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Abstract Retinitis pigmentosa is a group of genetically

transmitted disorders affecting 1 in 3000–8000 individual

people worldwide ultimately affecting the quality of life.

Retinitis pigmentosa is characterized as a heterogeneous

genetic disorder which leads by progressive devolution of

the retina leading to a progressive visual loss. It can occur

in syndromic (with Usher syndrome and Bardet-Biedl

syndrome) as well as non-syndromic nature. The mode of

inheritance can be X-linked, autosomal dominant or auto-

somal recessive manner. To date 58 genes have been

reported to associate with retinitis pigmentosa most of

them are either expressed in photoreceptors or the retinal

pigment epithelium. This review focuses on the disease

mechanisms and genetics of retinitis pigmentosa. As

retinitis pigmentosa is tremendously heterogeneous disor-

der expressing a multiplicity of mutations; different vari-

ations in the same gene might induce different disorders. In

recent years, latest technologies including whole-exome

sequencing contributing effectively to uncover the hidden

genesis of retinitis pigmentosa by reporting new genetic

mutations. In future, these advancements will help in better

understanding the genotype–phenotype correlations of

disease and likely to develop new therapies.

Keywords Retinitis pigments � Autosomal dominant �
Autosomal recessive � Whole-exome sequencing � X-linked

Introduction

More than 240 genetic mutations are involved in inherited

retinal dystrophies which are an overlapping group of

genetic and clinical heterogeneous disorders (El-Asrag

et al. 2015). Retinitis pigmentosa is a heterogeneous

genetic disorder which is characterized by progressive

devolution of the retina, affecting 1 in 3000–8000 people

worldwide (Hamel 2006; Hartong et al. 2006); starting in

the mid-fringe and advances towards the macula lutea and

fovea. Symptoms include diminishing visual fields that

lead to Kalnienk vision, ultimately leading to legal blind-

ness or complete blindness (Hartong et al. 2006). Retinitis

pigmentosa is also depicted as rod-cone dystrophy because

of primarily degeneration of photoreceptor rods along with

secondary degeneration of cones; eventually causing

complete blindness. Photoreceptor rods are appeared to be

more affected than cones. The rod-cone sequences elabo-

rate why the night blindness is initially appeared in patients

and in later life patients suffer from visual disability in

periodic conditions (Hamel 2006). Diseased photoreceptors

face apoptosis (Marigo 2007), which is resulted in reducing

the thickness of the outer nuclear layer in the retina, and

retinal pigments with abnormal structural changes are

deposited in the fundus.

Clinical phenotypes may include, (1) abnormal absence

of a-waves and b-waves in electroretinogram results, (2)
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reduced field vision. Symptoms appear in early teenage but

severe visual impairment occurs by 40–50 years of age

(Hamel 2006). In a multicentre study, 999 patients (age 45

or older) were evaluated for visual acuity, carrying multi-

ple genetic subtypes of retinitis pigmentosa revealed that

69% patients had visual acuity of 20/70 or better, 52% of

20/40 or better, 25% of 20/200 or worse and 0.5% had no

light sensing in both eyes (Grover et al. 1999). Genetic

nature of retinitis pigmentosa is heterogeneous. In 1984,

after first reported linkage of retinitis pigmentosa locus to a

DNA marker on chromosome X (Bhattacharya et al. 1984),

currently mutation over 58 genes are known to cause

retinitis (Table 1).

In retinitis pigmentosa carriers, the nature of the disease

can be non-syndromic (limited to the eye), or it can appear

in syndromic nature. For example, in the case of syndromic

nature of the disorder, patients carrying Usher syndrome

express the combination of retinitis pigmentosa and hear-

ing impairment (Mathur and Yang 2015). Approximately

20–30% of patients carrying retinitis pigmentosa has an

association with the non-ocular disorder, and would be

categorized as carrying syndromic retinitis pigmentosa. For

an instant, missense mutations of the BBS2 gene cause

Bardet-Biedl syndrome (retinitis pigmentosa, obesity,

mental retardation and polydactyl) or non-syndromic

retinitis pigmentosa (Shevach et al. 2015). Non-syndromic

retinitis pigmentosa may be inherited as autosomal reces-

sive, autosomal dominant digenic, X-linked and even

mitochondrial patterns (Ferrari et al. 2011). Overall per-

centage prevalence of non-syndromic and syndromic

retinitis pigmentosa is shown in Table 2. The most

patronize types of syndromic retinitis pigmentosa are

Usher syndrome and Bardet-Biedl syndrome (Ferrari et al.

2011).

Genetic characterizations of retinitis pigments are

complicated, so authorized genotype–phenotype correla-

tion is impossible to define. In addition to numerosity of

variations, as a matter of fact, different disorders may be

caused by the different mutations in the same gene and

same mutations can cause inter-familial and intra-familial

phenotypic variability. For example, the vast majority of

rhodopsin mutations depict a classical autosomal dominant

pattern of inheritance, leading to retinitis pigmentosa.

However, low numbers of mutations depict autosomal

recessive patterns of inheritance (Berger et al. 2010).

Likewise, major X-linked recessive retinitis pigmentosa

gene—RPGR—is linked with the mutations in male

patients and no phenotypic male-to-male characteristics

have ever been reported to transmit. The current review

focuses on the genesis on the retinitis pigmentosa and how

mutations lead to pathophysiological effects. For the

accurate outcomes, mutations frequency of the genes will

be evaluated that are associated with retinitis pigmentosa

and how these mutations lead to retinal degradation; ulti-

mately inducing retinitis pigmentosa.

Visual phototransduction

To better understand how the mutations in genes associated

with retinitis pigmentosa influence the functions of pro-

teins, the molecular basis of the visual phototransduction is

needed to be understood. Visual phototransduction is a

biological process through which light signals are con-

verted into electrical signals in the light-sensitive cells(rod

and cone photoreceptors) in the retina of the eye. The

photoreceptors cells are the polarized type of neurons in the

retina that is capable of phototransduction. Photoreceptors

cells consist of a cell body, an inner segment, an outer

segment and synaptic region. Inner segment is connected to

the outer segment via cilium. The molecular machinery

Table 1 Genes associated with retinitis pigmentosa (adapted from;

Retnet)

Disease category Genes and

loci (total

number)

No. of

identified

genes

Autosomal dominant retinitis pigmentosa 23 22

Autosomal recessive retinitis pigmentosa 37 36

X-linked retinitis pigmentosa 5 2

Table 2 Overall percentage prevalence of retinitis pigmentosa

Pattern of inheritance Type of disease Prevalence References

Systematic or syndromic retinitis pigmentosa Bardet-Biedl syndrome 5% Ferrari et al. (2011), Daiger et al. (2007),

Bowne et al. (2006), Schwartz et al. (2003)Usher syndrome 10%

Non-syndromic retinitis pigmentosa Autosomal recessive 15–20%

Autosomal dominant 20–25%

X-linked 10–15%

Digenic Very rare

Leber congenital amaurosis 4%
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resides within the inner segment that is involved in the

biosynthesis, membrane trafficking and the energy meta-

bolism system. Outer segment is comprised of membra-

nous discs circumvented by a plasma membrane. Over 90%

of the total protein in the outer segment is rhodopsin.

Vision begins via an apoprotein (opsins) and a chro-

mophore (11-cis, derived from vitamin A) attached to the

opsin by Schiff base bond. Isomerization of 11-cis retinal is

induced via light absorption by rhodopsin protein to all-

trans retinal, ultimately conformation of the opsin is

changed, hence vision is initiated. In photoreceptor cells,

all-trans retinal that is released from opsin is reduced to all-

trans retinol and then moved to the pigmented layer of the

retina. For the continuity of vision, in retinal pigment

epithelium the 11-cis retinal is produced again from all-

trans-retinol. This process is accomplished by 65 kDa

isomerohydrolase expressed in retinal pigment epithelium

known as RPE65 (Daiger et al. 2007; Redmond et al.

1998). Rhodopsin acts and triggers its GTP-binding pro-

tein, transducin, and canonical second-messenger signaling

pathway is initiated with help of heterotetrameric phos-

phodiesterase 6 complexes.

Clinical description of retinitis pigmentosa

Retinitis pigmentosa develops over multiple decades; long

lasting disease. Even so in extreme cases rapid develop-

ment has also been shown. Retinitis pigmentosa can be

handily classified into three stages; (1) the early stage, (2)

the middle stage, and (3) the end stage.

Early stage

A major symptom of early stage retinitis pigmentosa is

night blindness; may be appeared at different stages of life;

from the first years of age, or during the second decade of

life or even later. Patients carrying mild night blindness

often ignore it, and it appears in teen ages, in dim light. At

this stage, defects like peripheral visual field appear in dim

light, but in daylights patients spent normal life and

intensity of these defects are minimal. At the early stage

of retinitis pigmentosa it is difficult to diagnose, especially

when any kind of familial history is not available. Clinical

examination of the fundus may appear normal (Fig. 1a);

the optic disc is normal, no bone-spicule shaped pigment

deposits are present, retinal arterioles fading is at a modest

level, and color vision is normal. In the visual field tests

under scotopic conditions, scotomas are revealed, but this

test is usually carried out in mesopic conditions. Elec-

troretinogram is a key test to better understand the pre-

vailing conditions. Mostly, low amplitude b-waves are

shown in results that dominate in scotopic conditions.

However, if the retina partially defects, electroretinogram

may appear normal.

Middle stage

Patients become cognizant of the loss of peripheral visual

field in daylight conditions; patients miss hands in

handshaking, during drive they cannot see side-coming

cars. Night blindness is evident; with troubles to drive

during night, walking at evening or in dark staircases.

Fig. 1 a Early stage fundus of patients carrying retinitis pigmentosa.

b Mid stage fundus of patients carrying retinitis pigmentosa. c End

stage fundus of patients carrying retinitis pigmentosa
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Dyschromatopsia to very light colors (yellow and blue

hues) is present. Photophobic conditions appear, particu-

larly in diffuse lights, leads to reading problems because

of the narrow window between too bright light and

insufficient light, also because of lower visual acuity.

Clinical examination of fundus discloses the retinal atro-

phy along with bone-spicule shaped pigments in the mid-

periphery (Fig. 1b). The optic disc is fairly pale and

retinal vessels narrowing are apparent. In scotopic con-

ditions electroretinogram is commonly unrecordable, and

at 30 Hz flickers, bright light cone responses are hypo

voluted.

End stage

Without external control, patients cannot move from one

place to other, because of peripheral vision loss. Reading

is difficult without magnifying glasses (reading become

impossible when central visual field vaporizes), and

photophobia is intense. Clinical examination of the fundus

(Fig. 1c) reveals the macular area with widespread pig-

ment deposits. The optic disc has impressible achromasia

and blood vessels are thin. Electroretinogram is

unrecordable.

Genetic characterization of retinitis pigmentosa

Non-syndromic retinitis pigmentosa

Autosomal dominant retinitis pigmentosa

So far mutations in 24 different genes have been associated

with autosomal dominant retinitis pigmentosa (RetNet

2015) but only a few genes account for a relevant per-

centage of the retinitis pigmentosa cases, these include,

RHO (26.5%), RPRH2 (5-9%), PRPF31 (8%) and RP1 (3-

5%) (Ferrari et al. 2011). Table 3 shows the genes that are

associated with autosomal dominant retinitis pigmentosa.

PRPF31 (Pre-mRNA processing factor 31) Mutation in

PRPF31 (Pre-mRNA splicing factor of 61 kDa) is cur-

rently proposed to play a vital role in autosomal dominant

retinitis pigmentosa, inducing 1–8% cases of autosomal

dominant retinitis pigmentosa (Audo et al. 2010a; Ven-

turini et al. 2012).

Apparently PRPF31 is one of the three pre-mRNA

splicing factors inducing autosomal dominant retinitis

pigmentosa, two other factors are PRPF3 (1% of all cases)

and PRPF8 (3% of all cases). One of the unique charac-

teristics of mutations in PRPF31 is the incomplete pene-

trance. Mode of inheritance may be complicated to

determine if symptomless carriers have affected parents

and children, because of that genetic counseling of family

is hindered. Symptomatic patients have been reported to

experience night blindness and loss of visual field in

teenage, and are generally reported as blind, when they are

in the 30 s. Comparison of haplotype analysis of asymp-

tomatic and symptomatic patients reveals that both types

inherit different wild-type allele. Wild-type allele with a

high level of expression may adjust for the nonfunctional

mutated allele, but wild-type allele with low expression is

unable to reach the activity threshold level of required

photoreceptor-specific PRPF31 (Waseem et al. 2007;

Vithana et al. 2003).

RP1 (retinitis pigmentosa 1) By positional cloning RP1

gene was first time reported by linkage testing in large

autosomal dominant retinitis pigmentosa family south-

eastern Kentucky. Mutations in RP1 gene induce both

dominant and recessive types of retinitis pigmentosa

(Blanton et al. 1991; Field et al. 1982). 240-kD retinal

photoreceptor-specific protein is encoded by RP1 gene and

the expression of RP1 in very prominent. Clinical diagnosis

of patients carrying RP1 mutated gene shows reduced

visual field diameters. Generally genetic disorders are

thought to be caused by environmental factors, allelic

heterogeneity and genetic variations, but for RP1 disorders,

genetic variants are thought to important because of the

severity of disorder variety reveals the patients with the

same primary mutation.

RHO (rhodopsin) The first component of visual trans-

duction pathway is rhodopsin and when the light is

absorbed by the rod cell of the retina, it is activated

(Murray et al. 2009). With more than 100 mutations,

approximately 30–40% cases of autosomal dominant

retinitis pigmentosa are induced due to mutations in RHO

gene. Autosomal recessive retinitis pigmentosa and

autosomal dominant congenital night blindness can also

be induced by the mutations in RHO gene. Murray and

colleagues reported the autosomal dominant retinitis

pigmentosa case resulted from RHO gene mutation,

which nominated a protein with no 6th and 7th trans-

membrane, including the 11-cis retinal binding site

(Rosenfeld et al. 1992). In a mouse model experiment

carrying dominant retinitis pigmentosa, improved retinal

function was achieved, following subretinal administra-

tion of recombinant are non-associated virus vectors

containing RNAi-based suppressors (Chadderton et al.

2009). Latterly, restoration of visual function was

achieved in P23H transgenic rats following subretinal

administration of recombinant are non-associated virus

vectors containing Bip/Grp78 gene (Gorbatyuk et al.

2010). In spite of all knowledge in autosomal dominant

retinitis pigmentosa induced by the RHO gene mutation,
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Table 3 Genes associated with autosomal dominant retinitis pigmentosa (adapted from; GeneCards, Retnet and OMIM)

Identified

gene

Chromosomal

location

Function of gene Other phenotypes References

SPP2 2q37.1 It could coordinate an aspect of bone

turnover

None Liu et al. (2015)

OR2W3 1q44 Initiate a neuronal response that

triggers the perception of a smell

None Ma et al. (2015)

HK1 10q22.1 Helps in glycolysis and

gluconeogenesis, energy pathway

Excessive nonspherocytic

hemolytic anemia,

recessive hereditary

neuropathy (Russe)

Sullivan et al. (2014), Wang et al. (2014)

BEST1 11q12.3 Provides instructions for making

Bestrophin

Recessive retinitis

Pigmentosa

Burgess et al. (2008), Davidson et al. (2009)

CA4 17q23.2 Involves in respiration, calcification,

acid–base balance

None Kohn et al. (2008), Alvarez et al. (2007)

CRX 19q13.32 Maintain normal rod and cone

function

Dominant Leber

congenital amaurosis

Menotti-Raymond et al. (2010)

TOPORS 9p21.1 It has the ability to interact with the

tumor suppressor protein P53

None Chakarova et al. (2007), (2011)

FSCN2 17q25.3 Acts as an actin bundling protein None Zhang et al. (2007a), Wada et al.

(2001, 2003)

GUCA1B 6p21.1 Stimulates guanylyl cyclase 1 and

guanylyl cyclase 2

Dominant macular

dystrophy

Sato et al. (2005), Payne et al. (1999)

IMPDH1 7q32.1 Catalyzes the conversion of inosine 50-
phosphate (IMP) to xanthosine 50-
phosphate

Dominant Leber

congenital amaurosis

Mortimer et al. (2008), Mortimer and

Hedstrom (2005)

NRL 14q11.2 Transcription factor which regulates

the expression of RHO and PDE6B

genes

Autosomal recessive

retinitis pigmentosa

Mears et al. (2001), Bessant et al. (1999)

NR2E3 15q23 Rod development and repressor of

cone development

Recessive retinitis

pigmentosa

Escher et al. (2009), Coppieters et al. (2007),

Gire et al. (2007)

SEMA4A 1q22 Cell surface receptor Dominant cone-rod

dystrophy

Abid et al. (2006), Rice et al. (2004),

Kumanogoh et al. (2002)

RHO 3q22.1 Required for photoreceptor cell

viability after birth

Recessive retinitis

pigmentosa

Dryja et al. (1993), Rosenfeld et al. 1992),

Dryja et al. (1991)

PRPH2 6p21.1 Essential for disk morphogenesis Digenic forms with

ROM1

Boon et al. (2009), Chang et al. (2002), Ali

et al. 2000)

RPE65 1p31.2 Roles in the production of 11-cis

retinal and in visual pigment

regeneration

None Acland et al. (2001), Lotery et al. (2000)

PRPF8 17p13.3 Functions as a scaffold that mediates

the ordered assembly of

spliceosomal proteins and snRNAs

None McKie et al. (2001), Kojis et al. (1996),

Goliath et al. (1995)

ROM1 11q12.3 Essential for disk morphogenesis Digenic retinitis

pigmentosa with

PRPH2

Yang et al. (2008), Zhang et al. (2007b)

PRPF31 19q13.42 Involved in pre-mRNA splicing None Venturini et al. (2012), Sullivan et al. (2006b)

KLHL7 7p15.3 mediates’Lys-48’-linked

ubiquitination

None Friedman et al. (2009)

RP1 8q12.1 Required for the differentiation of

photoreceptor cells

Recessive retinitis

pigmentosa

Avila-Fernandez et al. (2012), Riazuddin

et al. (2005)

PRPF4 9q32 Participates in pre-mRNA splicing None Chen et al. (2014)

PRPF3 1q21.2 Participates in pre-mRNA splicing None Chakarova et al. (2002), Heng et al. (1998)

RDH12 14q24.1 Key enzyme in the formation of

11-cis-retinal from 11-cis-retinol

during regeneration of the cone

visual pigments

Recessive leber

congenital amaurosis

Fingert et al. (2008), Perrault et al. (2004),

Janecke et al. (2004)
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therapeutical approaches did not proceed at the same

pace.

PRPH2 (Peripherin 2) The PRPH2 (Peripherin 2) gene,

once recognized as RDS (retinal degeneration slow) gene

containing 3 exons and encoded 346 amino acid protein

(39-kDa integral membrane glycoprotein). The protein is

reported at the outer segment disc of cone and rod pho-

toreceptor, containing one intradiscal domain (D2) and four

transmembrane domains (known as M1–M4). The protein

in combination with another protein (ROM1) forms homo-

tetrameric and heterotetrameric complexes and also forms

a homo-oligomeric structure with itself (Loewen et al.

2001). In 1991, PRPH2 mutations inducing retinitis pig-

mentosa were first time reported and cause about 5-9% of

autosomal dominant retinitis pigmentosa cases. Mutation in

PRPH2 gene and ROM1 gene has been observed to cause

digenic retinitis pigmentosa (Dryja et al. 1997).

Autosomal recessive retinitis pigmentosa

For autosomal recessive retinitis pigmentosa, over 40 genes

have been mapped (Table 4) and most of the genes are rare

and cause 1% of fewer cases. Some genes like RP25,

PDE6A, RPE65, and PDE6B have higher prevalence per-

centage up to 2–5% of all cases.

Rp25 Mutations that are rare to another geographical

region can be the common reason to cause autosomal

recessive retinitis pigmentosa in particular populations, for

example the RP25 locus has been reported for causing

10-20% of autosomal recessive retinitis pigmentosa cases

in Spanish populations (Barragán et al. 2008).

PDE6 (PDE6A, PDE6B, PDE6G) One a, b and two c
subunits are important parts of the PDE6 complex; which

encode a protein that has a vital function in rod photore-

ceptor visual phototransduction. Intracellular cGMP level

is maintained by the complex by the hydrolyzing process of

cGMP, due to G protein light activation(Tsang et al. 1998).

In retinitis pigmentosa case, processes are unknown that

induce rod photoreceptor death, but it is thought that low

PDE6 activity may lead to rode-cone devolution. For

proper photoreceptor function every subunit of PDE6

complex is necessary, in fact for autosomal recessive

retinitis pigmentosa, mutations in PDE6A and PDE6B

genes are second most familiar cause for inducing disease.

Visual loss is the main risk for heterozygous carriers,

carrying mutations in PDE6 gene, when PDE6 is inhibited

using drugs like revatio, cialis, or levitra (Tsang et al.

2008). Latterly PDE6G gene is reported with a mutation,

causing autosomal recessive retinitis pigmentosa (early

onset) (Dvir et al. 2010).

Rpe65 RPE65 (an enzyme by which all-trans-retinyl

esters in hydrolyzed into 11-cis-retinol) is vital for the re-

formation of the visual pigments essential for rod-mediated

and cone-mediated vision and it is expressed in the pig-

mented layer of the retina. RPE65 gene has been reported

for approximately 60 mutations and causing recessive

retinitis pigmentosa (2%) and leber congenital amaurosis

(16%) (Cai et al. 2009). In three pre-clinical experiments,

patients with leber congenital amaurosis were injected with

adeno-associated viral vectors comprising the human

RPE65 cDNA. Modest level improvements were achieved

in visual acuity (Bainbridge et al. 2008; Cideciyan et al.

2008; Maguire et al. 2008).

X-linked retinitis pigmentosa

X-linked retinitis pigmentosa patients exhibit severe phe-

notypes in early phases of disorder development and

account approximately 10–15% of all retinitis pigmentosa

cases. In some cases, deafness, abnormal sperm develop-

ment and defective respiratory tract were noticed (Veltel

and Wittinghofer 2009). Only two gene loci (RP2 and RP3)

have been recognized so far out of six mapped gene loci

(RP2, RP6, RP23, RP24, RP34 and RPGR) on X-chro-

mosome (Table 5). More than 70% patients carrying

X-linked retinitis pigmentosa have mutations in RP3 gene,

and RP3 gene product is located on an external segment of

rod photoreceptor (Vervoort et al. 2000). Approximately

10–15% patients carry X-linked retinitis pigmentosa due to

mutations in RP2 gene (Veltel and Wittinghofer 2009).

Table 3 continued

Identified

gene

Chromosomal

location

Function of gene Other phenotypes References

PRPF6 20q13.33 Participates in pre-mRNA splicing None Tanackovic et al. (2011)

RP9 7p14.3 Roles in B-cell proliferation in

association with PIM1

None Sullivan et al. (2006a), Maita et al. (2004),

Keen et al. (2002)

SNRNP200 2q11.2 Involves in spliceosome assembly,

activation and disassembly

None Benaglio et al. (2011), Li et al. (2010b), Zhao

et al. (2009)
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Table 4 Genes associated with autosomal recessive retinitis pigmentosa (adapted from; GeneCards, Retnet and OMIM)

Identified

gene

Gene function Chromosomal

location

Phenotypes other than

recessive retinitis

pigmentosa

References

ADIPOR1 Receptor for ADIPOQ, required for normal

glucose and fat homeostasis

1q32.1 Bardet-Biedl like Xu et al. (2016a)

POMGNT1 Participates in O-mannosyl glycosylation 1p34.1 None Xu et al. (2016b)

ZNF408 May be involved in transcriptional regulation 11p11.2 Dominant familial

exudative

vitreoretinopathy

Avila-Fernandez et al.

(2015), Collin et al.

(2013)

NEUROD1 Neurogenesis regulator D1, acts as a

transcriptional activator

2q31.3 None Wang et al. (2015)

IFT172 Necessary for cilia maintenance and

formation. Plays an indirect role in

hedgehog signaling

2p33.3 Recessive Bardet-Biedl

syndrome

Bujakowska et al. (2015)

IFT140 Component of the IFT complex A, important

role in proper development and function of

ciliated cells and maintenance of

ciliogenesis and cilia

16p13.3 Recessive Mainzer-

Saldino syndrome,

recessive Leber

congenital amaurosis

Xu et al. (2015b), Schmidts

et al. (2013)

HGSNAT Participates in glycosaminoglycan

degradation and glycan structures

degradation

8p11.21 Recessive

mucopolysaccharidosis

Haer-Wigman et al. (2015)

RDH11 Shows an oxidoreductive catalytic activity

for retinoids, involves in the metabolism of

short-chain aldehydes

14q24.1 None Xie et al. (2014)

DHX38 Embryogenesis, spermatogenesis, and

cellular growth and division

16q22.2 Early onset with macular

coloboma

Ajmal et al. (2014)

KIZ Required for stabilizing the expanded

pericentriolar material around the centriole

20p11.23 None El Shamieh et al. (2014)

BEST1 Anion channel 11q12.3 Dominant retinitis

Pigmentosa

Burgess et al. (2008),

Davidson et al. (2009)

ABCA4 Retinal metabolism 1p22.1 Recessive macular

dystrophy

Maugeri et al. (2000),

Zhang et al. (1999)

ARL2BP Role in the nuclear translocation 16p13.3 None Davidson et al. (2013)

C2orf71 Might have an important role in developing

of normal vision

2p23.2 None Downs et al. (2013),

Nishimura et al. (2010)

C8Oorf37 Unknown 8q22.1 None van Huet et al. (2013),

Estrada-Cuzcano et al.

(2012)

CERKL Tissue maintenance and development 2q31.3 None Aleman et al. (2009), Tuson

et al. (2004

CLRN1 Conjugation 3q25.1 None Khan et al. (2011), Adato

et al. (2002)

CNGA1 Phototransduction 4p12 None Dryja et al. (1995), Griffin

et al. (1993

CNGB1 Phototransduction 16q13 None Bareil et al. (2001), Ardell

et al. (2000)

CRB1 Tissue maintenance and development 1q31.3 Recessive leber

congenital amaurosis

McKay et al. (2005

DHDDS Catalysis 1p36.11 None Zuchner et al. (2011),

Zelinger et al. (2011)

DHX38 ATP-binding RNA helicase involves in pre-

mRNA splicing

16q22.2 None Ajmal et al. (2014)

EMC1 Unknown 1p36.13 None Abu-Safieh et al. (2013)

EYS Protein of the extracellular matrix 6q12 Unknown Audo et al. (2010b),

Barragán et al. (2008)

3 Biotech (2017) 7:251 Page 7 of 20 251

123



Table 4 continued

Identified

gene

Gene function Chromosomal

location

Phenotypes other than

recessive retinitis

pigmentosa

References

FAM161A Unknown 2p15 Unknown Langmann et al. (2010),

Bandah-Rozenfeld et al.

(2010b)

GPR125 Orphan receptor 4p15.2 None Abu-Safieh et al. (2013)

IDH3B Involved in Krebs cycle 20p13 Unknown Hartong et al. 2008

IMPG2 Component of the retinal intercellular matrix 3q12.3 Unknown Bandah-Rozenfeld et al.

(2010a)

KIAA1549 Unknown 7q34 None Abu-Safieh et al. (2013)

KIZ Unknown 20p11.23 None Tuz et al. (2014), Shaheen

et al. (2014), Akizu et al.

(2014)

LRAT Retinal metabolism 4q32.1 Recessive leber

congenital amaurosis

Xiao et al. (2011

MAK An important function in spermatogenesis 6p24.2 None Stone et al. (2011)

MERTK Transmembrane protein 2q13 None Mackay et al. (2010)

MVK Regulatory site in cholesterol biosynthetic

pathway

12q24.11 None Siemiatkowska et al. (2013)

NEK2 Involves in control of centrosome separation

and bipolar spindle formation

1q32.3 None Nishiguchi et al. (2013)

NR2E3 Transcription factor 15q23 Dominant retinitis

pigmentosa, Recessive

enhanced S-cone

syndrome

Escher et al. (2009),

Coppieters et al. (2007),

Gire et al. (2007)

NRL Tissue maintenance and development 14q11.2 Dominant retinitis

pigmentosa

Mears et al. (2001), Bessant

et al. (1999)

PDE6A Phototransduction 5q33.1 None Dryja et al. (1999)

PDE6B Phototransduction 4p16.3 Dominant congenital

stationary night

blindness

Chang et al. (2006)

PDE6G Phototransduction 17q25.3 None Dvir et al. (2010)

PRCD Unknown 17q25.1 Unknown Nevet et al. (2010)

PROM1 Cellular structure 4p15.32 Recessive retinitis

pigmentosa with

macular degeneration

Yang et al. (2008)

RBP3 Retinal metabolism 10q11.22 Unknown Parker et al. (2009)

RGR Retinal metabolism 10q23.1 Dominant choroidal

sclerosis

Morimura et al. (1999)

RHO Phototransduction 3q22.1 Dominant retinitis

pigmentosa

Dryja et al. (1993),

Rosenfeld et al. (1992),

Dryja et al. (1991)

RLBP1 Retinal metabolism 15q26.1 Recessive Bothnia

dystrophy

Eichers et al. (2002

RP1 Tissue maintenance and development 8q12.1 Dominant retinitis

pigmentosa

Avila-Fernandez et al.

(2012), Riazuddin et al.

(2005), Liu et al. (2002)

RPE65 Retinal metabolism 1p31.2 Recessive leber

congenital amaurosis

Acland et al. (2001), Lotery

et al. (2000)

SAG Phototransduction 2q37.1 Recessive Oguchi disease Nakazawa et al. (1998)

SLC7A14 3q26.2 None Jin et al. (2014)

SPATA7 Unknown 14q31.3 None Wang et al. (2009)

TTC8 Cellular structure 14q32.11 Recessive Bardet-Biedl

syndrome

Riazuddin et al. (2010)
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Syndromic retinitis pigmentosa

Retinitis pigmentosa is generally an isolated problem; the

only eye is affected, but in other various rare cases retinitis

pigmentosa is also linked to other disorders. Examples may

include Usher syndrome, refsum syndrome, Bardet-Biedl

syndrome.

Usher syndrome

Usher syndrome is an autosomal recessive disorder, in

which retinitis pigmentosa, hearing impairment and

sometimes vestibular dysfunction are associated. Deaf-

blindness is the most common disorder due to this

syndrome. Prevalence is 1:12,000–1:30,000 individuals in

different populations. 10–30% of autosomal recessive

retinitis pigmentosa cases are caused due to usher syn-

drome (Millan et al. 2011). In clinical manners, usher

syndrome is separated into three types, (1) usher type I

(severe form), (2) usher type II (moderate to severe

form) and (3) usher type III. To date 12 genes have been

reported for usher syndrome; 7 genes for usher type I, 3

genes for usher type II and 2 genes for usher type III

(Table 6).

Bardet-Biedl syndrome

Bardet-Biedl syndrome is defined a recessive inherited

disorder with symptoms of obesity (72%), learning diffi-

culties, abnormalities of the fingers/toes, kidney disease,

rod-cone dystrophy ([90%) and renal abnormalities. Bar-

det-Biedl syndrome affects 1: 120,000 Caucasians, but high

prevalence (1:13,000) has been reported in a population of

north Atlantic (Moore et al. 2005) and within the Bedouins

(1:13500-1:16900) (Teebi 1994). Children carry Bardet-

Biedl syndrome has a poor visual prognosis. Night blind-

ness is usually apparent by age 7 to 8 years (Heon et al.

2005; Azari et al. 2006). To date, 21 genes have been

associated with Bardet-Biedl syndrome (Table 7).

Whole-exome sequencing as an effective tool
in clinical and symptomatic genetics

Advancement in DNA sequencing has become the most

efficient resources for basic biological and clinical

research, and has been applied in various fields such as

biological systematics, diagnostics, biotechnology, par-

ental testing and forensic identifications. The combination

Table 5 Genes associated with X-linked retinitis pigmentosa (GeneCards, Retnet and OMIM)

Identified

gene

Gene Function Chromosomal

location

Phenotypes References

OFD1, RP23 Involves in biogenesis of the cilium Xp22.2 None Webb et al. (2012), Coene et al.

(2009)

RP2 Involved in beta-tubulin folding Xp11.23 None Hardcastle et al. (1999), Mears

et al. (1999)

RPGR Intraflagellar transport Xp11.4 X-linked cone dystrophy,

X-linked congenital

stationary night blindness

Branham et al. (2012), Pelletier

et al. (2007)

RP6 Unknown Xp21.3-p21.2 None Breuer et al. (2000), Musarella

et al. (1990)

RP24 Unknown Xq26-q27 None Gieser et al. (1998)

RP34 Tissue development and maintenance Xq28-qter None Melamud et al. (2006)

Table 4 continued

Identified

gene

Gene function Chromosomal

location

Phenotypes other than

recessive retinitis

pigmentosa

References

TULP1 Tissue maintenance and development 6p21.31 Recessive leber

congenital amaurosis

Hanein et al. (2004)

USH2A Cellular structure 1q41 Recessive Usher

syndrome

Seyedahmadi et al. (2004),

Bhattacharya et al.

(2002)

ZNF513 Expression factor 2p23.3 None Naz et al. (2010), Li et al.

(2010a)
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of chain termination sequence (Mullis et al. 1992) and

polymerase chain reaction (Sanger et al. 1977) established

many of the prominent events such as the completion of the

Human Genome Project that provided barely ample refer-

ences to study the genetic modifications in associated

phenotypes (Venter 2003; Sachidanandam et al. 2001).

Recently new technologies for whole-genome sequencing

and whole-exome sequencing replaced the traditional

methods with low-cost sequencing cost per exome/genome.

These advanced next-generation sequencing technologies,

revolutionized the clinical structure to improve human

health, although there are many problems to be addressed

like, the high cost of the procedure, user-friendly software

to analysis raw genetics and sequence data and the ethical

issues that are related to gathering genetic data.

Role of whole-exome sequencing in human genetic

disorders

According to OMIM Statistics presently, over 6000 pre-

sumptively single gene disorders have been reported, but

the molecular basis of nearly two-third of disorders has not

been described. Finding phenotypic variants and causative

genes help in understanding the pathogenic mechanism of

the prevailing disorder. In patients or small families with

newly identified variants, genetic diagnosis is difficult to

conceivable just on the basis of variant finding. It is much

difficult to find more patients if the disorder is very rare.

Recently reported variants are needed to validate for hav-

ing pathologic effect with the help of functional experi-

ments; biochemical confirmatory experiments are allowed

to execute if the mutated gene has delimitated function in a

well-known pathway associated with the disease. Novel

genes identification causing rare single gene disorders is

important to apprehend the biological pathways causing

disorder as well as therapeutic management. Recent studies

emphases that whole-exome sequencing is a powerful

technique to find out casual genes responsible for Men-

delian disorders (Rabbani et al. 2012); Fig. 2 shows the

combination of exome sequencing and filtering strategy is

helpful to distinguish the fundamental gene causing Men-

delian disorders.

Heterogeneous single gene phenotypes

There are many genetically heterogeneous disorders like

retinitis pigmentosa, intellectual disability, hereditary

hearing impairment, and autistic spectrum disorder.

Table 6 Genes identified for Usher syndrome (adapted from; GeneCards, Retnet and OMIM)

Disease Identified

gene

Chromosomal

location

Gene Function References

Usher type I MYO7A 11q13.5 An important role in the renewal of the outer

photoreceptor disks, Mediates

mechanotransduction in cochlear hair cells

Gibbs et al. (2003), (2004)

CDH23 10q22.1 Maintain a proper system of the stereocilia bundle of

hair cells in the cochlea, Mediates

mechanotransduction in cochlear hair cells

Zheng et al. (2005), Astuto

et al. (2002)

PCDH15 10q21.1 Maintain normal retinal and cochlear function Ahmed et al. (2001), (2003)

USH1C 11p15.1 Required for normal hearing, Mediates

mechanotransduction in cochlear hair cells

Ebermann et al. (2007a),

Ouyang et al. (2002)

USH1G 17q25.1 Develop and maintain cochlear hair cell bundles Weil et al. (2003), Kikkawa

et al. (2003)

CIB2 15q25.1 Important for proper photoreceptor cell maintenance

and function

Riazuddin et al. (2012)

CLRN1 3q25.1 Role in the excitatory ribbon that conjugates hair

cells and cochlear ganglion cells

Khan et al. (2011), Adato et al.

(2002)

Usher type II USH2A 1q41 Involves in hearing and vision Seyedahmadi et al. (2004),

Bhattacharya et al. (2002

GPR98 5q14.3 Receptor may have a crucial role in the development

of the central nervous system

Hilgert et al. (2009), Ebermann

et al. (2009)

DFNB31 9q32 Essential for elongation and sustainment of inner

and outer hair cells in the organ of Corti

Ebermann et al. (2007b),

Mburu et al. (2003)

Usher type III HARS 5q31.3 Responsible for the synthesis of histidyl-transfer

RNA

Puffenberger et al. (2012)

ABHD12 2p11.21 May regulate endocannabinoid signaling pathway Eisenberger et al. (2012),

Fiskerstrand et al. (2010)
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Whole-exome sequencing has successfully resulted to

distinguish various genes causing retinal disorders. Table 8

shows the role of whole-exome sequencing in identifying

de novo genes in retinal disorders.

Future concerns

In near future it is hoped that, new strategies will be

introduced for molecular diagnosis of retinitis pigmentosa

for clinical practices, and disease inducing variations in

genes will be discovered. But for this hope to come true,

specific conditions are needed to meet; (1) All disease-

causing variations in genes should possibly be reported, (2)

techniques for molecular diagnosis should be low-cost,

authentic, quick and widely available, (3) clinical should

have the ability to understand the molecular information

provided by a molecular diagnosis of disease. Currently

reliable technologies are available and new technologies

are rising that enhance the chances to report new mutations

in individuals. For known mutations detection, currently

array-based diagnostic technology is available for several

retinal diseases. Next-generation sequencing is allowing

the researchers to identify disease-causing variants and to

Table 7 Genes identified for autosomal recessive Bardet-Biedl syndrome(adapted from; GeneCards, Retnet and OMIM)

Identified

gene

Chromosomal

location

Gene function References

ARL6 3q11.2 Requires for proper retinal function and organization Chiang et al. (2004)

BBIP1 10q25.2 Regulates cytoplasmic microtubule constancy and acetylation Scheidecker et al. (2014)

BBS1 11q13 BBSome requires for ciliogenesis but unnecessary for centriolar satellite

function

Mykytyn et al. (2002)

BBS2 16q12.2 Katsanis et al. (2001)

BBS4 15q24.1 Requires for microtubule anchoring at the centrosome Katsanis et al. (2001)

BBS5 2q31.1 BBSome requires for ciliogenesis but unnecessary for centriolar satellite

function

Li et al. (2004)

BBS7 4q27 Badano et al. (2003)

BBS9 7p14.3 Nishimura et al. (2005)

BBS10 12q21.2 Helps in folding of proteins ATP hydrolysis White et al. (2006)

BBS12 4q27 Stoetzel et al. (2007)

CEP290 12q21.32 Triggers ATF4-mediated transcription Leitch et al. (2008)

IFT27 22q12.3 Possesses GTPase activity Aldahmesh et al. (2014)

INPP5E 9q34.3 Particular for lipid substrates Bielas et al. (2009)

KCNJ13 2q37.1 Lindstrand et al. (2014)

LZTFL1 3p21.31 May function as a tumor suppressor Marion et al. (2012)

MKKS 20p12.2 Helps in folding of proteins ATP hydrolysis Katsanis et al. (2001)

MKS1 17q22 Requires for cell branching morphology Leitch et al. (2008)

NPHP1 2q13 Control epithelial cell polarity in combination with BCAR1 Lindstrand et al. (2014),

Mollet et al. (2002)

SDCCAG8 1q43 Establish cell polarity and epithelial lumen formation Chaki et al. (2012)

TRIM32 9q33.1 May mediate biological activity of the HIV-1 Chiang et al. (2006)

TTC8 14q32.11 Requires for ciliogenesis but unnecessary for centriolar satellite function Riazuddin et al. (2010)

Fig. 2 Filtering methodologies and exome sequencing
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report novel genes for the specific disease. The latest

techniques have recently been utilized to detect genes and

variants causing autosomal dominant retinitis pigmentosa

against the conventional methods (Daiger et al. 2010;

Bowne et al. 2011).
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S, Delmaghani S, Adato A, Nadifi S, Zina ZB (2003) Usher

syndrome type IG (USH1G) is caused by mutations in the gene

encoding SANS, a protein that associates with the USH1C

protein, harmonin. Hum Mol Genet 12(5):463–471

White DRA, Ganesh A, Nishimura D, Rattenberry E, Ahmed S, Smith

UM, Pasha S, Raeburn S, Trembath RC, Rajab A (2006)

Autozygosity mapping of Bardet-Biedl syndrome to 12q21. 2

and confirmation of FLJ23560 as BBS10. Eur J Hum Genet

15(2):173–178

Xiao X, Mai G, Li S, Guo X, Zhang Q (2011) Identification of

CYP4V2 mutation in 21 families and overview of mutation

spectrum in Bietti crystalline corneoretinal dystrophy. Biochem

Biophys Res Commun 409(2):181–186

Xie YA, Lee W, Cai C, Gambin T, Nõupuu K, Sujirakul T, Ayuso C,
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