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Abstract
The environment effect of conventional refrigerants can be improved by adopting eco-friendly hydrocarbon (HC) refrigerants 
in a vapour compression refrigeration (VCR) system. In this work, various factors such as neutral ozone depletion potential 
(ODP) and low global warming potential (GWP), use of a lesser quantity of refrigerant, power saving, and retrofitting to 
the existing VCR system, are encouraged by opting for the HC refrigerant R600a. The mono and the hybrid nano-lubricants 
prepared by dispersing different concentrations of metallic oxide  (TiO2) and non-metallic oxide  (SiO2) nanoparticles in POE 
oil were used as the compressor lubricant. The morphology and crystal structure of each nanoparticle were analysed with the 
FE-SEM and XRD analysis. The performance parameters of the VCR system were analysed to study the effect of different 
nano-lubricants. In contrast to the better performance of  TiO2 in mono form, a combination of 25%  TiO2 and 75%  SiO2 in 
hybrid form performed better amongst all the tested lubricant samples. As compared to the base lubricant (POE oil). This 
hybrid nano-lubricant combination reduced the compressor power consumption by about 8% and enhanced the refrigeration 
effect by more than 13%. It resulted in the enhancement in COP by more than 23%. The compressor suction and delivery 
characteristics (such as pressure) and the pull-down temperature were also studied to evaluate the effect of different nano-
lubricants. Furthermore, the viscosity and thermal conductivity analysis at various temperatures were also conducted to 
observe the tribological and thermo-physical property influence of the mono and hybrid forms of nano-lubricants on VCR 
system performance.

Keywords Vapour compression refrigeration system · Refrigerant R600a · POE oil · TiO2/SiO2 nanoparticles · Hybrid 
nano-lubricant

Abbreviations

Abbreviations
COP  Coefficient of performance
FE-SEM  Field emission scanning electron microscope
HC  Hydrocarbon

HFC  Hydrofluorocarbon
POE  Polyolester
VCR  Vapour compression refrigeration
LPG  Liquefied petroleum gas
TiO2  Titanium dioxide
SiO2  Silicon dioxide
kPa  Kilopascal
m2s−1  Square metre per second
Wm−1  K−1  Watt per metre-kelvin
P  Pressure
T  Temperature
XRD  X-ray diffraction

Symbols
ΔT  Temperature difference [K]
m  Mass of water [kg]
Cp  Specific heat capacity of water  [kJkg−1  K−1]
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K  Energy meter constant [impulse  kW−1  h−1]
n  Number of pulses taken in energy meter
t  Time [s]
°C  Degree celsius
gL−1  Grams per litre
W  Watt

Subscripts
1  Compressor inlet
2  Compressor outlet
3  Condenser outlet
4  Evaporator inlet

Introduction

Despite large power consumption by the vapour compression 
refrigeration (VCR) system, the world is mostly dependent 
on it in refrigeration and air conditioning devices (Marcucci 
Pico et al. 2019). The VCR systems consume about 15% of 
word’s total energy demand (Nair et al. 2020; Yıldız et al. 
2021). In addition to the energy, the environment aspect of 
the refrigerant used in VCR system is also of great con-
cern. Therefore, eco-friendly refrigerants and more energy-
efficient methods need to be developed. The VCR systems 
are switching to the use of eco-friendly hydrocarbon (HC) 
refrigerants from conventional ones. The HC refrigerants 
offer lower global warming potential (GWP), lower ozone 
depletion potential (ODP) and are compatible with system 
sub-components (Corberán et  al. 2008; Adelekan et  al. 
2019a, 2021). Also, as per Montreal and Kyoto protocols 
(Padmanabhan and Palanisamy 2012; Madyira et al. 2022) 
and United Nations Environment Programme (UNEP), a 
treaty was signed to limit the use of hydrofluorocarbons 
(HFCs), with a phase-out of HFCs by 2020 in developed 
countries and worldwide by 2030 (Babarinde et al. 2020; 
Joybari et al. 2013; Rasti et al. 2013). The HC refrigerants 
not only help to protect the environment, but also offer retro-
fitting flexibility and reduced power consumption, resulting 
in enhanced COP (El-Morsi 2015; Shengshan. Bi et al. 2011; 
Corberán et al. 2008). The only concern related to the usage 
of HCs is the risk of flammability (Adelekan et al. 2019a; 
Ohunakin et al. 2018; Harby 2017). It becomes negligible 
when used in lesser quantities (less than or equal to150 g) 
(Corberán et al. 2008).

Nanoparticles of size less than 100 nm (Azmi et al. 2016; 
Narayanasarma and Kuzhiveli 2019; Shah et al. 2017; Khan 
et al. 2019) have a wide range of applications in various 
fields (Khan et al. 2019).

Nanoparticles are used to develop novel green chemical 
mechanical polishing (CMP) for copper (Zhang et al. 2019), 
sapphire (Zhang et al. 2021), alloys (Zhang et al. 2020) and 
diamond (Liao et al. 2021). Traditional chemical mechanical 

polishing employs toxic and corrosive slurries for the inte-
grated circuit (IC), semiconductors and microelectronics 
industries (Zhang et al. 2018). These studies contributed 
extensively in reducing or eliminating the pollution caused 
to the environment in the conventional manufacturing. (Xie 
et al. 2020).

To overcome this challenge, nanoparticles are used to 
develop novel green CMP for copper (Zhang et al. 2019), 
sapphire (Zhang et al. 2021), alloys (Zhang et al. 2020) and 
diamond (Liao et al. 2021). Using the green CMP, high-
performance surfaces are manufactured for use in industries. 
In addition, nanoparticles are applied to develop a novel 
approach at nanoscale depth of cut, in which the speeds used 
are four to seven orders of magnitude higher than those in 
nanoscratching and conventional scratching (Zhang et al. 
2015). This approach opens a new pathway to investigate 
the fundamental mechanisms of abrasive machining (B. 
Wang et al. 2018). Under the breakthrough of theories, nan-
oparticles are used to develop novel diamond wheels and 
approaches (Zhang et al. 2017).

The use of nanoparticles in the refrigeration systems can 
also be observed in literature to address the energy consump-
tion issue. A small amount of nanoparticles also reduce the 
agglomeration and make the experiments more effective and 
viable (Sabareesh et al. 2012). The nano size of the dis-
persed particles offers large surface area, which makes them 
a promising candidate for performance enhancement in any 
thermal system (Adelekan et al. 2021; Narayanasarma and 
Kuzhiveli 2019).

The nanoparticles are dispersed in any heat transfer base 
fluid to prepare the nanofluid (Minea and Moldoveanu 
2018). The dispersion of a small quantity of nanoparticles 
transforms any heat transfer fluid into a more energy-efficient 
nanofluid (Devendiran and Amirtham 2016; Chakraborty 
and Panigrahi 2020; Nabil et al. 2017b; Saidur et al. 2011). 
The concept of nanofluids was coined by Stephen U.S. 
Choi in 1995 (Devendiran and Amirtham 2016; Huminic 
and Huminic 2012; Yogesh et al. 2021; Sanukrishna et al. 
2019; Mallick et al. 2013; Sanukrishna and Prakash 2018; 
Azmi et al. 2016; Ahmad et al. 2020; Mansourian et al. 
2020; Gaganpreet and Srivastava 2012), which later opened 
a new dimension to work for performance enhancement 
of the VCR systems. For VCR systems, the nanofluid pre-
pared by dispersing nanoparticles, either in the compressor 
lubricant or in the refrigerant, is called nano-lubricant or 
nano-refrigerant respectively (Sharif et al. 2018; Nair et al. 
2020). About 26% fall in energy consumption of a domestic 
refrigerator was reported by Sheng-shan. Bi et al. (2008), 
after addition of a mere 0.1% mass fraction of metallic oxide 
nanoparticles of  TiO2 in the refrigerant R134a.

Many researchers opted for the HC refrigerants such as 
R600a and LPG, with  TiO2 nanoparticles in different con-
centrations and observed a great energy savings and COP 
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enhancement in domestic refrigerators (Bi et al. 2011; Adele-
kan et al. 2019a, 2018, 2017, 2021; Babarinde et al. 2019; 
Gill et al. 2018; Jatinder et al. 2019). Not only metallic, but 
also non-metallic oxide nanoparticles such as  SiO2contribute 
in reducing power consumption, when LPG (a HC refriger-
ant) is retrofitted to a domestic refrigeration system designed 
for R134a (Ohunakin et al. 2018). In addition, the thermal 
conductivity, an important thermo-physical property of 
any heat transfer fluid, affects its heat transfer performance 
(Hamid et al. 2018; Zawawi et al. 2017; Karimi et al. 2015). 
Generally, the heat conduction of fluids is lesser than that 
of the solid particles (Narayanasarma and Kuzhiveli 2019; 
Khan et al. 2019; Yıldız et al. 2021; Hamzah et al. 2017). 
Therefore, the congenitally poor thermal conductivity of 
conventional heat transfer fluids is enhanced by appending 
conductive solid particles with them (Zawawi et al. 2017; 
Ranga Babu et al. 2017; Leong et al. 2017). The better 
thermo-physical and heat transfer characteristics make the 
nanofluids potential and more energy-efficient fluids (Sidik 
et al. 2016; Yıldız et al. 2021; Zawawi et al. 2017). Exten-
sive works have reported that nanofluids have higher ther-
mal conductivity than conventional heat transfer fluids and 
contribute to enhance the refrigerant system performance 
(Narayanasarma and Kuzhiveli 2019; Sharif et al. 2018; 
Zawawi et al. 2017; Ahmed and Elsaid 2019; Nair et al. 
2020; Cheng and Liu 2013; Mahbubul et al. 2013; Ding 
et al. 2009; Sanukrishna and Prakash 2018; Karimi et al. 
2015; Ghorbani et al. 2017; Akhavan-Behabadi et al. 2015; 
Leong et al. 2017; Mohammad Hemmat Esfe et al. 2018; 
Bakhtiari et al. 2021). Viscosity, an important tribological 
parameter (Azmi et al. 2017; Sharif et al. 2018), has an equal 
weightage as that of thermal conductivity and also governs 
the VCR system performance characteristics (Zawawi et al. 
2017; Kumar and Singh 2016; Sabareesh et al. 2012).

Recently, researchers have turned their attention 
towards the advanced and novel form of nanofluid known 
as ‘hybrid nanofluid’ to make the conventional heat 
transfer fluid more effective than mono nanofluid for any 
thermal system (Sidik et al. 2016; Huminic and Huminic 
2018; Zawawi et  al. 2017). For VCR systems, hybrid 
nanofluid, known as hybrid nano-lubricants, is prepared 
using more than one type of nanoparticles in base com-
pressor lubricant (Nabil et al. 2017a; Akilu et al. 2018; 
Sidik et al. 2016; Ranga Babu et al. 2017; Huminic and 
Huminic 2018). This further enhanced the system perfor-
mance and the research in this field has gained momen-
tum in about the last two decades (Nabil et al. 2017b; 
Muneeshwaran et  al. 2021; Sidik et  al. 2016; Ahmed 
and Elsaid 2019). Recently, the performances of hybrid 
nano-lubricants using combinations of different nanopar-
ticles such as  SiO2–Al2O3,  SiO2–ZnO, CuO–Al2O3 and 
 SiO2–CuO were experimentally investigated by research-
ers using the HC refrigerant R600a in the VCR system. An 

improvement in COP and a drop in power consumption, 
within the range of 27–42% and 24–57%, respectively, 
were reported as compared to those with the use of the 
base lubricants (Senthilkumar et al. 2021a, 2020a, 2021b; 
b). It can be shown that the non-metallic oxide nanoparti-
cles (like  SiO2) when mixed with metal oxide nanoparti-
cles (like  Al2O3, ZnO, or CuO) performed better than the 
individuals when used in mono form with HC refrigerants 
(Kumar and Singh 2016; Ohunakin et al. 2017; Krishnan 
et al. 2019; Singh and Ansari 2017). Due to excellent heat 
transfer characteristics, the metallic oxide nanoparticles 
received wide attention. Especially, the  TiO2 nanoparti-
cles offered excellent results in improving the VCR sys-
tem performance with HC refrigerants (Shengshan. Bi 
et al. 2011; Sabareesh et al. 2012; Adelekan et al. 2019a; 
Adelekan et al. (2019b); Jatinder et al. 2019; Babarinde 
et al. 2019; Adelekan et al. 2021). Looking at the excellent 
performance of  TiO2 nanoparticles-based nano-lubricants 
with eco-friendly HC refrigerants, the performance of its 
hybrid form with  SiO2 nanoparticles needs to be explored. 
Moreover, the low toxicity and chemical stability of  TiO2 
and  SiO2 nanoparticles (Narayanasarma and Kuzhiveli 
2019) and the low dielectric constant of  SiO2 nanoparticle 
(Robertson 2004; Nair et al. 2020) make them a promising 
candidates to use in hybrid form.

A limited work available on the hybrid nano-lubricants 
based on both metallic and non-metallic oxide nanoparti-
cles portrays their better performance as compared to that 
of the mono form (Saravanan and Vijayan 2018; Sidik 
et al. 2016; Senthilkumar et al. 2020b; Senthilkumar et al. 
2021b). Also, the hybrid nanoparticles have higher ther-
mal conductivity than the same distinct nanoparticles (in 
mono forms) when used individually (Vaka et al. 2020; 
Akilu et al. 2018; Akhavan-Behabadi et al. 2015; Kaka-
vandi and Akbari 2018; Liu et al. 2021; Jin et al. 2021; 
Ma et al. 2020). Therefore, the hybrid nano-lubricant is 
expected to show better thermal conductivity than mono 
nano-lubricant due to synergistic effect and Brown-
ian motion of each nanoparticle in the base lubricant 
(Huminic and Huminic 2018; Zawawi et al. 2017; Sidik 
et al. 2016; Devendiran and Amirtham 2016; Vallejo et al. 
2022; Jin et al. 2021; Ahmad et al. 2020). The viscosity of 
hybrid nano-lubricant also plays a vital role in improving 
the compressor working efficiency and hence overall VCR 
system performance (Nabil et al. 2017a, b; Huminic and 
Huminic 2018; Hamzah et al. 2017). Previous studies have 
showed that the hybrid nanofluid prepared using hybrid 
 TiO2:SiO2 nanoparticles in different concentrations and 
base fluids have better thermal conductivity and viscosity 
than the mono nanofluid and the base fluid (Hamid et al. 
2018; Le Ba et al. 2020; Nabil et al. 2017a). This has 
resulted in its use as heat transfer fluid in various thermal 
applications.
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The eco-friendly HC refrigerant R600a, having low 
GWP and ODP index (Ahmadpour and Akhavan-Behab-
adi 2019; Ghorbani et al. 2017; Cao et al. 2021; Akhavan-
Behabadi et al. 2015; Fatouh and Abou-Ziyan 2018), was 
opted in this study, as even a 50–60% less mass charge 
compared to synthetic refrigerants, gives better perfor-
mance (Rasti et al. 2013; Jwo et al. 2009; Ghorbani et al. 
2017; Akhavan-Behabadi et al. 2015; Jatinder et al. 2019). 
Also, it has excellent performance compared to other HC 
refrigerants such as LPG as observed by Jatinder et al. 
(2019). The opted POE oil also has good compatibil-
ity with the HC refrigerant R600a, which is commonly 
preferred with R134a refrigerant (Narayanasarma and 
Kuzhiveli 2019; Akhavan-Behabadi et al. 2015).

It is hard to find any comprehensive work on the 
performance of HC refrigerant R600a-based retrofitted 
VCR system using POE oil compressor lubricant with 
distinct concentrations (in mono and hybrid form: total of 
0.1  gL−1) of  SiO2 and  TiO2 nanoparticles, which indicates 
the gap in this research area and also reflects the novelty 
of the present work.

The thermal conductivity and viscosity of POE oil 
and each prepared lubricant sample were measured in the 
temperature range of 35–95 ℃. These are the important 
parameters that affect the system performance. In this 
work, HC refrigerant R600a with POE oil and each pre-
pared sample in the retrofitted VCR system test rig were 
analysed in the context of power consumption, refrigera-
tion effect, COP, pressure ratio and pull-down tempera-
tures. The present research results reveal that appending 
granular shape nanoparticles with vapour compressor 
refrigeration system is a promising method of enhancing 
the overall system performance. The hybrid nano-lubri-
cant with a higher concentration of  SiO2 nanoparticles 
performed better as compared to other hybrid nano-lubri-
cant, mono nano-lubricants and neat base lubricant (POE 
oil) sample.

Materials and experimental procedures

Materials

The  TiO2 and  SiO2 nanoparticles, appended to the VCR sys-
tem via compressor lubricant (POE oil), were procured from 
M/s. Reinste Nano Ventures Private Limited, New Delhi 
(India). The FE-SEM and X-ray diffractometer were used 
to identify the morphologies and crystal structure of  SiO2 
and  TiO2 nanoparticles, respectively. The FE-SEM micro-
graphs were obtained from Jeol FE-SEM facility available 
at Lovely Professional University, Phagwara, Punjab (India). 
The XRD was obtained from X-ray diffractometer (PANalyt-
ical, Empyrean, Netherlands) at Central University of Punjab 
(CUP), Bathinda, Punjab (India). The compressor lubricant 
(POE oil) and HC refrigerant R600a were procured from 
the local market. The basic characteristics of the procured 
nanoparticles provided by suppliers are as shown in Table 1.

Experimental procedures

In this section, the preparation of mono and hybrid nano-
lubricants, stability of nano-lubricant achieved by ultrasoni-
cation and magnetic stirring, viscosity and thermal conduc-
tivity measurement of POE oil and prepared samples, VCR 
system test rig setup and uncertainty analysis are described.

Preparation of nano‑lubricants (mono and hybrid) 
and their stability

Each sample of nano-lubricant was prepared by dispers-
ing different compositions of  SiO2 and  TiO2 nanoparti-
cles, as shown in Table 2, in 500 mL (each) POE oil. A 
digital weighing device (model CX 220 of Citizen make) 
having a least count of 0.1 mg was used for weighing the 
nanoparticles. Nanofluids are generally prepared by adopting 

Table 1  The characteristic of 
 SiO2 and  TiO2 nanoparticles

S. No Property SiO2 nanoparticles TiO2 nanoparticles

1 Physical state Powder form Powder form
2 Color White to gray white Transparent to white
3 Odor Odorless Odorless
4 Solubility in water Insoluble Insoluble
5 Purity (%) 99.99 99.99
6 Boiling point (℃) 2230 2972
7 Melting point (℃) 1710 1843
8 Density (kg/m3) 2220 4230
9 Molecular weight (g/mol.) 60.08 79.86
10 Specific heat (J/kg.K) 754 692
11 Thermal conductivity  (Wm−1  K−1) 1.4 8.4
12 Average particle diameter (nm) 60 20
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two basic methods: the one-step method, and the two-step 
method as described in Fig. 1. (Chakraborty and Panigrahi 
2020; Xiang-Qi Wang and Mujumdar 2007; Sidik et al. 

2014; Narayanasarma and Kuzhiveli 2019; Yıldız et al. 
2021; Ranga Babu et al. 2017; Afrand and Ranjbarzadeh 
2020; Devendiran and Amirtham 2016; Yang et al. 2020; 
Okonkwo et al. 2020; Sidik et al. 2016; Kaggwa and Car-
son 2019; Borode et al. 2019; Gupta et al. 2017; Shah et al. 
2017; Sangapatanam et al. 2022; Dhanola and Garg 2020). 
Mainly, a two-step method is preferred, as it is easily imple-
mented and cost-effective (Yıldız et al. 2021; Mohammad 
Hemmat Esfe et al. 2018; Hamzah et al. 2017; Ma et al. 
2020; Chakraborty and Panigrahi 2020; Yang et al. 2020; 
Okonkwo et al. 2020; Kaggwa and Carson 2019; Borode 
et al. 2019). The only drawback of this method is the nano-
particle agglomeration (Nabil et al. 2017b; Chakraborty 
and Panigrahi 2020; Afrand and Ranjbarzadeh 2020). Such 
unstable nanofluids exhibit weak thermophysical proper-
ties (Mansourian et al. 2020). To obtain stable nanofluid 
(nano-lubricants), the mixtures in the glass vessels were kept 
separately on bath ultrasonicator and the magnetic stirrer 
for 3 and 2 h, respectively, as shown in Fig. 2 (Kumar and 
Singh 2016). No surfactants were added to any of the nano-
lubricant samples (Saravanan and Vijayan 2018).  

Viscosity measurements

The neat POE oil and each prepared samples were character-
ized with the measurement of viscosity with the Redwood 
viscometer. The lubricant sample was maintained at constant 
temperature with a surrounding water bath that was heated 
with a thermostatically controlled immersed electric heater. 
The water bath was incorporated with a stirrer to maintain 
uniform temperature throughout. To ensure that the viscos-
ity testing was carried out at the set constant temperature, 
the temperatures of both water bath and that of the lubri-
cant samples were also measured during the testing with the 

Table 2  Composition of distinct mono and hybrid nanoparticles in 
500 mL of POE oil

Sample ID TiO2 nanoparticles SiO2 nanoparticles Total 
nanoparti-
cles  (gL−1)Wt. % Wt. (g) Wt. % Wt. (g)

N1 0.0 0.0 0.0 0.0 Nil
N2 0.0 0.0 100 0.05 0.1
N3 100 0.05 0.0 0.0 0.1
N4 75 0.0375 25 0.0125 0.1
N5 25 0.0125 75 0.0375 0.1

Synthesis of nanoparticles and 
mixing with base fluid in one-step 

Stable nanofluid 

Synthesis of 
nanoparticles  

(a)

Mixing with 
base fluid   Ultrasonication

Magnetic stirring Stable nanofluid 

(b) 

Fig. 1  Nanofluid preparation methods: a one-step method and b two-
step method

Glass Vessel 

Stirring 
regulator nob 

Two different samples of nano-lubricant    

Water 
bath 

Sample of nano-lubricant    

Temperature 
regulator nob 

Power 
ON/OFF  

Hot plate   

Stainless 
steel tank

(a) (b) 

Magnetic
stir bar 

Fig. 2  Stabilization of nano-lubricants using: a bath ultrasonicator, b magnetic stirrer
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help of separate thermometers. The principle of falling head 
gravitational flow through a standard dimension capillary 
tube was utilized in the measurement (Sabareesh et al. 2012; 
Kumar et al. 2020; Kumar and Singh 2016). In the present 
work, the viscosity of neat POE oil and mono and hybrid 
nano-lubricants was measured at different temperatures (35, 
50, 65, 80 and 95 °C). Each reported value of viscosity is 
an average of five different measurements, at the respective 
test temperatures, to strike out the possibility of any experi-
mental error.

Thermal conductivity measurement

The thermal conductivity of each sample was measured by 
an instrument KD2 Pro thermal property analyser (Deca-
gon Devices, Inc., USA make) at Thapar University, Patiala, 
Punjab (India). The instrument met the standards of ASTM 
D5334 and works on the principle of transient hot-wire 
method (Narayanasarma and Kuzhiveli 2019; Sanukrishna 
and Prakash 2018; Hamid et al. 2018; Asadi et al. 2019). As 
shown in the schematic diagram (Fig. 3), the thermal con-
ductivity measurement was made with a small single needle 
probe (KS-1) that was inserted into each lubricant sample 
kept in a glass tube. To maintain a constant temperature dur-
ing each thermal conductivity measurement test, the glass 
tube containing lubricant samples was kept in a water bath 
maintained at a constant test temperature. Each successive 
thermal conductivity test was carried out after an interval of 
15 min. In the present research work, thermal conductivity 
of each sample was measured at five different temperatures 
(35, 50, 65, 80 and 95℃) and the average values are reported 
in the results.

VCR system experiments

All the experiments were performed on a VCR system test rig 
available at Yadavindra Department of Engineering, Punjabi 
University Guru Kashi Campus, Talwandi Sabo, Bathinda, 
Punjab (India). Figure 4 shows the schematic diagram and the 
actual experimental VCR test rig. The test rig contains four 

main parts: a reciprocating compressor (designed for R134a 
refrigerant), an evaporator (13 L capacity, water tank coil 
type) with cooling coils attached to its inner cylindrical wall, a 
forced air-cooled condenser and an expansion device (capillary 
tube). The specifications of the test rig are given in Table 3. A 
T-type thermocouple was used for the temperature measure-
ment of the water in the evaporator, as shown in Fig. 4a. The 
pressure measurements at the suction and the delivery lines 
of the compressor were made with the help of Bourdon-type 
pressure gauges. The measurement of the compressor power 
consumption during the refrigeration experimentation was 
carried out with the help of an analogue static energy meter 
(counting accuracy: 3200 impulse  kW−1  h−1) (Sabareesh et al. 
2012; Kumar and Singh 2016; Yilmaz 2020). After one set of 
experiments with a specific lubricant sample, the compressor 
was detached from the test rig. After replacing the next kind 
of lubricant sample, the compressor was attached back to the 
system line. Before charging it with the chosen refrigerant, 
the VCR system was evacuated each time. For evacuation, a 
vacuum pump was run for 2 h to remove all the moisture from 
it (Sabareesh et al. 2012; Madyira et al. 2022; Gill et al. 2018). 
The filled mass charge of the HC refrigerant R600a was about 
50–60% of the replaced mass charge of R134a (Babarinde 
et al. 2020; Poggi et al. 2008).

During experimentation, all the parameters required for 
calculating the refrigeration effect, power consumption and 
COP were recorded. For each experiment, the VCR test rig 
was run for 180 min, and each set of readings was taken after 
a regular interval of 5 min. The initial and the final water 
temperatures in the evaporator cabin were measured with the 
thermocouple with a time lapse ‘t’. The compressor energy 
consumption was determined by recording the time taken data 
of the analogue energy meter for each of the 10 pulses using 
a stopwatch. Using the aforementioned data, the refrigeration 
effect, compressor power consumption and COP of the refrig-
eration system were calculated using the standard expressions 
as given in Eqs. 1, 2 and 3, respectively (Sabareesh et al. 2012; 
Kumar and Singh 2016; Yilmaz 2020). Every experiment was 
conducted at the atmospheric temperature of 29–30 °C. The 
schematic diagram summarizing the whole experimental pro-
cedure is shown in Fig. 5.

The uncertainty of each measuring instrument was cal-
culated as per Schultz and Cole’s (1979) methodology, and 
furthermore the uncertainty of the desired parameter such as 
P was calculated using Eq. 4 (Ohunakin et al. 2017; Adelekan 
et al. 2021; Jatinder et al. 2019; Babarinde et al. 2019; Sheik-
holeslami and Ganji 2016; Akhavan-Behabadi et al. 2015; 
Sanukrishna et al. 2019).

(1)Refrigeration effect =

m × Cp × ΔT

t
W,

Lubricant sample 

KD2 Pro 
Thermal Analyser 

Needle probe 
(KS-1) 

Cable 

Water 

Water bath 

Lubricant sample 

KD2 Pro 
Thermal Analyser 

Needle probe 
(KS-1) 

Cable 

Water 

Water bath 

Fig. 3  Schematic diagram of KD2 Pro thermal conductivity measure-
ment instrument
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Here, P is the desired parameter, UP represents the total 
uncertainty, U

v
i

 is the uncertainty of each independent var-
iable, and n is the total number of variables. The obtained 
experimental uncertainties are shown in Table 4.

(2)Compressor power consumption =
n × 3600

t × K
W,

(3)COP =
RE

Pc
,

(4)U
P
=

[

n
∑

i=1

(

�P

�v
i

U
v
i

)2
]0.5

.

Fig. 4  VCR system: a schematic 
diagram and b actual experi-
mental test rig

Expansion Device 
(Capillary Tube) Reciprocating 

Compressor 

Condenser 
(Forced Air Cooled) 

Evaporator Cabin 
(Water) 

Main 
Power 
Supply 

E 

P1

P2

Tw

Tw = Temperature of water in 

evaporator cabin 

P1 = Pressure at compressor suction 

P2 = Pressure at compressor delivery 

E = Energy meter 

(a) 

(b) 

Table 3  Specifications of VCR test rig

S. No Parameter Value/specification

1 Refrigerant mass charge 85 g
2 Refrigerant type HC R600a
3 Compressor 1/5 hp (HFC type)
4 Compressor lubricant POE oil (N1)/Prepared 

nano-lubricants (N2/N3/
N4/N5)

5 Capillary length 2.74 m
6 Capillary diameter 9.14 ×  10–4 m
7 Condenser Air-cooled
8 Evaporator load Water
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Fig. 5  Schematic diagram of the experimental procedure
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Results and discussion

Characterization of nanoparticles

The characterization of the procured nanoparticles was 
elucidated by FE-SEM and XRD analysis. The nano-sized 

particles of granular shape and agglomeration can be clearly 
seen in the FE-SEM micrographs of  SiO2 and  TiO2 nanopar-
ticles in Fig. 6. The aggregation size of  SiO2 nanoparticles is 
observed to be larger than that of  TiO2 nanoparticles, which 
is also in accordance with the supplier’s specifications. The 
similar observation was also reported by Le Ba et al. (2020), 
in the thermophysical analysis of  TiO2 and  SiO2 nanoparti-
cles. The XRD patterns of the  SiO2 and  TiO2 nanoparticles 
sample are shown in Fig. 7. The XRD of  SiO2 confirmed 
that the particles are amorphous in nature (Tkachenko et al. 
2020; Le Ba et al. 2020). The XRD of  TiO2 nanoparticles 
showed that the peaks and all diffraction lines confirmed 
the presence of the crystallite anatase and rutile phase in 
the sample (Le Ba et al. 2020). For  TiO2 nanoparticles, 
the intense diffraction peak at 25.356° is attributed to the 
anatase phase (main component) and the minor peaks at 
27.504°, 36.097°, 41.253°, 54.266°, 56.691° and 94.548° 
are attributed to the rutile phase (Jeba Beula et al. 2019; 

Table 4  Uncertainty of the measured parameters

S.No Parameters Uncertainty

1 Temperature of water in the evaporator 
cabin,  Tw (℃)

 ± 0.1

2 Compressor suction pressure,  P1 (kPa)  ± 1.1
3 Compressor discharge pressure,  P2 (kPa)  ± 5.0
4 Refrigeration effect (W)  ± 0.5
5 Power consumption (W)  ± 0.14
6 COP (%)  ± 0.5

(a) (b) 

Agglomerate 

Agglomerate 

Granular shape Granular shape 

20.7nm 15.3nm 

51.8nm 

69.8nm 

Fig. 6  Morphology of nanoparticles through FE-SEM micrographs: a  SiO2 and b  TiO2

(a) (b)2Theta (degree) 2Theta (degree) 
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Fig. 7  XRD of nanoparticles through X-ray diffractometer: a  TiO2 and b  SiO2
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Iqbal et al. 2021; Kucio et al. 2020; El-Sherbiny et al. 2013; 
Thamaphat and Limsuwan 2008; Irshad et al. 2020; Le Ba 
et al. 2020; Dhanola and Garg 2020). 

Viscosity analysis

As revealed from the bar graph (Fig. 8), the average vis-
cosity of POE oil, at the respective test temperatures, is 
observed to have increased after addition of any kind of 
nanoparticles (mono or hybrid). This might be due to the 
enhancement in intermolecular forces of attraction among 
the lubricant particles (Kumar et al. 2020). However, it is 
also observed that the average viscosity of each sample 
decreased with every 15 °C increase in temperature. Fig-
ure 8 depicts that in the temperature range of 35–95 °C, the 
decrease in the average viscosity for each sample with an 
increase in temperature does not follow a consistent trend. 
From 35 to 65 °C,  TiO2-based mono nano-lubricant sample, 
N3, exhibited higher average viscosity as compared to that 
of the  SiO2-based mono nano-lubricant sample (N2) and 
each hybrid nano-lubricant sample (N4 and N5). But at the 
temperature 80 °C, the hybrid sample N4 exhibited viscos-
ity more than any of the other lubricant sample. Further, 
at temperature even higher (95 °C), the hybrid lubricant 
sample N5 exhibited average viscosity higher than any of 
the tested lubricant samples and is about 23% higher than 
the neat POE lubricant sample N1. At higher temperatures, 
the tested mono nano-lubricant samples (N2 and N3) lost 
their viscosity more as compared to the tested hybrid nano-
lubricant samples (N4 and N5). It might be due to a decrease 
in fluid layer resistance, which is expected to be maintained 
by the hybrid nano-lubricant (Sabareesh et al. 2012). The 

sustainability of viscosity at higher temperature of hybrid 
lubricant sample N5 promotes more viscous layer between 
the running parts of the compressor. This further enhances 
the life span of the compressor and hence the overall per-
formance of the system (Kumar and Singh 2016). Similar 
results of enhancement of viscosity of hybrid nanofluid pre-
pared using hybrid  TiO2:SiO2 nanoparticles were observed 
in the previous studies of Hamid et al. (2018), Le Ba et al. 
(2020) and Nabil et al. (2017a).

Thermal conductivity analysis

The average thermal conductivity of each compressor lubri-
cant sample at different temperatures is shown in Fig. 9. 
The bar graph reveals that for each lubricant sample, the 
thermal conductivity decreased with the increase in tem-
perature. This is normally due to less number of collisions 
as the mean path between the molecules increase at higher 
temperatures (Sharif et al. 2016; Kumar et al. 2020). It can 
be observed that at each test temperature, the average ther-
mal conductivity of the lubricant samples containing nano-
particles (mono or hybrid, N2 to N5) is higher than that of 
the neat POE oil (N1). It might be due to the development of 
micro-convection effect by the dispersed nanoparticles in the 
base lubricant (Mallick et al. 2013; Huminic and Huminic 
2018). Among the nano-lubricant samples (N2–N5), the 
hybrid nano-lubricants (N4 and N5) exhibited a higher ther-
mal conductivity than the mono nano-lubricant oil samples 
(N2 and N3), at each test temperature. Furthermore, the bar 
graph also reveals that at higher temperature, the hybrid 
nano-lubricant samples possessed much higher thermal 
conductivity than the mono nano-lubricant samples and the 
neat POE oil (N1). At temperatures of 35 °C and 95 °C, the 
sample N5 possessed about 40% and 165% higher thermal 
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Fig. 8  Average viscosity of different oil samples at different tempera-
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conductivity, respectively, than the lubricant sample N1. 
The higher thermal conductivity at higher temperature than 
lower temperature might be due to the increased Brownian 
motion (one of the key mechanism) of the dispersed nano-
particles (Kotia et al. 2018; Hamid et al. 2018). This could 
have further enhanced the heat transfer capacity of the mol-
ecules as observed by Zawawi et al. (2017) and Nabil et al. 
(2017a). The incorporation of nanoparticles in base lubri-
cant increases the number of collisions. It further increases 
the surface to volume ratio which becomes responsible for 
enhancement in thermal conductivity and the heat transfer 
characteristics (Jatinder et al. 2019; Bakhtiari et al. 2021). 
In comparison to the  SiO2 nanoparticles in mono nano-
lubricant sample N2, the dispersion of  TiO2 nanoparticles 
enhanced the thermal conductivity more in the mono nano-
lubricant sample N3. However, the thermal conductivity of 
hybrid nano-lubricant sample N5 was more than that of N4. 
N5 contained more quantity of  SiO2 nanoparticles (than 
 TiO2), which could improve the thermal conductivity less 
in the mono form (in N2) as compared to  TiO2 in the mono 
form (in N3). Some synergistic effect is expected to have 
played some role in uplifting the thermal conductivity in 
hybrid nano-lubricant sample N5 (Sidik et al. 2016; Dev-
endiran and Amirtham 2016; Jin et al. 2021; Ma et al. 2020). 
The present research work shows better results of thermal 
conductivity of hybrid nanofluid as compared to previous 
studies (used the same hybrid nanoparticles) by Hamid et al. 
(2018), Le Ba et al. (2020) and Nabil et al. (2017a).

Refrigeration effect

The average refrigeration effect of the VCR system using 
HC refrigerant R600a, as obtained with neat and modified 
POE oils in compressor, can be well compared from the 
bar graph shown in Fig. 10. In every test, a minimum of 
about 7% improvement in average refrigeration effect could 
be observed after addition of nanoparticles in neat POE oil. 
The average refrigeration effect of the hybrid nano-lubricant 
samples (N4, N5) is seen to be much better than that of 
mono nano-lubricant samples (N2, N3). Further, among 
the hybrid nano-lubricants, the one which contained higher 
concentration of non-metallic oxide nanoparticles of  SiO2 
(sample N5) resulted in better average refrigeration effect. 
An improvement of about more than 13% was observed 
with N5 hybrid nano-lubricant sample as compared to that 
obtained with lubricant sample N1. This might be due to 
a significant reduction in compressor suction and delivery 
pressures due to the incorporation of hybrid nanoparticles 
in the POE oil. During the running cycle, the refrigerant 
might carry some of the nanoparticles along with it due to 
its mixing with the nano-lubricant while traveling through-
out the system (Narayanasarma and Kuzhiveli 2019). It is 
expected to further improve the refrigerant heat transfer 

capacity in the VCR test rig evaporator cabin (Yilmaz 2020). 
The higher value of thermal conductivity of the N5 nano-
lubricant sample also indicated the same, as more improve-
ment in the refrigeration effect was observed with the N5 
sample. Although, through observed characteristics, the 
improvement in viscosity could not be directly linked to the 
refrigeration effect, it might have played a role in improving 
the refrigeration effect. The improvement in viscosity leads 
to less frictional losses in the compressor and hence less 
amount of heat produced in the compressor. The reduced 
suction and delivery pressures also indicate the same.

Compressor power consumption

The compressor is the main source of energy consumption 
in the VCR system (Kumar and Singh 2016). The average 
power consumption (in W) in each experiment with differ-
ent samples of compressor lubricants can be well compared 
through the bar graph shown in Fig. 11. It is clearly vis-
ible that the addition of any mono or hybrid nanoparticles 
resulted in reduced average power consumption. Further, 
the results also reveal that among the mono nano-lubricants, 
the average power consumption was less with the metallic 
nanoparticles (N3) as compared to that with the non-metallic 
nanoparticles (N2) sample. But the average power consump-
tion is seen to be even less with either of the hybrid nano-
lubricants (N4 or N5) as compared to that with the any of 
the mono nano-lubricants (N2 or N3). Looking at the better 
power saving characteristic of mono metallic nanoparticle 
 (TiO2)-based nano-lubricant (N3), it seems that the higher 
proportion of  TiO2 in hybrid nano-lubricant would result 
in reduced average power consumption. But surprisingly, 
the hybrid nano-lubricant (N5) having higher proportion of 
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Fig. 10  Average refrigeration effect of VCR system with different 
lubricant samples in the compressor
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non-metallic nanoparticles  (SiO2) resulted in much better 
power saving among all the tested samples. It may be due 
to some potential synergistic effect produced with this com-
bination of metallic and non-metallic nanoparticle-based 
nano-lubricant (Vallejo et al. 2022). The average power 
consumption with N5 sample is about 8% lower than that 
with the neat POE oil. Almost spherical nano-sized particles 
(Fig. 6) dispersed in POE oil are expected to have reduced 
the contact surface between the rubbing parts, due to behav-
ing like nano-bearing (rolling effect, Fig. 12a) as observed 
by Rawat et al. (2018). The nano-sized particles also fill 
the micro-grooves (mending effect, Fig. 12b) on the con-
tacting surfaces, resulting in smoother mating surfaces and 
hence reducing the power loss due to friction as reported by 
Yilmaz (2020), Sanukrishna et al. (2019) and Rawat et al. 
(2018). The polishing effect produced by the nanoparticles 
by removing the surface asperities also contributes to make 
the mating surfaces smooth, as shown in Fig. 12d. Further, 
the higher value of high temperature viscosity of the hybrid 
nano-lubricant is reported to generate a thin protective film 
at the inner lining of the cylinder and the moving parts of 
the compressor, thereby reducing the friction substantially 
(Kumar and Singh 2016), as shown in Fig. 12c.

The difference in sizes of  TiO2 and  SiO2 nanoparticles in 
hybrid form might have played specific roles in the afore-
mentioned multiple mechanisms. Relatively big-sized  SiO2 
and small-sized  TiO2 nanoparticles might have filled the 
large and the small surface pits, respectively, which is also 
known as the mending effect, as shown in Fig. 12b. Accord-
ing to Hall–Petch strengthening effect, with a reduction in 
particle size, the mechanical properties such as yield strength 
and hardness of nanoparticles increase (Sanukrishna et al. 
2019; Xu and Dávila 2018). The small-sized  TiO2 nano-
particles might have played a role in reducing the surface 

asperities (polishing effect), leading to smoother surfaces 
and hence lesser friction between the mating surfaces, as 
shown in Fig. 12d. Furthermore, as reported by Qunji et al. 
(1997) and Sanukrishna et al. (2019), the better anti-wear 
and friction reducing capacity of mono  TiO2 and  SiO2 nano-
particles increase the tribological capabilities of the com-
pressor lubricant, when dispersed individually. This further 
leads to improving the tribological properties of compressor 
lubricant in hybrid form. The different lubrication mecha-
nisms as shown in the schematic diagram Fig. 12 are moti-
vated from Ali et al. (2019), Birleanu et al. (2022) and Hem-
mat Esfe et al. (2020).

Also in hybrid nanolubricant, the space filled by small 
 TiO2 nanoparticles between the large  SiO2 nanoparticles 
might have contributed to enhance the thermo-physical 
properties of the base lubricant as similarly observed by 
Hamid et al. (2018). This further leads to the enhancement 
in the thermal conductivity of hybrid nano-lubricant, as heat 
transfer becomes faster due to increase in the surface area, 
and it might have played vital role in power saving.

The decrease in values of the compressor suction and 
delivery characteristics such as pressures might also be 
responsible for lesser power consumption by the compressor 
as reported by Kumar et al. (2020). In addition to this, the 
enhanced thermal conductivity of nano-lubricants at higher 
temperature also played a dominating role in reducing the 
power consumption by the compressor (Kotia et al. 2018). 
This leads to transfer of heat in the evaporator and condenser 
in a more efficient way, resulting in reduced power consump-
tion by the compressor. As revealed from Fig. 9, the sample 
N5 shows the higher average thermal conductivity at higher 
temperature than the other lubricant samples. This might 
also be responsible for reduction in power consumption in 
case of hybrid nano-lubricant sample N5.

Coefficient of performance

The average COP values of the VCR system for different 
lubricant samples in the compressor are shown in Fig. 13. 
The average value of COP is observed to be higher with 
each nano-lubricant sample (mono or hybrid), as compared 
to that with the neat POE oil. The COP follows a similar 
trend for each tested lubricant sample as the refrigera-
tion effect. Further, the trend of power consumption also 
supports this trend of COP. Therefore, both factors acted 
favourably to improve the COP. The sample N5 showed the 
highest average COP among all the tested samples and was 
about 23% higher than that with neat POE oil (N1). This is 
obviously due to the combined effect of enhanced refriger-
ation effect and a reduced power consumption (Sabareesh 
et al. 2012; Senthilkumar et al. 2021b; Yilmaz 2020). The 
previous research work also experienced an improvement 
in the COP of the VCR system using different hybrid 
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Fig. 11  Average power consumption by the VCR system with differ-
ent lubricant samples in the compressor
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nano-lubricants with various combinations of nanoparti-
cles (Karthick et al. 2020; Senthilkumar et al. 2020a, b, 
2021a, b). The present work shows much better result of 
COP as compared to a previous work of Saravanan and 
Vijayan (2018). The authors used the same compressor 
lubricant (POE oil) and ratios of mono and hybrid nano-
particles  (TiO2 and  Al2O3) with a total of 0.1  gL−1 base 
oil. The maximum COP enhancement was observed to be 
11.89% as compared to that of base oil, which was about 
48% lower than that in the present work.

Pressure ratio analysis

Figure 14 shows the average pressure ratio of the compres-
sor for different lubricant samples. The results reveal that 
addition of nanoparticles in the compressor lubricant (either 
mono or hybrid form) offered reduced pressure ratio. Among 
all the tested samples, the highest reduction in average pres-
sure ratio of about 6% was obtained when the compressor 
was charged with hybrid nano-lubricant sample N5 com-
pared to that with neat POE oil (N1). It may be due to the 
carrying of nanoparticles by the refrigerant, which enhances 
the heat carrying capacity of the refrigerant. It reduces the 
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Fig. 12  Different lubricant mechanisms of: a rolling effect, b mending effect, c protective thin film and d polishing effect
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pressures at the compressor suction and delivery, leading to 
a decrease in pressure ratio as reported by Yilmaz (2020). 
Further, the higher thermal conductivity of the N5 sample 
also supports this observation, as it results in a greater drop 
in pressure ratio compared to the other samples.

Pull‑down temperature

The pull-down temperature reduced after a specific time. 
Figure 15 shows the average pull-down temperature of 
the VCR system for all the prepared samples of compres-
sor lubricants. The pull-down temperature achieved with 
each sample was noted after a run time of 180 min. The 

results reveal that the average pull-down temperature val-
ues obtained with mono or hybrid nano-lubricant samples 
N2–N5 are much lower than that with neat POE oil (sample 
N1). The hybrid nano-lubricant sample N5 offered the low-
est pull-down temperature amongst all the tested lubricant 
samples. This could be due to enhanced refrigeration effect 
of the VCR system by incorporating hybrid nanoparticles 
into the compressor lubricant as discussed in the previous 
section. The pull-down temperature values with each of the 
tested lubricant samples are in accordance with the results 
of the refrigeration effect. A previous research work (from 
literature) also shows similar results of lower pull-down 
temperature of hybrid nano-lubricant as compared to the 
mono form and neat base oil (Senthilkumar et al. 2020a; 
Senthilkumar et al. 2021b).

Conclusions

In this work, the effect of low concentration metallic oxide 
 (TiO2) and non-metallic oxide  (SiO2) nanoparticles incorpo-
rated in compressor lubricant (POE oil) of the VCR system 
is investigated. The VCR system used an HC refrigerant, 
R600a and its overall performance was investigated. The 
conclusions drawn are as follows:

The FE-SEM and XRD were utilized to confirm the gran-
ular shape and crystal structure of each nanoparticle. Eco-
friendly HC refrigerant R600a and prepared nano-lubricants 
with different concentrations of  SiO2 and  TiO2 nanoparticles 
(mono and hybrid form) in POE oil were retrofitted suc-
cessfully to existing HFC-based VCR system. Among all 
the tested nano-lubricant samples, maximum improvement 
in refrigeration effect, power saving and hence COP were 
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ferent lubricant samples in the compressor
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observed with the hybrid nano-lubricant sample N5. The 
combined effect of nano-sized particles filling the micro-
grooves on the contacting surfaces and the improved high 
temperature viscosity and thermal conductivity and least 
pressure ratio of sample N5 are expected to have played a 
significant role. The average pull-down temperature in the 
VCR system was observed to be reduced with the contri-
bution of mono and hybrid nanoparticles in compressor 
lubricant. It was found to be the lowest with hybrid sample 
N5 as compared to all other tested samples. In each aspect, 
the performance of metallic oxide nanoparticles  (TiO2, i.e. 
sample N3) was observed to be better than that of the non-
metallic oxide nanoparticles  (SiO2, i.e. sample N2) when 
used in mono form. Whereas in hybrid form (sample N5), 
the higher proportion of non-metallic oxide nanoparticles 
 (SiO2) resulted in better performance in VCR system. The 
combined effect of improved tribological and thermal prop-
erties (viscosity and thermal conductivity) due to dispersion 
of hybrid nanoparticles of  TiO2/SiO2 and the excellent heat 
transfer performance was expected to have played a syner-
gistic role through the N5 hybrid nano-lubricant sample.
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