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Abstract Solid state fermentation is currently used in a

range of applications including classical applications, such

as enzyme or antibiotic production, recently developed

products, such as bioactive compounds and organic acids,

new trends regarding bioethanol and biodiesel as sources of

alternative energy, and biosurfactant molecules with envi-

ronmental purposes of valorising unexploited biomass.

This work summarizes the diversity of applications of solid

state fermentation to valorize biomass regarding alternative

energy and environmental purposes. The success of

applying solid state fermentation to a specific process is

affected by the nature of specific microorganisms and

substrates. An exhaustive number of microorganisms able

to grow in a solid matrix are presented, including fungus

such as Aspergillus or Penicillum for antibiotics, Rhizopus

for bioactive compounds, Mortierella for biodiesel to

bacteria, Bacillus for biosurfactant production, or yeast for

bioethanol.

Keywords Solid state fermentation � Agro-industrial
waste � Microorganisms � Metabolites

Introduction

Solid state fermentation (SSF) has been described as the

process that takes place in a solid matrix (inert support or

support/substrate) in the absence or near absence of free

water (Singhania et al. 2010), but the substrate requires

moisture to support the growth and metabolic activity of

microorganisms (Thomas et al. 2013). The microbiological

process of SSF has generated great interest in recent years

because it can be used for a variety of purposes (Thomas

et al. 2013), supported by some authors who have even

indicated numerous advantages over their liquid counter-

parts (submerged fermentation) (Singhania et al. 2009).

The most important phenomenon attributed to SSF is the

resistance of microorganisms (bacterial and fungal cells) to

catabolic repression (inhibition of enzyme synthesis) in the

presence of abundant substrates, such as glycerol, glucose

or other carbon sources (Viniegra-González and Favela-

Torres 2006). Another important factor is the possibility of

using agro-industrial residues (A-IR) generated by current

industrial processes and inclusively using unexploited

biotic resources as support/substrate for metabolite pro-

duction with value-added at low production costs (Bhargav

et al. 2008), allowing SSF to be economically viable

(Schmidt et al. 2014). Furthermore, reducing environ-

mental problems (Rodrı́guez Couto 2008), such as A-IR,

which may produce odour and soil pollution, represents

problems for the industry (Torrado et al. 2011).

SSF was traditionally used for producing metabolites

such as enzymes, antibiotics, organic acids, biosurfactants

and aroma compounds; however, in reality, SSF received

more attention due to the wide number of applications for

metabolite production or remediation objectives that can be

realized using this system (Wang et al. 2010). Currently,

SSF is attracting new interest because of its wide range of

applications in valorising unexploited biomass. With

environmental problems being generated around the world,

SSF has reached great relevance in this context because of

the environmental benefits offered with the possibility of

using A-IR (Thomas et al. 2013). In this way, a wide
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variety of applications can be achieved, such as bioreme-

diation, production of lipids, biofuels (biodiesel, bioetha-

nol, biobutanol, biohydrogen), aromas and flavours for the

food industry, and production/extraction of bioactive

compounds, among others. The aim of this work was to

summarize the diversity of applications of SSF, from

classical, such as enzyme or antibiotic production, to new

trends regarding alternative energy, and environmental

purposes, such as valorising unexploited biomass of A-IR.

Enzymes

Enzyme production by SSF has been a reference for this

type of process, because of the wide variety of enzymes

that can be produced, possibly at an industrial scale. The

importance of SSF in enzyme production is due to the agro-

industrial residues that are generally used for this purpose.

Nutrients present in the substrate (A-IR) support growth

and due to the natural metabolism of the microorganism,

can secrete enzymes, while growing in the solid substrate

(Kumar and Kanwar 2012). Indeed, authors have previ-

ously mentioned that several enzymes could be produced

by the SSF system at pilot scale (He and Chen 2013) and

the literature indicates a large variety of enzymes that are

produced by SSF (Table 1). For enzyme production at

industrial scale it is important to design reactors with

control of important aspects of the process such as heat

transfer and oxygen as well as moisture. Additionally, in

the process design should be considered the search for the

substrate and microorganism suitable for the enzyme to be

produced. It is important to mention that in Japan enzymes

are already produced at industrial scale using SSF (He and

Chen 2013; Rodrı́guez Couto 2008). In addition, it can also

be seen that the range of microorganisms used is very

diverse in A-IR revalued for this purpose. Moreover,

enzyme production by SSF has been considered the heart

of biotechnology because of the importance in market sales

of these molecules (Thomas et al. 2013). The market of

industrial enzymes has shown gradual growth: for 1998,

sales were estimated at $1 billion (Rao et al. 1998), but for

2015, they were estimated at $4.4 billion (Thomas et al.

2013). This significant progress demonstrate the impor-

tance of SSF in the enzyme market, however, it is impor-

tant to note that the titers of enzyme activity expressed in

SSF are higher than those expressed in submerged fer-

mentation (SF), for example: 5000 and 1600 U l-1 for a

pectinase produced by Aspergillus niger (Viniegra-Gon-

zález et al. 2003), 7150 and 1714 UI l-1 for a exopectinase

produced by A. niger C28B25 (Diaz-Godinez et al. 2001),

30 and 8 U/g of dry substrate for a protease produced by

Aspergillus oryzae (Sandhya et al. 2005), showed the

importance of SSF in enzyme production.

Antibiotics

Antibiotic were traditionally produced by SF; however,

some authors now indicate that production using SSF is

better because fungal strains grow in near natural habitats

(Vastrad et al. 2014). Furthermore, the use of A-IR is an

important advantage for antibiotic production in SSF

Table 1 Variety of enzymes produced in SSF

Enzyme Support/substrate Microorganism References

Naringinase Orange and grapefruit rind Aspergillus foetidus

Aspergillus niger

Aspergillus niger HPD-2

Mendoza-Cal et al. (2010)

Polygalacturonase Apple bagasse and wheat bran Aspergillus niger

Penicillum sp. EGC5

Abbasi et al. (2011)

a-Amylase Rice husk, banana husk, millet, water melon husk,

lentil bran, wheat bran and maize oil cake

Anoxybacillus

flavithermus

Özdemir et al. (2012)

Manganese peroxidase Pineapple leaf Ganoderma lucidum Hariharan and Nambisan

(2012)

Lipase Sunflower seed and sugarcane bagasse Burkholderia cenocepacia Liu et al. (2013)

Protease Wheat bran and soybean meal Bacillus subtilis Imtiaz and Mukhtar (2013)

Cellulase and

hemicellulase

Corn straw, rice husk, grass powder, sugarcane barbojo

and sugarcane bagasse

Phanerochaete

chrysosporium

Saratale et al. (2014)

Ellagitannase Sugarcane bagasse, corn cobs, coconut husk and

candelilla stalks

Aspergillus niger GH1 Buenrostro-Figueroa et al.

(2014)

Phytase Wheat bran Escherichia coli McKinney et al. (2015)

Laccase Poplar sawdust Ganoderma lucidum

Trametes versicolor

Kuhar et al. (2015)
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because these may serve as a source of carbon and nitro-

gen. Moreover, in some cases, nutrients contained in the

substrate may be inductors or supplementary nutrients for

such production (Adinarayana et al. 2003). To make more

evident substrates used in antibiotics production by SSF,

some examples are mentioned then: tetracycline by

Streptomyces viridifaciens ATCC 11989 using sweet

potato, rice bran, and soy meal (Yang and Ling 1989),

neomycin by Streptomyces marinensis using raspberry seed

powder, wheat rawa, wheat bran, rice bran (Adinarayana

et al. 2003; Ellaiah et al. 2004), cephalosporin C by

Acremonium chrysogenum C10 using sugarcane bagasse

(Cuadra et al. 2008), meroparamycin by Streptomyces sp.

MAR01 using rice, wheat bran, quaker, bread, and ground

corn (El-Naggar et al. 2009), lovastatin by Penicillium

funiculosum NCIM 1174 using green gram husk, black

gram husk, wheat bran and orange peel (Reddy et al. 2011),

rifamycin B by Amycolatopsis mediterranea MTCC14 and

Nocardia mediterranei using coconut oil cake, groundnut

oil cake, ground nut shell, rice husk and sunflower oil cake

(Vastrad and Neelagund 2012; Vastrad et al. 2014), rifa-

mycin SV by Amycolatopsis mediterranei OVA5-E7 using

ragi bran (Nagavalli et al. 2015). The literature shows that

some antibiotics have been produced historically by SSF

using A-IR as a support, reflecting the importance of SSF

for production of this type of metabolites.

Organic acids

The production of organic acids by SSF emerged as an

alternative to SF, which due to the processes of acid pro-

duction, is generally an expensive process (Kumar et al.

2003). SSF emerges as a cheap alternative because, as

mentioned, it may use agro-industrial waste for the same

purpose. There are many reports indicating the use of

different A-IR for organic acid production, reducing pro-

duction cost and environmental problems. Additionally, one

important advantage of production by SSF is the feasibility

and efficient extraction of acids from fermented matter

(Dhillon et al. 2013). Table 2 shows variety of A-IR can be

exploited for the production of organic acids, as occurs with

the production of citric acid, lactic acid, gluconic and ellagic

acid.

Bioactive compounds

Extraction of bioactive compounds from biotic materials

has generally been realized using habitual extraction pro-

cesses (solid–liquid/liquid–liquid). However, SSF has

emerged as an alternative for the production/extraction of

bioactive compounds (Martins et al. 2013). The imple-

mentation of SSF for extraction of bioactive compounds

using microorganisms (bacteria, yeast and fungi) is a

suitable alternative, due to these microorganisms being

able to produce enzymes required for bioactive molecule

liberation into cell walls of plants or biotic materials (e.g.

pectinases, cellulases, a-amylases, xylanases, b-glucosi-
dase, b-galactosidase, and b-hesperidinase) (Salar et al.

2012; Dey and Kuhad 2014). In the last few years, SSF has

been implemented for the production/extraction of mole-

cules with antioxidant activity, as can be seen in Table 3.

Biological control

In recent years, biological control agents has emerged as an

alternative to environmental pollution caused by the exces-

sive use of pesticides, these can be replaced by biopesticides

for the control of plant pests and plant diseases (Cavalcante

et al. 2008). Furthermore, generation of this type of products

Table 2 Organic acids produced in SSF

Acid Microorganism Source References

Citric acid Aspergillus niger DS 1 Pineapple waste Kumar et al. (2010)

Aspergillus niger CECT-2090 Valencia orange peel Torrado et al. (2011)

Aspergillus niger PTCC-5010 Sugarcane bagasse Yadegary et al. (2013)

Lactic acid Lactobacillus delbrueckii Sugarcane bagasse as a substrate and cassava

bagasse as a carbon source

John et al. (2006)

Lactobacillus casei Rice straw Qi and Yao (2007)

Lactobacillus amylophilus GV6 Wheat bran Naveena et al. (2005)

Gluconic acid Aspergillus niger ARNU-4 Tea waste as a support and molasses as a

carbon source

Sharma et al. (2008)

Aspergillus niger Sugarcane bagasse Singh et al. (2003)

Ellagic acid Aspergillus niger Pomegranate seeds and husk Robledo et al. (2008)

Aspergillus niger GH1 Pomegranate peel Sepúlveda et al. (2012)
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can be carried out by SSF as a strategy of A-IR management,

impacting the environmental pollution caused by the use of

pesticides and the generation ofA-IR (Chen et al. 2011; Pham

et al. 2010). The use of SSF for this purpose has been

increasing due to some advantages compared with SF, e.g.

when mycoinsecticides (conidia) are produced in SSF are

more tolerant to drying and more stable during the manu-

facture of complex formulations compared to the conidia

produced in SF (Angel-Cuapio et al. 2015). The principal

advantage to produce agents of biological control by SSF is

that themicroorganisms used for these purposes has ability to

grow on solid substrates and produce a wide range of extra-

cellular enzymes and conidiospores important for this

objective (Prakash et al. 2008). In the literature, several

biological control agents produced by SSF are reported, as

can be seen in the Table 4.

Lipids—biodiesel

Today with the depletion of fossil fuels and resultant envi-

ronmental problems from their use, the search for renewable

energy has become necessary. Furthermore, the carbon

recycle period of biofuels is shorter than the carbon recycle

period from fossil energy (Malilas et al. 2013). Recently, the

production of biodiesel by trans-esterification of fats and

lipids has received increased attention from many

researchers because it can be an environmentally friendly

and sustainable process (Fei et al. 2011). The problems of

biodiesel production are operating costs for both the pro-

duction of lipids and for the generation of biodiesel itself. In

that regard, SSF has recently been considered as an alter-

native, due to the use of inexpensive substrates or A-IR in

this process (Liu et al. 2013; Tsakona et al. 2014).

Microbial lipids have traditionally been produced using

physicochemical methods operating at high temperature and

pressure (Parfene et al. 2013). In some cases, SF using

glucose as carbon source has been used, with the primary

objective of being used for biodiesel production (Hui et al.

2010). Some reports indicate that there exist oleaginous

microorganisms which can accumulate more than 20% of

microbial lipids in oleaginous cells. These microorganisms

may be used for lipid production in solid state fermentation,

resulting in an alternative process for lipid production that is

both cost effective and large scale, and that uses A-IR as a

unique carbon source and energy (Liu et al. 2013). In the

literature, there are several reports of lipid production using

SSF (Table 5). Biodiesel production using oleaginous

microorganisms is very attractive for the biofuel industry;

because biodiesel may be produced using lipids and lipases

produced using SSF.

On the other hand, lipases are important enzymes used for

biodiesel production because processes for obtaining biofuel

are less polluting than chemical catalysts, are less energy

intensive, are more environmentally friendly, and have slight

operating conditions (Liu et al. 2013). The main disadvan-

tages of enzyme catalysis are the longer reaction time and

the higher cost of the biocatalysts (Freire et al. 2011). In the

literature, reports exist on lipase-catalysed biodiesel

Table 3 Bioactive compounds produced using SSF

Molecule Activity Microorganism Source References

Phenolic compounds Antioxidant Rhizopus oryzae Rice bran Schmidt et al. (2014)

Phenolic compounds Antioxidant Rhizopus oryzae RCK2012 Wheat Dey and Kuhad (2014)

Phenolic compounds Antioxidant Cordyceps militaris SN-18 Chickpeas Xiao et al. (2014)

Phenolic peptides

c-Aminobutyric acid

Antioxidant

Antihypertensive

Bacillus subtilis Lentils Torino et al. (2013)

Phenolic compounds Antioxidant Thamnidium elegans CCF 1456 Maize Salar et al. (2012)

Phenolic compounds Antioxidant Phanerochaete chrysosporium Apple pomace Ajila et al. (2011)

Table 4 Agents of biological control produced using SSF

Biocontrol agent Support/substrate References

Beauveria

bassiana

Refused potatoes

Coffee husks

Sugarcane bagasse

Santa et al.

(2005)

Beauveria basiana Parboiled rice Taroco et al.

(2005)

Trichoderma

viride

Winery wastes Zhihui et al.

(2008)

Trichoderma

harzianum sp.

Trichoderma

viride sp.

Trichoderma

koningii sp.

Trichoderma

polysporum sp.

Corn bran

Wheat bran

Cavalcante et al.

(2008)

Beauveria

bassiana

Metarhizium

anisopliae

Millet grain Kim et al. (2011)

Isaria javanica Sweet potato Kim et al. (2014)

Isaria

fumosorosea

Parboiled rice texturized with

water hyacinth

Angel-Cuapio

et al. (2015)
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production; nevertheless, the processes are expensive,

especially when the catalytic processes include commercial

enzymes (Liu et al. 2013). The principal advantage of using

lipases for biodiesel production is the feasibility of catalys-

ing several reactions in non-aqueous media, such as that

used for biofuel production (Kumar and Kanwar 2012).

However, in recent years, SSF has acquired good credibility

for metabolite production, including enzymes such as lipa-

ses, using cheap raw materials, such as A-IR, which lower

production costs (Kumar and Kanwar 2012).

Lipases are enzymes that were traditionally produced in

SF; however, in reality, some authors used SSF an alter-

native method because it presented some advantage over

SF, such as the use of A-IR, demanding less water and

energy, and easy aeration of medium, representing

diminution of production cost (Coradi et al. 2013). Table 6

shows some lipases produced using SSF by different strains

of microorganisms.

Bioethanol

Biofuels are important because they replace petroleum

fuels. Production of bioethanol reduces consumption of

crude oil and production of environmental pollution.

Bioethanol can be produced from different kinds of raw

materials. Bioethanol production was traditionally real-

ized by SF; however, in recent years, some researchers

have reported the feasibility of production by SSF,

because with this process there is the possibility of using

A-IR (Mohanty et al. 2009). The use of A-IR combined

with SSF for bioethanol production is a sustainable

alternative to SF (Rodrı́guez et al. 2010). These strate-

gies represent efficient bioethanol production using dif-

ferent A-IR and yeast strains for these proposes, e.g.

wheat straw (Chen et al. 2007), sweet sorghum (Yu and

Tan 2008, Li et al. 2013, Molaverdi et al. 2013), Mad-

huca Latifolia L. (Mohanty et al. 2009), grape and sugar

beet pomaces (Rodrı́guez et al. 2010) rice straw (Roslan

et al. 2011), sugarcane bagasse (Shaibani et al. 2011),

sweet potato (Swain et al. 2013) using Saccharomyces

cerevisiae, carob pods using Zymomonas mobilis

(Mazaheri et al. 2012), and sweet sorghum using Mucor

indicus (Molaverdi et al. 2013). SSF presents some

advantages for ethanol production contrasted with SF,

e.g. easy operation, saving of time and energy; also

cheap feedstock could be used as carbon source

(Rodrı́guez et al. 2010). Actually SSF technology is used

more frequently for ethanol production as an alternative

source of energy.

Table 5 Lipid production in SSF

Lipid Microorganism Source References

c-Linolenic acid Mortierella isabellina Pear pomace Fakas et al. (2009)

Gamma linolenic acid Mucor rouxii Rice bran

Soy bean meal

Jangbua et al. (2009)

Oleic acid

Palmitic acid

Mortierella isabellina Sorghum Economou et al. (2010)

Lipids A. oryzae Wheat straw bran mixture Hui et al. (2010)

Oleic acid

Palmitic acid

Linoleic acid

Mortierella isabellina Rice hulls Economou et al. (2011)

Lipids Mortierella isabellina Soybean hull Zhang and Hu (2012)

Lipids Aspergillus tubingensis TSIP9 Palm empty fruit bunches Cheirsilp and Kitcha (2015)

Table 6 Lipases produced using SSF and utilized in biodiesel production

Support/substrate Microorganism References

Wheat bran Penicillium camembertii KCCM 11268 Malilas et al. (2013)

Castor bean and sugarcane bagasse Trichoderma harzianum Coradi et al. (2013)

Sunflower seed and sugarcane bagasse Burkholderia cenocepacia Liu et al. (2013)

Castor oil cake Aspergillus flavus Toscano et al. (2013)

Wheat bran and soybean bran Aspergillus sp., Fusarium sp., and Penicillium sp. Fleuri et al. (2014)

Olive oil cake Pseudomonas sp. S1 Sahoo et al. (2014)

Sugarcane bagasse and sunflower seed meal Burkholderia cepacia LTEB11 Soares et al. (2015)

Plant oil-seed cakes Lasiodiplodia theobromae VBE-1 Venkatesagowda et al. (2015)
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Environmental applications

Biosurfactant production has been improved because it has

characteristics such as biodegradability and low toxicity

compared to synthetic surfactants, and it can be used in

bioremediation, food emulsification and cosmetics, and has

stable activity at extremes of pH, salinity and temperature

(Kiran et al. 2010; Mukherjee et al. 2006; Bento et al.

2005). In addition, biosurfactants have applications in oil

industries due to their capacity to produce surface tension

and to disperse one system into another (Neto et al. 2008;

Martins et al. 2009). Biosurfactants produced in SF are

extensively used in bioremediation purposes (Bento et al.

2005), but one of the principal problems of biosurfactant

production is high production costs. For this reason, it is

important to use a raw material that has low cost, such as

A-IR (Mukherjee et al. 2006), and low-cost culture sys-

tems, such as SSF. Although reports exist for biosurfactant

production using different microorganisms such as Bacillus

subtilis SPB1, and substrates such as millet in SSF (Ghribi

et al. 2012), more information regarding diversified

microorganisms and low-cost substrates are necessary. To

go deeper into the basis or the reasons for using the SSF in

environmental applications is necessary consider the next

factors: (a) in a wider designation, SSF can be seen as

including processes during which microorganisms are

cultivated in the presence of a liquid phase at maximal

substrate concentrations (Hölker and Lenz 2005), exactly

the case of non-soluble substrates as hydrocarbons in non-

soluble substrates as oil-spills, for example, (b) in SF,

aeration and agitation could be an important economic cost

(Md 2012) but in SSF this disadvantage is not present: the

oxygen transfer from the gas phase are directly in contact

with biomass and the bioprocess do not depends of the very

low solubility of oxygen in water (less than 10 mg l-1),

and (c) biosurfactants can be produced from very cheap

raw materials which are available in large quantities (Md

2012), exactly the case of biomass proceeding of agro-

industrial wastes.

Conclusion

Solid state fermentation is currently used in an important

range of applications, including classical applications such

as enzyme or antibiotic production, recently developed

applications such as production of bioactive compounds

and organic acids, and new applications regarding bioe-

thanol and biodiesel as sources of alternative energy, bio-

surfactant molecules with environmental purposes, and

biological control as an environmental alternative. The

success of applying solid state fermentation to a specific

process must take into account the nature of specific

microorganisms or specific strains, due to specificity rep-

resenting an important constraint in solid state fermentation

systems, particularly in new trends as biosurfactants with

environmental purposes. The SSF an alternative processes

for produce some products with industrial interest val-

orising unexploited biomass.
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