single-phase steps. For instance, thiol-derivatized AuNPs in 
a two-phase liquid–liquid system was synthesized by simul-
taneous reduction of the gold salt in the presence of passivat-
ing ligand using a water/methanol solution. This method was 
originally demonstrated with 4-mercaptophenol as capping 
agent (Brust et al. 1995) and is widely used for the incor-
poration of water-soluble ligands (Chen and Kimura 1999; 
Templeton et al. 1999). In another single-phase synthetic 
approach (Rowe method), tetrahydrofuran (THF) is used 
as the solvent which provides several advantages includ-
ing compatibility for a wide range of ligands. The usage 
of strong reducing agents [lithium triethyl borohydride 

(2)
mAuCl4

−
(

C6H5Me
)

+ nCl2H25SH
(

C6H5Me
)

+ 3me−

→ 4mCl
−(aq) +

(

Au
m

)(

Cl2H25SH
)

n
.

(super-hydride)] in this method has increased the efficiency 
by multiple folds than Brust method due to its capability 
of reducing various functional groups including esters and 
amides (Brown et al. 1980), where the two-phase Brust 
method limits.

In addition to this, a number of surface modifications 
have also been reported by translating the double phase syn-
thesis into a single-phase system (Kanaras et al. 2002; Zheng 
et al. 2004). For instance, the tiopronin monolayer-protected 
AuNPs were obtained in soluble gold clusters with the aver-
age core size of 1.8 nm (Templeton et al. 1999). Similarly, 
the relatively smaller and thermally stable AuNPs have also 
been synthesized using arenethiol and alkanethiol as a pas-
sivating layer (Chen and Kimura 1999). Not only smaller 
sizes, but also larger sized thiol-stabilized water-soluble 
AuNPs were obtained using alkyl thiosulphates as precur-
sors (Lohse et al. 2010). In addition to these, various thiol-
based approaches have been reported for the AuNPs surface 
modification including thymine self-assembled monolayer 
(Zhou et al. 2007), hexadecyl aniline (Ascencio et al. 2000), 
super hydride (Yee et al. 1999), organometallic reagents, 
(2-propylmagnesium bromide) (Sugie et al. 2009), 9-bor-
abicyclononane (Sardar and Shumaker-Parry 2009), and glu-
tathione (Negishi et al. 2004) based thiol-passivated AuNPs.

Substitution/secondary modification to form 
mixed‑monolayer AuNPs

For the first time, Giersig and Mulvaney reported Mixed-
monolayer mediated modification of AuNPs in 1993, 
where the AuNPs were stabilized using alkanethiols. This 
stabilization was introduced by mixing end-group func-
tionalized organothiols (ω-functionalized organothiols) 
with pre-synthesized AuNPs in the presence of surfactants. 
Due to the soft character of gold and sulfur, thiol groups 
strongly bind to the gold through covalent interaction 
(Giersig and Mulvaney 1993) and hence the formed NPs 

Fig. 2   The pictorial representa-
tion of thiol-stabilized AuNPs 
synthesis based on the phase 
extraction process using (1) 
tetraoctylammonium bromide 
[TOAB; (C8H17)4NBr] followed 
by the reduction with sodium 
borohydrite (NaBH4) (2) Parti-
cles are capped using dodecane 
thiol (C12H25SH)
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show excellent stability and can be stored for years (Brust 
et al. 1995). Thus, to modify the surface of AuNPs, place-
exchange methods are profoundly used where the substitu-
tion of existing thiol ligands from additive thiols are intro-
duced. Templeton et al. and Hostetler et al. have shown 
method for the substitution of anchored thiol with the free 
thiol ligands (Hostetler et al. 1999; Templeton et al. 2000). 
The introduction of two or more functional ligands has 
also been reported for the synthesis of mixed-monolayer-
protected AuNPs for synergistic applications. For example, 
hybrid AuNPs have been prepared using thiol-terminated 
ligands containing organic/inorganic dyes (Walter et al. 
2002), smart polymers (Martin 1996), biomolecules (Gil-
johann et  al. 2010), and drug molecules (Ghosh et  al. 
2008). These ligands on the surface of AuNPs interact 
amongst each other creating a rigid monolayer (Jadzin-
sky et al. 2007) which exhibits a certain level of intra-
monolayer mobility as an optimal interaction with the 
analytes (Boal and Rotello 2000). Under the appropriate 
conditions, these ligands show intermolecular mobility by 
hopping between the NPs (Zachary and Chechik 2007) 
due to the effects of temperature and monolayer packing 
(Ionita et al. 2008). In general, the core of AuNPs contain 

hydrophobic groups and the secondary surface modifica-
tions with hydrophilic groups (viz. hydroxyl or carboxy 
moieties) helps to improve the dispersion of AuNPs pre-
venting their aggregation. So far, a number of strategies 
have been reported following mixed-monolayer-based 
passivating approaches including the chemical coupling 
(Liu et al. 1998), polymerization (Mandal et al. 2002), 
electrostatic interaction (Chen et al. 2008), and selective 
intermolecular interaction (Giljohann et al. 2010; Braun 
et al. 2009). Among all, chemical coupling and polymeri-
zation are the most widely used methods, where the func-
tionalization of AuNPs using carboxylic acid terminated 
was mostly used. In one of such examples, thiol ligands 
have also been used that forms amide linkage with linker 
molecules via. N-Ethyl-N-(3 dimethylaminopropyl)-carbo-
diimide coupling (Kamra et al. 2016). Apart from these, 
NPs with hydroxyl groups on their surface have also been 
reported to generate various functionalities by esterifica-
tion reaction in presence of acyl moieties (Fig. 3) (Yoo 
et al. 2009).

Fig. 3   Schematic representation of different types of secondary modification approaches for mixed-monolayer-passivated AuNP functionaliza-
tion, (a) carbodiimide coupling at carboxylic end thiolated AuNPs (b) hydroxyl end thiol-stabilized AuNPs using RCOCl coupling reaction
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Modification using other sulfur ligands

Sulfur-containing ligands viz. xanthates (Tzhayik et  al. 
2002), disulfides (Manna et al. 2003), di- and trithiols (Felidj 
et al. 2003), thioacetates, dithiocarbamates, trithiolates, thi-
olic acid, and resorcinarenetetrathiols (Balasubramanian 
et al. 2002) have also been used to functionalize AuNPs 
surface. In one such example, small-sized AuNPs (diameter 
1.5 nm) have been prepared using a four-chained disulfide 
organic molecule. Since, the thiol moieties give better sta-
bilization to AuNPs, these are most commonly used over 
other ligands for passivation. In addition, thio-ether- sta-
bilized AuNPs have also been reported for AuNP surface 
functionalization, which shows relatively weaker passivating 
capacity (Shelley et al. 2002). Thus, to circumvent the limi-
tations associated with the monomeric layer, poly-thio-ether 
passivating agents were used to stabilize the AuNPs (Li et al. 
2001). Furthermore, metal-binding strengths between thiols 
and thio-ethers differ and hence alter the molecular arrange-
ments, which contain multidentate thio-ethers that eventually 
lead to the unique morphologies and also allow the chemical 
reversibility. For instance, the tetradentate thio-ethers have 
been used to form reversible AuNP assembly (Maye et al. 
2002). In another example, Sun et al. have described the 
synthesis of polycyclodextrin hollow gold spheres through 
oxidation-mediated thiol-stabilized AuNPs using iodine, 
resulting in decomposition to gold iodide with disulfide for-
mation (Sun et al. 2001). However, the dispersion of these 
particles is major concerns especially in an organic solvent, 
thus to obtain improved dispersible particles, resorcinarene 
tetrathiol has been employed as a passivating agent, which is 
reported to yield mid-sized AuNPs (16–87 nm) (Yamamoto 
and Nakamoto 2003).

Surface modification using phosphine

The surface of AuNPs has also been stabilized and modified 
using phosphine, which is reported to act as an excellent 
precursor for functionalization with well-defined metallic 
cores (Weare et al. 2000). These functionalized particles 
have been used not only for catalysis (Schmid 1992) but also 
has been employed as the backbone for nanoscale electronic 
devices (Weare et al. 2000). Commonly, the approaches for 
synthesizing the phosphine- based AuNPs are carried out 
by the reduction of HAuCl4 followed by the treatment of 
phosphine derivatives for stabilizing the nanostructure such 
as PPh2(C6H4SO3Na–m) or P(C6H4SO3Na–m)3 (Schmid 
et al. 1996). In a report, the phosphine-mediated AuNPs 
were obtained, where the chloroaurate (AuCl4−) ions have 
been relocated after the reduction in aqueous NaBH4 to the 
organic phase (toluene) containing PPh3 (Weare et al. 2000). 
These uniquely synthesized NPs not only show the greater 
stability when stored in cold and dry conditions but also 

allow excellent surface functionalization. The process has 
also been tuned for larger particles synthesis by adjusting 
the important parameters of reaction time and temperature. 
In another strategy, AuNPs have been synthesized by follow-
ing the Hutchison’s procedure where the rapid exchange of 
phosphine derivative of the different genre was employed, 
i.e., capping ligand and dissociated phosphines occur 
in dichloromethane at room temperature (Petroski et al. 
2004). NPs from Hutchison’s preparation can also serve 
as the versatile AuNP precursors as the functionalization 
can be achieved with a wide range of ligands from ligand-
exchange reactions to yield a diverse library of functional 
“nano-building blocks”, which can eventually lead to the 
unique nanostructures.

Surface modification using amine

Similar to the previously discussed strategies, there are a 
number of methods reported for the AuNPs surface func-
tionalization. For this, Brust method is commonly adopted 
to modify the surface of NPs, where the present stabiliz-
ing thiol moieties are substituted by amine ligands. The 
major advantage of amine-capped AuNPs is that the sur-
face chemistry of NPs can easily be probed by a variety 
of spectroscopic studies. Initially, the hydroxylamine has 
been used as a reducing agent for amine-capped AuNPs 
synthesis (Graf and van Blaaderen 2002). This paved the 
path towards extensive use of organic amines in a number 
of metal NPs, especially for AuNPs, due to their affinity 
for nitrogen. Amine-mediated synthesis of hydrophobic 
AuNPs has also been reported by Leff and co-workers using 
n-alkylamines (primary amines) (Leff et al. 1996). Similarly, 
aminomethyl pyrene (Thomas and Kamat 2000) and ben-
zylamine (Thomas et al. 2002) have been reported to be used 
as stabilizing agents to obtain amine stabilized AuNPs. For 
simplifying the synthesis process, a direct one-pot synthesis 
of amine-stabilized AuNPs using 3-trimethoxysilylpropyl- 
diethylenetriamine has also been reported (Zhu et al. 2005). 
In addition to this, Aslam et al. demonstrated a one-step syn-
thesis of oleylamine-capped water-soluble AuNPs (Aslam 
et al. 2004). Furthermore, a higher ratio of gold to amine has 
been used for the formation of products with mixed ligand 
shell, which suggests the ratio of the gold salt and amine 
ligands defines the dispersity index. Newmen et al. have 
reported an interesting study in this context, where the dif-
ferent ratios have tested for the AuNPs syntheses and found 
that in the ratio of 10:1(gold to amines) yields monodisperse 
nanoparticle, while the further lowering of amine ligands 
leads to the synthesis of polydispersed AuNPs. In addition 
to these, a variety of other amino compounds have also 
been employed to obtain amine-capped AuNPs including 
aromatic amines (Newman and Blanchard 2006), diamines 
(Selvakannan et al. 2004), tetraoctylammonium (Isaacs et al. 
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2005), laurylamine (Kumar et al. 2003), porphyrins (Kotiaho 
et al. 2010), and hyperbranched polyethylenimine (Duan and 
Nie 2007).

Apart from these, amino acids are also used for the amine 
passivation of AuNPs as these are capable of forming pro-
tective layers and the assembly of chloroaurate ions forming 
NPs. Functional groups of amino acids, viz. −SH and −NH2 
possess high affinity for gold (Choudhary et al. 2016), thus 
provides the greater stability to the NPs. The physicochemi-
cal properties of the side groups present in the amino acids, 
such as polarity and hydrophilicity influence the reduc-
tion, stabilization, and conversion of gold ions (Au3+) to 
NPs (Huang et al. 2006b). So far, several amino acids have 
been reported for surface modification including tryptophan, 
lysine, aspartic acid (Shao et al. 2004), cysteine (Ma and Han 
2008), and glutamic acid (Wangoo et al. 2008). In a report 
published by Selvakannan and co-workers, the synthesis and 
functionalization of water-soluble AuNPs have been medi-
ated by amino acid lysine (Selvakannan et al. 2004). These 
lysine-capped aqueous AuNPs are electrostatically stabilized 
in solution and show excellent water-dispersibility. However, 
the AuNPs obtained from amine capped methods show pH 
dependent properties, due to which the particles aggregates 
to large superstructure on the fluctuation of pH.

Surface modification using polymers

The polymers have also been used for capping the metallic 
NPs to provide greater stability. Initial attempt on polymer-
stabilized AuNPs has been taken by Helcher in the presence 
of a polysaccharide in 1718, however, due to limited charac-
terization availability, these were not properly and scientifi-
cally analyzed (Rac et al. 2014). Polymer-stabilized AuNPs 
have many advantages, which include longer stability, high 
surface density and ability to adjust solubility (Chandra et al. 
2012; Zhu et al. 2012a; Chandra 2016). Few commonly used 
polymers for stabilization are: poly(N-vinylpyrrolidone) 
(PVP), poly(ethylene glycol) (PEG), poly(4-vinylpyridine), 
poly(vinyl alcohol) (PVA), poly-(vinyl methyl ether), chi-
tosan, polyethyleneimine (PEI), poly(diallyl dimethyl 
ammonium chloride) (PDDA), polystyrene-block polymers, 
poly(methyl methacrylate) (PMMA), poly(dG)-poly(dC), 
and poly(N-isopropylacrylamide) (Mandal et  al. 2002; 
Yilmaz and Suzer 2010). The adopted strategies for polymer 
stabilization follow (1) grafting from, (2) grafting to, and (3) 
post-synthetic modification approaches. A simple schematic 
representation of these methods has been shown in Fig. 4.

Grafting‑from technique

The “grafting from” approach involves growing polymeric 
chains from scaffolds attached to the surface of AuNPs 
(Huo and Worden 2007; Shan and Tenhu 2007). Commonly, 

alkyl-thiol-passivated AuNPs are used as a precursor for 
capping the polymeric materials onto the nanoparticle’s 
surface. This technique provides various advantages such 
as precise control over the thickness, structure, and density 
of the polymeric layer. Apart from these, the AuNPs syn-
thesized by this method possesses the chemically bonded 
scaffolds stabilization. These AuNPs are more robust as 
compared to those, which are synthesized by physiosorption 
using block copolymer micelles, water-soluble polymers, or 
star block copolymers. Using this method there are a number 
of strategies have been reported. For instance, the grafting of 
poly(methyl methacrylate) was established on to the AuNPs 
surface following the living radical polymerization (Man-
dal et al. 2002). Using similar approach, in another report, 
poly(N-butylacrylate) have been grown following atom 
transfer radical polymerization (Nuß et al. 2001). In addi-
tion to these, biopolymers viz. oligonucleotide, and peptides 
have also been reported on the surface of AuNPs followed 
by the propagation of the grafted molecules. For instance, a 
single-stranded oligonucleotide grafting was achieved onto 
the AuNPs with the help of thiol-linked primer-based passi-
vation followed by DNA polymerization (Zhao et al. 2006). 
In another strategy, the AuNPs are stabilized using peptide 
chains, which were synthesized by the grafting of sulfhy-
dryl amine groups onto the AuNPs followed by enzymatic 
peptide elongation. For instance, Higuchi and co-workers 
reported grafting of alpha-helical poly(gamma-methyl 
L-glutamate-co-L-glutamic acid) bio-polymeric moieties 
onto the surface of AuNPs (Higuchi et al. 2007).

Grafting‑to technique

In “Grafting to” approach, gold cores are synthesized in pol-
ymer aggregates. The major advantage of this method is the 
availability of various polymers for functionalization. Since 
this follows a one-pot synthesis method, reacting materials 
are mixed in a single vessel thereby reducing a number of 
laborious steps involve in “grafting-from” technique eventu-
ally making the synthesis easy. In this method, two types of 
polymers are commonly used, one with the sulfur-containing 
group at the terminal end and other terminated with a sulfur-
free group. Polymers terminated with a sulfur-containing 
group such as di-thioester, tri-thioester, thiol, thioether, 
and disulfide provide chemical-bonded shell layers around 
the gold cores (Liu et al. 2007; Aqil et al. 2008). Synthe-
sis of these polymers was done by a radical polymerization 
using chain transfer reagents containing sulfur atoms (Wang 
et al. 2007). In polymeric aggregates without sulfur, evolu-
tion of gold cores results in gold nanocomposites in which 
the polymers interact with gold cores through multi-point 
physical adsorption (Sakai and Alexandridis 2004). How-
ever, these gold nanocomposites are unstable and the poly-
mer has a high chance of getting detached from the AuNP 
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surface because of the lack of stable chemical bonds. This 
can be overcome by cross-linking the polymer network or 
by the use of unimolecular micelles (Filali et al. 2005). This 
method has been used for the synthesis of AuNPs functional-
ized with artificial polymers, such as: PVP (Mohamed et al. 
2017), poly(vinyl pyridine) (Zhang et al. 2018), PEG (Ocal 
et al. 2018), PVA (Kwiatkowska et al. 2018), PMMA (Zepon 
et al. 2015), PEI (Lazarus and Singh 2016), PDDA (Liu et al. 
2016) as well as biopolymers (Chowdhury et al. 2018).

Post‑synthetic modification techniques

In post-synthetic modification methods, AuNPs are first 
generated through conventional methods followed by func-
tionalization (Kang and Taton 2005). AuNPs have been 
covalently conjugated with polymers having thiol groups, 
while the polymers devoid of thiol moieties were attached 
through physical adsorption onto the AuNPs surface. 
Similarly, biopolymers have also been used for the sur-
face functionalization using the similar approach. Due to 

these distinctive properties and non-toxic nature, oligonu-
cleotide-functionalized AuNPs have been used for highly 
sensitive and selective assays in detecting biomolecules 
and thus find several applications in biosensing, disease 
diagnostics, and gene expression studies. Moreover, due 
to their greater affinity towards DNA molecules, these are 
frequently used as non-viral vector for gene delivery (Biju 
2014; Sahoo et al. 2017). In such examples, alkyl thiol-
terminated oligonucleotide-functionalized AuNPs were 
synthesized with high stability in saline condition (Bri-
ley et al. 2015). Enzymes, peptides, antibodies, aptamer, 
etc., have also been used for the AuNPs functionalization 
in place of the chemical reagents (Baranwal et al. 2016; 
Kumar et al. 2008; Mahato et al. 2018b). So far, several 
applications have been reported using the AuNPs synthe-
sized from these methods including DNA intercalation 
study (Wang et al. 2002), polynucleotides detection (Gil-
johann et al. 2010), and a number of protein detections.

Fig. 4   Schematic representation of the polymer-stabilized AuNPs synthesis using (a) grafting-from, (b) grafting-to, and (c) post-synthetic modi-
fication techniques
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Modification using silica

Silica has extensively been used for passivating the AuNPs, 
where a thin shell has been coated over NPs to prevent vari-
ous detrimental interactions between proteins and other mol-
ecules with the nanoparticle’s surface. This step is followed 
by the binding of various molecules of interest, viz. spacer, 
target or coating molecule to the flanking linker on the sur-
face of NPs. Thereafter, the functionalized NPs are sorted 
according to the number of bound molecules using various 
chromatographic techniques which also allow the selection 
of homo-functionalized NPs (Lévy et al. 2006). The silica 
coating onto the AuNPs greatly enhances its chemical stabil-
ity against aggregation. These modifications are in general 
introduced using Stöber method, where tetraethylorthosili-
cate is used for passivation of gold core (Stöber et al. 1968). 
For instance, silica-coated AuNPs have been synthesized 
using (3-aminopropyl)trimethoxysilane configuring alkoxide 
flanking groups outwards from AuNPs (Liz-Marzán et al. 
1996). Silica coating onto the AuNPs greatly enhances the 
chemical stability against aggregation and its solubility in 
different solvents. These modifications are also introduced 
using Stöber method, where the solution of tetra ethylortho-
silicate is used in different alcohols such as methanol, etha-
nol, and isopropanol with ammonia. The resulting solution 
is then stirred to obtain the silica-coated NPs depending on 
the type of silicate ester and alcohol used and also on their 
volume ratios (Stöber et al. 1968). Thin silica shell-based 
AuNPs passivation has also been reported by Liu and Han, 
which has shown excellent biocompatibility and has been 
used in various colorimetric diagnostics, photothermal 
therapy, and SERS- based detections (Liu and Han 2010). 
In addition, functionalization of the silica-coated NPs sur-
face with amino-, mercapto- and carboxy-terminated silanes 
allows the conjugation of other materials for further second-
ary modifications (Lee et al. 2008).

Applications of functionalized AuNPs

Functionalized AuNPs have extensively been used in vari-
ous biomedical applications. So far, functionalized AuNPs 
have found in numerous applications of various fields such 
as electronics, photodynamic therapy, drug delivery and tar-
geting, sensors, probes, diagnostics, and catalysis (Chandra 
et al. 2010, 2013b; Kumar et al. 2015). The potential appli-
cations of AuNPs in clinical and biomedical domains are 
described under various categories as follows.

Diagnostic applications

The unique optoelectronic properties, viz. SPR, Raman scat-
tering, and fluorescence quenching led down the AuNPs in 

various diagnostic applications (Chandra 2016; Mahato et al. 
2016a). Upon the exposure of electromagnetic radiation, the 
conduction electron (or plasmons) starts to oscillate on the 
surface of AuNPs. The coherent oscillation of the metal free 
electrons in resonance with the electromagnetic field also 
called as SPR develops strong electromagnetic fields onto 
the surface of particles. This subsequently enhances radia-
tive properties such as absorption and scattering, as well 
as non-radiative properties, which eventually help to moni-
tor the biomolecules. These, surface functionalities show 
the size-dependent SPR properties. For example, the thiol-
stabilized AuNPs (diameter ≈ 5 nm) exhibit SPR at 530 nm, 
whereas amine-stabilized AuNPs (diameter ≈ 7 nm) exhibit 
SPR at 540 nm. These SPR properties of AuNPs are use-
ful for biomolecular detection in real time with respect to 
the changes in refractive index upon binding to thin gold 
films (Liedberg et al. 1983). The shift in SPR due to the 
molecular interactions has been exploited for building 
various diagnostic strategies. For instance, Taton et al. has 
developed a technique that is capable to monitor these shifts 
upon nucleic acid interactions (Taton et al. 2000). The plas-
monic effects of AuNPs have also led to the development 
of convenient colorimetric assays. These are based on the 
fact that the interacting electric fields of aggregating AuNPs 
have a tendency to lower the resonant frequency of plasmon 
oscillations, resulting in a visible color change with either 
bathochromic or hypsochromic shifting of the initial fre-
quency (Srivastava et al. 2005). In such colorimetric assays, 
the color change is dependent on the action of target ana-
lyte, which either directly or indirectly triggers the further 
states of AuNPs aggregation or re-dispersion. In addition, 
AuNPs have been modified with linker molecules that can 
link them together in the presence of a molecule of interest. 
These AuNP-based colorimetric assays have been used in 
the detection of specific DNA strands, proteins, and small 
molecules. For instance, in dipstick-type pregnancy testing 
kits, AuNPs are modified with secondary antibodies against 
human gonadotropin hormone that subsequently binds to 
primary antibodies arranged over a small area to the dipstick 
(Fig. 5a) (Tanaka et al. 2006). In presence of the target ana-
lyte, the binding complex forms in a testing area consisting 
secondary antibody-conjugated AuNPs, analyte, and pri-
mary antibodies, resulting in the change in SPR properties 
of the AuNPs resulting the appearance of color (Stockman 
2011; Tanaka et al. 2006).

Fluorescence resonance energy transfer (FRET) is a dis-
tance-dependent energy transfer-based technique, where a 
donor chromophore supplies emissive energy to the recep-
tor counterpart after getting excited leading to the increased 
fluorescence intensity of the receptor counterpart of the 
FRET pair. For an excellent FRET-based optical quenching, 
AuNPs are a suitable candidate as it possesses high molar 
extinction coefficient and large energy bandwidth (Jain et al. 
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Fig. 5   Illustrations for different applications of functionalized 
AuNPs, where (a) shows the schematic of dipstick-type diagnostic 
device based on antibody-coated AuNPs for colorimetric detection 
(Reprinted with permission of Tanaka et  al.; copyright Springer). b 
Shows functionalized AuNP–GDQ FRET pair-based detection of 
mecA gene sequence of Staphylococcus aureus (Reprinted with per-
mission of Shi et  al.; copyright Elsevier). c Shows functionalized 
AuNP-based SERS strategy for cell imaging (Reprinted with per-
mission of Zhang et al.; copyright Springer). d Shows simultaneous 

detection and bio-imaging based on aptamer-based functionalized 
AuNPs (Reprinted with permission of Zhu et al.; copyright the Amer-
ican Chemical Society). e Shows co-functionalization of AuNPs and 
protein using polymers as nano-carrier for delivery of hydrophobic 
anticancer drug camptothecin (Reprinted with permission of Khanda-
lia et al.; copyright the Royal Society of Chemistry). f Shows the anti-
VEGF siRNA functionalized AuNP-based combinatorial theranostic 
strategies targeting early tumor cells (Reprinted with permission of 
Son et al.; copyright Theranostics)
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2007). Using AuNP-assisted FRET technique, Zhang et al. 
have reported a cholesterol sensor by functionalizing the 
AuNPs with β-cyclodextrin (Zhang et al. 2008). Addition-
ally, researchers have developed several assays to monitor 
the cleavage of DNA by nucleases and reported the bio-
molecular detection up to femtomolar concentrations (Ray 
et al. 2006). In addition to this, accuracy has been enhanced 
using multicolored oligonucleotide-functionalized organic 
dye with AuNPs as nanoprobes (Ray et al. 2007). FRET-
based assays have also been utilized to detect specific gene 
sequences. For instance, Shi et al. have developed novel 
FRET-based biosensor on graphene quantum dots and 
AuNPs for ultralow detection of a gene from Staphylococcus 
aureus, indicating immense application in medical diagnos-
tics (Shi et al. 2015) (Fig. 5b).

Conventionally, Raman scattering has been used for vari-
ous detections exploiting the intrinsic spectroscopic prop-
erties of analyte molecules but due to their poor intensities 
limits the usage in various diagnostic applications. There-
fore, AuNP-assisted Raman spectroscopy has been adopted 
to overcome such limitations by employing AuNPs, which is 
also called surface enhanced Raman spectroscopy (SERS). 
These systems utilizes the intrinsic properties of the AuNPs 
for SERS phenomena (Talley et  al. 2005; Bellamy and 
Garthwaite 2001). For instance, a tumor cell detection has 
been reported by Zhang et al. based on the AuNP-assisted 
SERS, where the antibody-tagged AuNPs were used (Zhang 
et al. 2016) and showed excellent analytical performance 
(Fig. 5c). SERS-based techniques have been found great 
attention in recent days due to their various advantages, 
viz. high quality, distinct, and noise-free signals over other 
diagnostic techniques. Furthermore, the tunability of these 
SERS-based properties have also been achieved with size, 
shape, orientation, and the aggregation of AuNPs, which 
makes the functionalization of AuNPs compatible for bar-
codes or recognition elements in developing various unique 
analytic tools (Zheng et al. 2012).

Sensors and biosensors

AuNP’s fascinating properties have extensively been uti-
lized to design a number of bio/chemical sensors of optical 
and electrochemical formats (Kumar et al. 2015; Won et al. 
2013; Zhu et al. 2012a; Chandra 2015). The smaller size 
and high aspect ratio of AuNPs provide stable immobili-
zation of large numbers of biomolecules onto its surface 
while retaining their biological activities (Chandra et al. 
2013b). Therefore, AuNPs are widely used as signal ampli-
fication tags in different types of biosensors because of its 
light-scattering, conducting, and local electromagnetic 
field enhancement properties (Mahato et al. 2016b; Man-
dal et al. 2018). Using these properties of AuNPs, various 
detection strategies have been employed for sensitive and 

selective detection of target DNA via. sequence-specific 
hybridization between the target and single-stranded oli-
gonucleotide probe-conjugated AuNPs (Lyon et al. 1998; 
Spampinato et al. 2016; Bhatnagar et al. 2018; Chandra 
2013). A prototype has been developed based on the oli-
gonucleotide probe-conjugated AuNPs as SPR amplifica-
tion tags that have satisfactorily enhanced the sensitivity 
by 1000-folds (He et al. 2000). Apart from these, a DNA 
fluoro-biosensor using a cerium complex Ce(QS)2Cl and 
thiolated probe-DNA with functionalized AuNPs have 
been reported based on DNA hybridization-mediated fluo-
rescence quenching. Similarly, in another work, research-
ers used AuNPs as both nano-scaffolds for the attachment 
of capture sequences and as nano-quenchers of fluoro-
phores attached to detect sequences, where 5′-thiolated 
12-mer oligonucleotide-functionalized AuNPs were used 
for sequence-specific detection of target DNAs with a 
2-nM detection limit (Wu et al. 2006). In another strategy, 
an ultra-selective rapid colorimetric biosensor for detect-
ing the breast cancer gene BRAC1 using the DNA–AuNPs 
hybrid (Oh and Lee 2011). Apart from these, AuNP-based 
optical probes have also been used for clinical diagnosis of 
aminothiols, viz. cysteine, homo-cysteine, and glutathione 
(Xiao et al. 2012). Glycol-conjugated AuNPs have also 
been employed for selective and sensitive optical detection 
of a mannose-binding protein complex (Concanavalin A) 
based on surface plasmon absorption with reported excel-
lent analytical performances, where the dynamic range of 
12–45 nM was reported with the detection limit of 4.0 nM 
(Watanabe et al. 2012). Using AuNPs, there are a num-
ber of biosensing prototypes been reported based on the 
dual signal (optical/electrochemical) transduction. For 
instance, Boca et al. have demonstrated dual signal-based 
electrical/optical proof of concept biosensing prototype 
exploiting the nano-gaps formed during the self-assembly 
of AuNPs. This showed excellent SERS capabilities and 
chemi-resistivity of nano-gap AuNPs for the detection 
of 4-mercaptophenyl boronic acid (Boca et al. 2015). In 
another report, an aptamer-based AuNP-functionalized 
biosensor has been developed showing high sensitivity 
(20 nM) for biomolecular analysis using avidin as a model 
compound. The developed facile sensor was anticipated 
to be applied for in vitro analysis (Hernandez et al. 2009). 
Excellent electrical conductivity, high surface area, and 
catalytic properties of AuNPs are suitable for the electro-
chemical biosensing where the electrical responses gen-
erated are directly proportional to the analyte concentra-
tions (Agrawal et al. 2013; Maurya et al. 2016). Until now, 
several electrochemical biosensors have been reported for 
detection of a number of analytes (Chandra 2016; Mahato 
et al. 2017). An electrochemical bifunctional nanosensor 
has been developed by Zhu et al. for the detection of HER2 
positive breast cancer cells and HER2 protein biomarker 
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using bioconjugate comprising hydrazine–AuNP–aptamer 
in a single sensor design (Zhu et al. 2012b) (Fig. 5d). This 
study elaborates the importance of AuNPs in nanobiocon-
jugate development for biorecognition and also as a sig-
nal amplifier in a single experimental setting. In another 
study, AuNPs functionalized with thiol-modified receptor 
for glucose biosensing has been developed to monitor the 
glucose level of diabetic patients (Spampinato et al. 2016). 
In addition, functionalized AuNPs assisted strategies are 
constantly adding the qualities to various biosensors in 
terms of sensitivity, selectivity, limit of detection, dynamic 
range and compatible with numerous analytes including 
drugs, neurotransmitters, heavy metal ions, bacterial/can-
cer cells, and other metabolically active molecules (Zhu 
et al. 2012c; Chandra et al. 2011b; Kashish et al. 2017; 
Chung et al. 2018; Akhtar et al. 2018; Baranwal and Chan-
dra 2018).

Bio‑imaging

AuNPs and its composites have widely been used for 
bio-imaging applications exploiting their strong radiative 
properties. The AuNPs facilitate the biological features 
to visualize the surfaces under dark field microscopy. For 
instance, anti-epidermal growth factor receptor (anti-
EGFR) antibody-functionalized AuNPs (40 nm) were used 
for the bio-imaging of overexpressed biomarker protein 
on cancer cells exploiting the SPR response of tagged 
AuNPs (El-Sayed et al. 2005). The SPR responses of these 
functionalized NPs irradiation appear in green light range 
(530 nm), which helps to visualize the immune interac-
tions of tagged antibody to the present biomarker resulting 
the highly specific bio-imaging. Apart from this, the opti-
mized geometries of AuNPs such as rods or cubes make 
them optimal tools for two-photon luminescence technique 
which uses a femtosecond near-infrared region laser exci-
tation (Dreaden et  al. 2012). This technique is known 
for its nonlinear optical imaging in near-infrared region 
where water and biomolecules show minimum absorption, 
thereby reducing background noises and increasing spatial 
resolution. These optical signatures have helped research-
ers to develop in vitro and in vivo imaging methods for 
detection of cancer and other living cells. For instance, 
Durr et al. used gold nanorods functionalized with anti-
EGFR antibodies based on the above techniques for the 
molecular imaging of cancer cells at different depths 
within the tissues (Durr et al. 2007). Apart from these 
approaches, Chandra et al. have reported AuNPs mediated 
label free bio-imaging platform for cancer cells detection 
through the interaction between daunomycin and cell sur-
face receptors. The bioimaging system, in this case, was 

also confirmed using electrochemical impedance spectros-
copy (Chandra et al. 2011a).

Therapeutics

Functionalized AuNPs also show therapeutic effects includ-
ing photothermal therapy (PTT) where the thermoablative 
properties of AuNPs are exploited to generate heat. The 
excitation of the AuNPs by near infrared or radio frequency 
radiations leads to the burning of the targeted cells (Huang 
et al. 2009; Jain et al. 2008). For example, a poly ethylene 
glycol-coated gold nanorods were used for tumor inhibition 
in an animal model using near-infrared PTT (Dreaden et al. 
2012). Functionalization of AuNPs using DNA aptamers 
has been studied for various therapeutic studies including 
PTT and photodynamic therapies. In addition to this, these 
aptamer-functionalized AuNPs have also been studied for 
anticancer and antiviral therapies (Wang et al. 2016). Simi-
larly, in a most recent study, AuNPs conjugated with DNA 
aptamers have found to be enhanced the therapeutic effi-
ciency by inducing specificity, stability, uptake efficiencies 
of biomolecules. For instance, an aptamer–AuNP–graphene 
oxide nanocomposite developed by Wang et al. exhibited 
PTT effects even in an ultralow concentration of overex-
pressed MUC1 cancer cells (MCF-7) without affecting the 
healthy cells (Wang et al. 2016).

Drug delivery

Furthermore, AuNPs found use in the targeted delivery of 
various payloads ranging from small drug molecules to bio-
macromolecules, owing to their low cytotoxicity, good cell 
permeability, and high drug-loading efficacies, stemming 
from their intrinsic greater surface-to-volume ratio. The 
attachment of payload can be achieved either by covalent 
chemical conjugation of small molecules, viz. drugs and 
neurotransmitters, or by non-covalent attachments, such as; 
electrostatic interactions as in the case of bio-macromole-
cules, e.g., peptides (Khandelia et al. 2014). The modes of 
attachment sometimes play an important role in delivering 
of species. In the case of covalent attachment of pro-drugs, 
they are delivered which are then processed in intracellular 
environment before assimilation, while the active drugs are 
generally attached with non-covalent means showing bet-
ter release (Morgan et al. 2006). The release of the pay-
loads can be triggered by various internal [e.g., glutathione 
(Hong et al. 2006), or pH (Polizzi et al. 2007)] or external 
stimuli (e.g., light) (Han et al. 2006). In general, AuNPs 
assisted delivery of molecules are optimized by tuning the 
particle size or by altering surface functionalization steps. 
For example, secondary coating with antibiofouling agents 
(viz. thiol-derivatized poly-ethylene glycol) was reported 
for delaying the response from reticuloendothelial system 
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that acts as a biological barrier for drug delivery, which was 
reported the delayed delivery by 0.5–72 h in a mice model, 
claiming delivery clearance of approximately 150-fold 
than unmodified cetyltrimethylammonium bromide-capped 
AuNPs (Niidome et al. 2006). Different targeting moieties 
such as proteins, peptides, antibodies, and small molecules 
including folic acid and paclitaxel have also been attached 
to the AuNPs surface to facilitate selective cellular uptake 
and internalization of the drug-loaded nanocarriers. At the 
same time to achieve a highly specific targeted drug delivery 
to heterogeneous population of cancer cells in solid tumors, 
several receptor molecules (antibody, aptamer, peptide, etc.) 
are also attached onto the surface of AuNPs. In addition 
to this, several platforms have been demonstrated showing 
exciting results in delivering molecules into tumors (El-
Sayed et al. 2005; Visaria et al. 2006; Huang et al. 2006a; 
Paciotti et al. 2006). For instance, Khandalia et al. have 
reported polymer-coated NP–protein conjugate to deliver 
the drug in the human cell lines and successfully induced 
the apoptosis to the target cells (Fig. 5e) (Khandelia et al. 
2014). Some of the commonly FDA approved NPs-based 
drugs including paclitaxel, and doxorubicin were success-
fully cleared the clinical trial and used in a metastatic breast 
cancer phase III multiple-myeloma treatment in metastatic 
ovarian cancer, respectively (Singh et al. 2015).

Theranostics

Theranostics is an approach which provides the simultane-
ous benefits of therapeutics as well as imaging and diag-
nostics on a single platform (Chandra 2016). Since AuNPs 
exhibit several unique features such as SPR and absorption 
of near-infrared region of electrochemical radiation, by 
virtue of these the AuNPs show photothermal properties. 
Such properties have been exploited for targeted detections 
of cancerous/tumorigenic cells and their destruction simul-
taneously. The pioneering works on theranostics applica-
tions using the gold nanoshells were reported by Loo et al. 
(2005) and gold nano-spheres by Lapotko (2009). Following 
the trends, so far, a number of theranostic strategies have 
been reported using AuNPs for various types of cancers. 
For instance, AuNPs have been used for diagnosis and treat-
ment of gastrointestinal (GI) cancers by targeting GI adeno-
carcinoma cells via. thermal induction (Singh et al. 2015). 
Here, the heating effects of AuNPs uncouple the heat sensi-
tive chemical bonds facilitating a release of drugs directly 
at the target site (Singh et al. 2015). The detailed articles 
of this domain have been comprehensively reported else-
where which includes theranostic applications of AuNPs for 
imaging, photothermal therapy (Curry et al. 2014), nano-
cardiology (Spivak et al. 2013), single nanomaterial based 
treatment (Vinhas et al. 2015), and in theranostics oncology 
(Akhter et al. 2012) along with multifunctional composites 

(Khlebtsov et al. 2013). So far various strategies have been 
adopted including AuNP-based that have been developed by 
co-encapsulation of AuNPs with chemotherapeutic drugs 
including paclitaxel (Muthu et al. 2014), doxorubicin (Chen 
et al. 2013), and daunomycin (Chandra et al. 2013a) for 
efficient theranostic applications. In one of such examples, 
Shao et al. have developed an ellipsoidal NP–drug conju-
gate, which can harness the synergy of photothermally acti-
vated physical and biological effects for therapeutic goals. 
(Shao et al. 2013). In another example, the tumor necrosis 
factor-alpha coated gold nanospheres (Au-TNF-ɑ) have been 
used for the treatment followed by heating with laser pulses. 
In addition, higher efficacy has been obtained in pulsating 
laser-mediated treatment in in vivo studies carried out using 
mice models. In addition to these advancements, function-
alized AuNPs have also reported to induce combinatorial 
theranostic effects to the targeted cells. In an article reported 
by Son et al. demonstrated that AuNPs functionalized with 
anti-VEGF siRNA for the cancer eradication in later stages 
(Fig. 5f) (Son et al. 2017).

Conclusions and future prospects

As per the above discussion on the synthesis, surface modifi-
cation, and application potentials of AuNPs, it is evident that 
it is excellently compatible to the nanoplatforms for various 
biomedical applications. In particular, AuNPs are passivated 
with a variety of ligands, functional groups, imaging labels, 
therapeutic drugs, and carrier molecules before the actual 
applications. Commonly, the functionalization of the AuNPs 
is achieved by modifying its surface either with linker moie-
ties followed by modification of capping agent of interest or 
by place-exchange reaction with originally stabilized ligand 
or by linking to the shell of stabilizing molecules. Thus, the 
functionalized AuNPs found an important place for serving 
a number of biomedical applications, viz. sensitive detection 
of biomolecules, cellular imaging, and drug delivery agent. 
In the recent era, tremendous researches on AuNP-based 
nano-platforms have been fabricated for the same purpose, 
yet there is an enormous scope of improvements to enhance 
their applicability in various biomedical applications. Few 
common instances to be considered as future prospects are 
as follows:

•	 The AuNP-assisted optical imaging is possible, however, 
there are no models which can quantify the optical sig-
nals accurately particularly in deeper tissues to provide 
sufficient information about the target disease.

•	 There are several reports that have used AuNP-based 
models for tumor/cancer therapy, but none of them has 
addressed the generalized case, which can target mul-
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tiple closely related cells specifically without affecting 
surrounded healthy cells.

•	 Several AuNPs-based sensing devices and many proof-
of-concept prototypes have been reported for various 
clinical pathogens/samples, yet very few prototypes 
have been commercialized to provide personalized 
diagnostic platform. Therefore, more efforts should be 
given to improvise the existing strategies for better high 
throughput translational prototypes.

•	 A number of AuNPs-based drug delivery systems have 
been reported, yet the therapeutic efficacy of these are 
limited with respect to dosage and target-specific non-
toxic delivery.

•	 AuNPs-based photothermal therapy has widely been 
reported for the treatment of cancerous cells, but suf-
fers from the non-specific damage healthy cells due to 
the uncontrolled and uneven heating.

•	 AuNPs-based theranostic strategies are fascinating in 
biomedical science; however, there are much remains 
to be done to achieve the real goals.

Therefore, the field remains open to many important 
discoveries to find new methods of synthesizing AuNPs 
with compounds that would promote excellent biocompat-
ibility and would make them useful for diagnostics, bio-
imaging, and therapeutics. Hence, the future work should 
be directed towards better understanding of the behavior of 
AuNPs in biological/real systems to overcome the limita-
tions of conventionally developed AuNPs, which can assist 
the next-generation need of engineering and medicine by 
improving the clinical diagnostic platform.
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