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Abstract Phytic acid is a main reservoir of phosphorous

(P) in plants and contributes to about 80% of the total P

in cereal seeds. However, it is well known to possess anti-

nutritional behavior. Because it has strong affinity to

chelate divalent ions e.g. calcium, magnesium, and

especially with iron and zinc. Therefore, it is extremely

poor as a dietary source of P. To enhance bio-availability

of micronutrients, an enzyme namely phytase is known to

hydrolyze phytic acid. Unfortunately, phytase is not pro-

duced in the stomach of monogastric animals and

humans. Thus, the presence of phytic acid in cereal foods

has become major concern about the deficiency of

essential micronutrients in developing countries. To

address this problem, various types of phytase have been

isolated, purified and characterized from different vari-

eties of cereal till date. Therefore, the present article

discusses about catalytic properties, gene regulation of

such cereal phytases and their importance in ensuring

food safety.
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Introduction

Phytase (main enzyme classes E.C.3.1.3.8, E.C. 3.1.2.26;

myo-inositol hexakisphosphate phosphohydrolases) initi-

ates the partial or complete hydrolytic removal of

orthophosphates from the phytate (myo-inositol

1,2,3,4,5,6-hexakisphosphate). Phytate is usually exploited

in commercial animal feeds and human food diet. Reddy

et al. (1982) reported that phytate constitutes about

65–90% of the total phosphorous content in plants. Phytate

is degraded by phytase enzyme into one molecule of

inositol and six molecules of inorganic phosphate (Fig. 1).

Monogastric animals have a negligible phytase activity in

their gastro-intestinal tract. Therefore, phytate passes lar-

gely undigested through the digestive system. To overcome

the loss of phytate P bio-available phosphate is added to

feed. According to an environmental perspective,

exploitation of cereal phytases is most common method

where undigested phytate P leads to run-off of phosphorous

and other divalent ions in aquatic ecosystem. It leads to the

phenomenon of eutrophication which has severe environ-

mental health risk. Furthermore, phytate is a strong

chelator of divalent cations and minerals such as Ca2?,

Fe2? and Zn2? (Lopez et al. 2002; Vats and Banerjee

2004), making them unavailable for the absorption in the

digestive system. Moreover, phytate is known to form

complexes with proteins under both acidic and alkaline pH

conditions. These interactions were found to affect the

proteins structure, thus reducing the enzymatic activity,

protein solubility and proteolytic digestibility (Kies et al.

2006; Yao et al. 2011). Moreover, phytase enzyme reacts

upon phytate complex; as a result inositol, phosphate and

other micronutrients get released as depicted in Fig. 1.

Supplemental microbial phytases in corn-soybean meal

diets for monogastric animals may reduce these problems
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and can improve the animal’s utilization of the phytate

phosphorous and reduce their faecal phosphorous excretion

by up to 50% (Leytem et al. 2008; Kim et al. 2010).

Although microbial phytases have been used in food pro-

cessing, but cereal phytases are thought to be better alter-

natives due to higher acceptance among consumers and

their assumed lower allergenic potential. Therefore, cereal

phytases have been mainly used as a feed supplement in

diets for swine, poultry and to some extent for fish.

Svanberg et al. (1993) observed a significant degradation of

phytate content in plant based food by the process of lactic

acid fermentation with a concomitant improvement of

micronutrient bio-availability. Furthermore, Oliver et al.

(2014) reported the importance of fermentation in the

whole grain bread to reduce the content of phytate. Both

Lactobacillus amylovorus and Lactobacillus plantarum

were observed to produce significant extracellular phytase

(Sreeramulu et al. 1996). Gunashree and Govindarajulu

(2015) explained the method of dephytinization in cereals

and pulses using phytase producing lactic acid bacteria.

The field trials and laboratory experiments have demon-

strated that 500–1000 units of phytase can replace 1 g of

inorganic phosphorous supplementation and reduce total P

excretion by 30–50% (Yi et al. 1996; Kemme et al. 1997).

Thus, phytase performs dual function; (a) conserve

expensive and non-renewable inorganic phosphorous

resources by reducing their use in animal feed; (b) pre-

vention of water pollution due to excessive manure phos-

phorous run-off. For these reasons, phytases are used

globally as a phosphate-mobilizing feed supplement in the

diets of swine and poultry (Ketaren et al. 1993). Recently,

the effect of cereal phytase enzyme was observed in the

intestinal microflora and gut morphology of broilers by

Kalantar et al. (2016). Phytases have potential to enhance

iron absorption from 0.6–23% to 5.5–42% in cereal meals

for daily physiological iron requirements (Nielsen et al.

2013). The problem summarized above have led to

increased interest in improved phytate P utilization from

cereal feed stuffs and on reducing anti-nutritional effect of

undigested phytate in the digestive tract. Five strategies

have been applied to resolve the discussed problems. (1)

Cereal grains can be soaked in water, germinated or cooked

whereby endogenous grain or exogenous phytase is acti-

vated (Egli et al. 2002; Marero et al. 1991; Svanberg et al.

1993). (2) Cereal crops can be genetically engineered to

enhance phytase production in their grains (Brinch-Peder-

sen et al. 2002). (3) Impairing phytate biosynthesis can be

useful in cereals such as wheat, barley, rice and maize

(Raboy 2009). (4) Pigs have been genetically modified to

produce heterologous phytases in their salivary glands

(Golovan et al. 2001). (5) Addition of microbial phytases to

feed and food (up to 2200 FTU/kg, where 1 FTU is the

activity of enzyme which releases one micro molar

orthophosphate from phytate per minute at pH 5.3) sig-

nificantly enhances the release of phosphate and minerals

from phytate (Kornegay 2001; Troesch et al. 2009). Cur-

rently, above discussed five approaches, four are com-

monly used and can be prove to the most adaptable solution

to enhance the bio-availability of micronutrients in the

intestine of monogastric animals. Use of cereal phytases

has been proved to be very successful in improving the

nutritional value of cereal based foods. Several review

articles in recent years have been published on microbial

phytases, still there are only few reports on cereal phytases.

So to fulfill this gap, in this review we attempted to

understand about cereal phytases and their importance.

Nutritional importance of phytate

Phytate, also known as phytin salt, is stored in the form of

phosphate, inositol and bounded micronutrients in the

intestine. The phytate is formed during maturation of cereal

seed and plays an important role in the constituent of cereal

derived foods (Table 1). Depending on the amount of dif-

ferent cereal foods in the diet and the grade of food pro-

cessing, the daily intake of phytate can be high i.e.

4500 mg (Reddy 2002). He reported that daily intake of

phytate was estimated to be 2000–2600 mg for vegetarian

Fig. 1 Schematic

representation of phytate

hydrolysis in catalytic reaction
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diet and other inhabitants of rural areas in developing

countries and 150–1400 mg for mixed diets. The phytate

works at a broad range of pH due to the presence of highly

negatively charged ions on six phosphate groups and show

very strong affinity for food components e.g. minerals,

proteins and other trace elements (Cheryan 1980; Koniet-

zny and Greiner 2003). This interaction does not have only

nutritional consequences, but also affects yield and quality

of food ingredients, such as starch and protein.

The presence of phytate in human food mainly affects

the uptake of mineral ions and also their absorption in the

body. As a result undigested phytate complex formed at

physiological pH and it is the major reason for poor min-

erals bio-availability. Besides, the small intestine of human

is not able to hydrolyze phytate due to the lacking of

phytase activity and the limited microbial population in

digestive tract.

Enzymatic dephosphorylation of phytate

during food processing

Several strategies have been adopted to reduce the

phytate content of the processed material. The given four

different methods are also effective to degrade the phy-

tate complex. The ability to dephosphorylate phytate

varies greatly among different cereal plants and micro-

bial species. It is due to the differences in their intrinsic

phytate-degrading activity and it also depends on the

properties of the enzyme such as protein solubility, pH,

temperature optima for phytate hydrolysis (Konietzny

and Greiner 2002).

Soaking

It is generally used as a pre-treatment to facilitate pro-

cessing of cereal grains. Soaking may be for less time i.e.

15–20 min. or for a long time, usually 15–20 h. Domesti-

cally, cereal grains are normally soaked in water at room

temperature for overnight. Because phytate is water soluble

and a major phytate reduction can be visualized by dis-

carding the soaked water. Furthermore, endogenous phy-

tases play an important role to reduce the content of

phytate. An optimum temperature and pH value have also

shown good impact on enzymatic phytate hydrolysis during

soaking (Greiner and Konietzny 1998; Fredlund et al.

1997). When soaking step is carried out at temperature of

45–65 �C and pH 5.0–6.0, which are very close to the

optimal conditions of phytate dephosphorylation. It has

been found that a significant content of phytate (35–100%)

was found to enzymatically hydrolyzed (Greiner and

Konietzny 1999).

Germination

It is used in cereals to increase the nutritional value and

particularly to degrade anti-nutrient factors, such as phytate

and protease inhibitors. Egli et al. (2002) and Eeckhout and

Paepe (1994) reported that some cereal crops have only

little intrinsic phytate hydrolysis capability. But during

germination of cereal grains, some authors revealed that

the activity of hydrolysis of phytate increased significantly

(Greiner et al. 1997, 2001; Greiner 2002; Vidal-Valverde

et al. 1998). Phytate is hydrolyzed during germination in

sequential order by the required activity of phytase and

phosphatases. To increase the activity of phytase enzyme,

cereal grains would have to germinate for longer time, i.e.

6–10 days of germination. Because long time period

reduces a significant level of phytate and it is generally

applied in households for domestic uses.

Cooking

Phytate is stable at high temperature, so required degra-

dation of phytate does not take place during cooking.

Therefore, significant phytate dephosphorylation during

cooking only takes place via two routes. (1) Discard the

cooking water; (2) An enzymatic hydrolysis of phytate due

to the activity of cereal phytases during early phase of

cooking (Greiner and Konietzny 1998). Cereal phytases are

inactivated at high temperature during prolonged heating.

Moreover, the use of cereal phytases with heat stability

Table 1 A different range of phytate content in cereal derived foods

(Source Greiner and Konietzny 2006)

Food Phytate (mg/g)

Cereal-based

Whole wheat bread 3.2–7.3

Unleavened wheat bread 10.6–3.2

Whole rye bread 1.9–4.3

Mixed flour bread (70% wheat, 30% rye) 0.4–1.1

Mixed flour bread (70% rye, 30% wheat) 0–0.4

Sourdough rye bread 0.1–0.3

Maize 9.8–21.3

Maize bread 4.3–8.2

Unleavened maize bread 12.2–19.2

Rice (polished cooked) 1.2–3.7

Wild rice (cooked) 12.7–21.6

Cornflakes 0.4–1.5

Pasta 0.7–9.1

Oat bran 2.1–7.3

Oat flakes 8.4–12.1

Oat porridge 6.9–10.2

French bread 0.2–0.4

Wild rice 12.7–21.6

3 Biotech (2017) 7:42 Page 3 of 7 42

123



could be the good alternative to improve phytate degra-

dation during cooking.

Addition of isolated cereal phytases

It is the best method to hydrolyze phytate content using

preformed enzymes in the raw material used for food pro-

cessing. Greiner and Konietzny (1999) and Konietzny et al.

(1995) demonstrated that supplemental phytase enzyme

during food processing were reducing phytate content from

cereal food products. It has been seen that the content of

phytate was reduced by the added amount of enzyme activ-

ity, but the added phytase has to be more active during food

processing or preparation. Both temperature and pH value

are the major factors to determine enzyme activity. Isolated

phytases should be of high phytate degrading capability even

at room temperature, acceptable heat resistance and high

activity over a broad pH range. To increase the nutritional

value of cereal grains, it is needed to enhance the level of

phytase by degrading phytic acid found in grains. But, there

is little information of cereal phytases onmolecular level yet.

Some authors reported cereal phytase gene and their regu-

lation to control the activity of phytase.

Cereal phytase gene

The different forms of cereal phytase gene can be classified

into three major groups; (1) PAPhy gene; (2) HAPhy gene;

(3) MINPhy gene. However, all classes are not capable of

utilizing phytate as a substrate. Each phytase gene has its

unique structural properties due to their distinct catalytic

properties which make them capable to utilize phytate as a

substrate in different environments. Cereal phytase belongs

to given three classes of gene and the present article

discusses the main features of these genes. Several authors

identified different isoforms of phytase gene which are

located on specific chromosome locus. Therefore, we

emphasized mainly to understand the function and regu-

lation of these phytase genes.

Purple acid phosphatase gene

PAPhys genes were reported in the plant kingdom with 25

putative genes characterized in Arabidopsis thaliana (Li

et al. 2002) and illustrated in Fig. 2. The data were

retrieved from gene bank to know the presence of different

cereal PAPhys gene. In wheat five coding DNA sequences

of PAPhys were clustered to form a contig and finally

cloned the gene to study the different isoforms of gene.

PAPhys were first reported in soybean and, furthermore,

about ten cereal PAPhys cDNA have been reported from

wheat (5), maize (1), barley (3) and rice (1) (Dionisio et al.

2011). Moreover, the cDNA was synthesized after the

isolation of mRNAs from germinating and developing

grains. Wheat and barley PAPhys transcripts can be

grouped as PAPhy_a and PAPhy_b on behalf of differences

found in their C-terminal amino acid. Expression analysis

showed that PAPhy_a genes were expressed during seed

development and PAPhy_b were expressed during seed

germination.

Some authors also amplified the promoter sequence of

phytase gene in few cereals which control the specific

activity of phytase. Nakano et al. (1999) confirmed two

phytases with N-terminal sequences which were found

similar to PAPhy_a gene purified from wheat bran. Greiner

et al. (2000) also purified two phytases from barley. One

was from germinating seeds and other from both germi-

nating and developing seeds. Both were considered as

SKn1

RY element

GCN4 

TATA box 

ATG

CAAT box

Structure gene
Promoter gene 

Fig. 2 Schematic

representations of cereal

PAPhys gene. Annotations are

exons (sky blue), intron

(orange) and regulatory

elements (blue)
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PAPhys on the basis of their catalytic properties. PAPhys

cDNAs have been cloned from germinating maize, wheat,

rice and their recombinant enzymes shown to be potent

phytases (Dionisio et al. 2011). Two phytases were purified

from rice bran and classified as PAPhys based on their

molecular mass and color of the concentrated enzyme

(Hayakawa et al. 1989).

Histidine acid phosphatase gene

HAPhys genes are widely distributed among bacteria, fungi

and cereal crops. These genes are having high specific

activity for phytate and their specific position to initiate the

hydrolysis of phytate. HAPhys genes have been exploited

for various industrial and biotechnological applications

(Afinah et al. 2010; Lei and Porres 2003) and other bio-

chemical properties (Oh et al. 2004). They also studied that

all phytase genes have not similar and common active site,

so the initial classification system is entirely based on their

catalytic mechanism. The maize seedlings were used to

isolate a HAPhys cDNA clone from expression library

which was prepared from 3 to 4 days old maize seedling

(Laboure et al. 1993). Two homologous genes PHYT1 and

PHYTII were isolated using cDNA to screen a genomic

library. Moreover, two linked phytase loci at maize chro-

mosome 3 were mapped and suggested to correspond to the

two clones (Maugenest et al. 1997, 1999). The authors

confirmed by BLASTN against the maize genome, showing

that PHYTI and PHYII reside 450 kb apart in the same

orientation. Laboure et al. (1993) demonstrated that the

reservoir of phytate present in maize is generally found in

the germ.

Multiple inisitol phosphate phosphatase genes

MINPhys genes constitute a separate group within the

HAPs (Chi et al. 1999). They seem to be localized in the

endoplasmic reticulum (ER) and are assumed to have a

central role, not only in providing bio-available phosphate

to the growing cell, but also in yielding important down-

stream metabolites of the inositol phosphates. MINPhys

gene was first discovered in animals and later Dionisio

et al. (2007) reported that these genes expressed during

grain development and germination. MINPhys also have

been isolated from the genomic clones of barley MINPhys

PHYIIa2 and rye. They reported 11 exons, which consisted

of whole gene and their general structure was conserved.

Expression studies of germination and developing grains of

wheat and barley MINPhys genes were highly expressed

and reported with the highest expression levels in the

developing grains (Dionisio et al. 2007). Additionally, the

expression of wheat MINPhys gene was higher than the

barley MINPhys gene. It may be due to the presence of

three homeoalleles in hexaploid wheat, in contrast to only

one gene in diploid barley.

Applications of cereal phytases

Cereal phytases in food/feed play an important role mainly

in enhancing mineral, phosphorous and energy uptake to

fortify the fodder with these substances. The increased

availability of cereal phytases at the same time reduces

excretion and therefore, reducing the phosphate load in

aquatic ecosystem. These cereal phytases used as com-

mercially available phytases as fortifiers of pigs feed

revealed that they satisfy the criteria for an ideal phytase

for feed production, such as resistance from denaturation

under extreme pH and temperature (Boyce and Walsh

2006). However, supplemental microbial phytase increased

phosphorous availability by 12, 15 and 38% in pig diet

containing wheat, triticale and maize, respectively (Dun-

gelhoef et al. 1994). Mollgaard (1946) reported that the

degradation of phytate during bread-making has been

known to effect mineral bio-availability for many years.

Therefore, several bread-making methodologies designed

to reduce the phytate content have been reported. These

include the isolation of commercial phosphoesterases

(phytase or phosphatase) from wheat to whole wheat flour

(Knorr et al. 1981) and the activation of naturally occurring

phytase by soaking and malting the grain. Iron absorption

from porridges based on flours from wheat, rice, maize,

oat, sorghum and wheat-soy flour blend have been tested

on humans. The results have shown that phytate degrada-

tion improves iron absorption from cereal porridges pre-

pared with water and further addition of ascorbic acid is a

better way to enhance iron absorption in child food than

addition of phytase. Adding amylase to the porridge in

combination with phytase also increasing the absorption of

iron in digestive system (Hurrell et al. 2003).

Conclusions and future perspectives

It is very important to overcome the problem associated

with poor micronutrient bio-availability in commercially

processed cereal derived food products used in developing

countries. Many of these cereal food products have high

content of phytate and phytate-micronutrient molar ratios

likely to reduce the absorption of Zinc, Iron and other

essential mineral ions in gastro-intestinal tract. Dephy-

tinization strategy could reduce the content of phytate in

cereal based diet and improve the absorption of micronu-

trients. But, alone dephytinization is not enough to over-

come the shortfalls in iron, calcium and zinc that have been

consistently reported in cereal foods. Therefore, dephy-

tinization should be combined with strategies such as
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addition of isolated cereal phytases and characterization of

cereal phytase gene by molecular study. In low-income

countries, molecular breeding may be a better strategy to

improve the nutritional quality of staple cereals. Genetic

manipulation and domestic four pre-treatment methods

also improve nutritional quality. The main purpose of this

article was to explore the potential of cereal phytases as

better food processes enzymes due to their unique prop-

erties to hydrolyze phytate under optimum conditions.

Cereal phytases are cost effective and highly accepted

among the consumers. Still, more research is required to

discover new more cereal phytases and engineer them to

develop desired characteristics for better crop improvement

to enhance the absorption of micronutrients.
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