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Abstract
The distinctive enhancement of thermal efficiency and improvement of the energy exchange rate as applied in the dynam-
ics of fuels and cooling in vehicles have led to a growing knowledge of hybrid nanofluid. However, the idea of water-based 
nanoliquid incorporating triple different forms of solid nanoparticles with different densities and outlines (known as ternary 
hybrid nanofluid) remains fantastic. In this work, we investigated the influence of nonlinear thermal radiation on the MHD 
(magnetohydrodynamics) flow of a couple stress water-based nano, hybrid, and ternary hybrid nanofluids on a stretch-
ing sheet. The nanoparticles SiO2, TiO2, and Al2O3 are immersed in base fluid H2O resulting in ternary hybrid nanofluid 
(SiO2 + TiO2 + Al2O3/H2O). Magnetic dipole effects are also factored into the model equation. Employing suitable similarity 
parameters, the dimensional equations of motion and heat that characterize the aforesaid transfer mechanism were transformed 
into nonlinear differential equations. The homotopy analysis method (HAM) is used to solve the transformed model set of 
equations via Mathematica software. Various graphs are used to evaluate and assess the effects of various identifying model 
factors on (nano, hybrid, and ternary hybrid nanofluid) velocity and temperature fields. In the presence of a magnetic dipole, 
a rise in � reduces the fluid velocity and increases the temperature fields. Furthermore, the estimated values of the engineer-
ing quantities of importance ( Cf , Nu ) are tabulated and explained. It is also be observed that skin friction declines with the 
larger amount of the nanoparticle volume fractions �SiO2

,�TiO2
,�Al2O3

 . Some potential uses for this research include high-
temperature and cooling processes, aerospace technologies, medications, metallic coatings, and biosensors, to name a few.

Keywords  Couple stress · HAM · Magnetic field · Nonlinear thermal radiation · Magnetic dipole · Ternary-hybrid 
nanofluid

Introduction

Nanofluids have recently been acknowledged as having a 
substantial impact on a wide range of technological indus-
tries, including industrial production, scientific investigation, 
and various engineering sectors due to their diverse utili-
zations and applications. Advanced freezing mechanisms, 
fuel production, modern technique of drugs transportation, 
various technical machinery and devices, sector of nano-fab-
rication, and the energy transfer and cooling of various elec-
tronics circuit are only a few examples in this direction. On 
the basis of such a wonderful outcome, a significant amount 
of research into the transportation of energy and flow prop-
erties has been carried out all over the world. Researchers 
have attempted a variety of methods to increase convection 
heat transmission in liquids via putting some nanomaterials 
like Cu, Ag, SiO2, Fe3O4, Al2O3, TiO2, CNTs, graphene, 
and various other solid materials in common base fluids 
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like kerosene oil, water, CH3OH, blood, C2H6O2, and many 
more. In this direction, Ahmad et al. (2021) and Yahya et al. 
(2021) and many others scientists have produced remarkable 
research works on nanofluid flow in past few years.

In this consequence, the situation of an exhaustive mix-
ture of conventional fluids containing two sorts of nano-
materials (hybrid nanofluid) has been identified after the 
extensive exploration of the above-mentioned fluid (nano-
fluid). Thermal conductivities, heat, and concentration of 
molecular densities, as well as the thicknesses and dimen-
sion of nanoparticles are all used to characterize the ther-
mal performance of hybrid nanofluids. For hybrid nano-
fluids, there is no special way or formula for determining 
the thermal conductivity. For ethylene glycol base hybrid 
nanoliquids, Jamei et al. (2020) described conjugate heat 
transfer assessment. Using a two-step technique, Xian et al. 
(2020) synthesized powerful hybrid nanoliquids by combin-
ing the TiO2 and graphene nanoparticles into purified water. 
The numerical calculation of stagnation point’s mobility of 
Ag + CuO/H2O hybrid nanoparticles via an extending sur-
face was explored by Arani and Aberoumand (2020). Roy 
et al. (2020) investigated the effect of viscoelastic distribu-
tion on the motion and energy transmission of a Cu − Al2O3/
water hybrid nanofluid via a rotating drum for both assistive 
and resistive movements. In the literature, various research-
ers have worked on the flow and energy transmission of 
hybrid nanofluids, with important applications in engineer-
ing and science, including (Algehyne et al. 2020; Gul et al. 
2021; Sharma et al. 2020; Mourad et al. 2022; Akbar et al. 
2017; Said et al. 2022; Muhammad and Nadeem 2017; Chu 
et al. 2021). The ternary hybrid nanofluid, homogeneous 
mixing of three kinds of nanomaterials containing a unique 
base liquid, was recently introduced; however, the results 
of a few investigations appear interesting and informative. 
Mousavi et al. (2019) explored at the subtleties of CuO, 
MgO, and TiO2 transport in H2O. In general, the charac-
teristics of ternary hybrid nanofluids is closely resembled 
those of a Newtonian liquid. Increased temperature dimin-
ishes the concentration of tri-hybrid nanofluids proportion-
ally. Through the inclusion of various types of nanoparticles, 
the definite heat capacities of the common functional fluid 
can be improved. Sahoo and Kumar (2020) analyzed the 
various thermophysical characteristics of H2O containing 
Al2O3, CuO, and TiO2-ternary hybrid nanofluid at 35–50 °C. 
Some other researchers were interested in the related pub-
lished work on ternary hybrid nanofluid and are Manjunatha 
et al. (2021), Nazir et al. (2021), and Wang et al. (2022a, 
b). Thermal converters, storage of food, bioscience, storage 
of solar collectors, ventilation mechanism, transportation, 
and double windowpanes are only few of the areas where 
this research has made a significant impact. Furthermore, 
this research has substantial practical implications in poly-
mer nanocomposites manufacture, fuel reservoirs, advance 

cooling system, groundwater transportation, and thermal 
insulation.

Nanofluids with the MHD (magnetohydrodynamics) 
phenomenon are widely known for their ability to control 
fluid flow and enhance the energy efficiency of electrically 
charged liquids. Furthermore, when manufacturing opera-
tions are conducted at extreme temperatures, the impact of 
thermally nonlinear radiation gets much more important 
than the impact of linearly thermal radiations, and hence, it 
performs a critical part in the developed thermal properties. 
Fiberglass forming, melting and tinning copper cables, form-
ing of crystallization, steam turbines, metallurgical work, 
designing of modern equipment, nuclear power stations, 
fibers turning and continual heating and cooling, and many 
other uses have developed. Emphasizing the importance 
of such investigation, Laxmi and Shankar (2016) solved 
numerically the nonlinear thermal radiations impression on 
MHD nanofluid motion through a porous extending surface. 
Khan et al. (2018) numerically introduced the new idea of 
activation energy of MHD convectional movement over a 
stretchable surface including nonlinearly thermal radiations. 
Narayana et al. (2021) deliberated the effect of nonlinear 
thermal radiations and numerical results of MHD couple 
stress Casson nanofluid over an extending sheet. Gireesha 
et al. (2021) contributed significantly to the study of nano-
fluid flows via a permeable stretching surface while account-
ing for the consequence of nonlinear radiations. Similarly, 
the thermal radiations linked through a magnetic field in 
the form of infrared radiations (IR) can also be used for 
biomedical purposes. Therefore, in this regard, Hayat et al. 
(2021) recently stated in their study that infrared radiation 
delivered via electromagnetic waves is beneficial in the 
medication of pulmonary and esophageal cancer, gastric 
acid reflux, muscle clotting, and skin problems. Naz et al. 
(2020) investigated the Carreau nanofluid flow through a flat 
cylinder along with suspended gyrotactic microorganisms 
and an inclined MHD.

In the field of fluid dynamics, the liquid flowing through 
a stretchable surface has formed a classical problem due to 
the existence of a closed-form approach, which is extremely 
rare. In addition, the study of fluid and heat exchange on an 
elastic media is important because of its numerous impli-
cations in technology and manufacturing procedures. Sev-
eral scientists were impressed by these technological uses 
to explore the various fluid movements through expanding 
surfaces. The stream of bioconvection nanoliquid through a 
stretchable medium including the condition of anisotropic 
slip was examined by Amirsom et al. (2019). Sohail et al. 
(2020) examined the mixed convection flow of Casson fluid 
over stretching sheet with permeable medium. Using the 
Tiwari-Das idea, Lund et al. (2021) illustrated the viscous 
dissipation flow of hybrid nanoliquid. Also, the non-Fourier 
energy flux on nanoliquid flow across an extending surface 
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was investigated by Gowda et al. (Punith Gowda et al. 2021). 
Khan et al. (2021) experimentally inspected the influence of 
a hybrid nanoliquid across a shrinking and extending disk. 
Scientists (Wu et al. 2011; Berrouk et al. 2008) have done 
some outstanding work on such discipline.

After examining relevant literature, the central goal of 
the current investigation is to study the nonlinearly changing 
thermal radiation and the influence of a magnetic dipole on 
the stream of a couple stress ternary hybrid nanofluid along a 
stretchable surface. The originality of current research work 
is displayed as follows.

	 i.	 The ternary hybrid nanofluid with magnetic dipole is 
considered.

	 ii.	 The couple stress are terminologies considered to sus-
tain the uniformity of the ternary hybrid nanofluids.

	 iii.	 The nonlinear thermal radiation is studied to improve 
the thermal analysis more precisely.

	 iv.	 The comparative study of SiO2/H2O, TiO2 + Al2O3/
H2O, and SiO2 + TiO2 + Al2O3/H2O nano and hybrid 
nanofluids on the momentum and thermal boundary 
layer is explored.

We used the similarity variables to translate the leading 
PDEs into a system of coupled ODE’s form. The non-
dimensional governing expressions are tackled by HAM 
technique and the outcomes of model problems are dis-
played as diagrams and graphs. The tabular forms are used 

to analyze the technical parameters such as Cf and Nux . 
The current study could be beneficial in a lot of disci-
plines, including high-temperature and cooling technolo-
gies, aerospace technologies, pigments, medications, and 
biosensors, to mention just some. The composition of ter-
nary hybrid nanofluid is illustrated in Fig. 1a.

Mathematical formulation

The mathematical analysis illustrates the ternary hybrid 
nanofluid flow through an extending sheet. The nanoparti-
cles SiO2, TiO2, and Al2O3 are immersed in base fluid H2O 
resulting ternary hybrid nanofluid (SiO2 + TiO2 + Al2O3/
H2O). The ternary hybrid nanofluid (SiO2 + TiO2+Al2O3/
H2O) is flowing in a positive x-axis direction from left 
to right. The magnetic dipole is simply taken along the 
y-direction at a range c with a uniform magnetic field, 
as shown in figure. Because the material of surface  is 
extensible, it can produce fluid movement when it is 
extended. Assume that the expanding velocity of sheet is 
Uw = S x . As in the present study, O(u) = O(1) = O(x) and 
O(v) = O(∞) = O(y) , the accepted boundary layer assump-
tion in Wu et al. (2011) is used. The magnetic field effect is 
depicted in the figure by the round arcs containing arrows. 
Configuration of flow and physical geometry is explained 
and illustrated in Fig. 1b.

Fig. 1   a Composition of ternary hybrid nanofluid. b System of coordinates and physical configuration of flow model
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The assumptions and conditions of model

The present mathematical analysis is taken into considera-
tion under some specific presumptions:

•	 Nonlinear thermal radiation
•	 A steady, incompressible and 2D flow.
•	 Magnetic dipole.
•	 Couple stress.
•	 SiO2 + TiO2 + Al2O3 nanoparticles are constantly dis-

persed in H2O.

Governing model expressions

The basic flow and heat transfer equations using the con-
ventional notations are expressed below (Muhammad and 
Nadeem 2017; Nazir et al. 2021) and (Andersson and Valnes 
1998)

With boundary conditions

Here velocities in x and y-axis are denoted u and v . In 
Eq.  (2), the symbols �thnf ternary hybrid nanofluid den-
sity,�hnf ternary hybrid nanofluid viscosity, �f viscosity 
of nanofluid,  P pressure, H is the magnetic field, and M 
magnetizations of magnetic field, �∗ couple stress material 
constant. In Eq. (3), the symbols show  

(
�Cp

)
thnf

 ternary 
hybrid nanofluid specific heat, Khnf ternary hybrid nanofluid 
thermal conductivity, T  temperature field, k∗ mean absorp-
tion constant, and �∗ Stefan Boltzmann constant. In Eq. (4), 
the symbols Tc , T∞ and Tw curie, ambient and stretching wall 
temperatures, S dimensionless constant. Additionally, it is 
assumed that the fluids temperature is T = T∞ , such that 
Tw < T∞ < Tc.

Magnetic dipole

Whenever a magnetic field is subjected to a spreading 
surface, the flow of nanofluid is altered, producing in a 

(1)
� u

� x
+

� v

� y
= 0,

(2)

�thnf

(
u
�u

�x
+ v

�u

�y

)
= −

�P

�x
+ �fM

�H

�x
+ �thnf

�2u

�y2
− �∗

�4u

�y4
,

(3)
(
�Cp

)
thnf

(
u
�T

�x
+ v

�T

�y

)
= kthnf

�2T

�y2
−

(
u
�H

�x
+ v

�H

�y

)
�thnfT

�M

�x
+

16

3

(
�∗T3

∞

k∗
�2T

�y2

)
.

(4)
u|y=0 = Sx = Uw, v|y=0 = 0, T|y = 0 = Tw,

u|y→∞ → 0, T|y→∞ → T∞ = Tc.

magnetic field domain that is symbolized by and quanti-
tatively described as in Muhammad and Nadeem (2017); 
Andersson and Valnes 1998)

In Eq. (5), the leading pint of the magnetic field is des-
ignated by �1 . Also, the displacement of magnetic dipole 
is represented by c.

In the x- and y- directions, the horizontal and vertical 
components of (H) are stated as

We acquire aforementioned two expressions for mag-
netic field elements by differentiating Eq. (5) with regard 
to x and y , respectively. Because the magnetic force has a 
direct relationship with the gradient of H , hence H can be 
stated mathematically as

(5)�1 =

(
x

x2 + (c + y)2

)
�1

2�
.

(6)

x - component of H ∶
�H

�x
= −

��1

�x
=

{
x2 − (c + y)2

(
x2 + (c + y)2

)2
}

�1

2�
,

(7)

y - component of H ∶
�H

�y
= −

��1

�y
=

{
2 (c + y)x

(
x2 + (c + y)2

)2
}

�1

2�
.

Using Eqs. (6) and (7) in Eq. (8), we get the following 
equations:

Considering changes in temperature can induce altera-
tions in magnetism, the effects on magnetism can be 
described as

Here, the magnetization is denoted by M , whereas the 
pyro-magnetic coefficient is denoted by K1.

(8)H =

√(
��1

�x

)2

+

(
��1

�y

)2

.

(9)
�H

�x
=

�1

2�

2x

(y + c)4
,

(10)
�H

�x
=

1

2�

(
4x2

(y + c)5
−

2

(y + c)3

)
�1.

(11)M = K1

(
T − T∞

)
.
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Transformation analysis

The dimensional model expressions of motion and energy 
are transformed into dimensionless shapes utilizing simi-
larity transformations mentioned below (Muhammad and 
Nadeem 2017) and (Andersson and Valnes 1998)

Therefore, Θ1(�, �) and Θ2(�, �) implies the non-dimen-
sional temperature variables, non-dimensional stream func-
tion f (�) . � and � are the non-dimensional and continuous 
coordinates defined as

The function presented in Eq.  (12), directly satisfy 
Eq. (1), and the components of velocity are as follows:

Tri‑hybrid nanomaterial and base fluid properties

The thermophysical properties of tri-hybrid nanofluid are 
stated as (Manjunatha et al. 2021; Nazir et al. 2021) and 
(Wang et al. 2022a) (Table 1)

(12)

�(�, �) =

(
�f

�f

)
�f (�), Θ(�, �) =

Tc − T

Tc − Tw
= Θ1(�) + �2Θ2(�).

(13)� = y

(
�fS

�f

) 1

2

, � = x

(
�fS

�f

) 1

2

.

(14)

u = Sx f �(�) =
��

�y
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(
S�f

) 1

2 f (�) =
��

�x
.

(15)
�thnf
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,
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(
1 − �SiO2

)[(
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){(
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)
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]
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,
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�
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SiO2�

�cp
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+
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1 − �SiO2
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⎫
⎪⎬⎪⎭
+ �TiO2

�
�cp

�
TiO2�

�cp
�
f

⎤
⎥⎥⎥⎦
,

(18)

kthnf

khnf
=

(
kAl2O3

+ 2khnf − 2�Al2O3

(
khnf − kAl2O3

)

kAl2O3
+ 2khnf + �Al2O3

(
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)
)
,
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(
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(
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)

kTiO2
+ 2knf + �TiO2

(
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)
,

knf
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=

(
kSiO2
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(
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)

kSiO2
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(
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(19)
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3

�
�Al2O3
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− 1

�
�Al2O3�

�Al2O3
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�
−

�
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,
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�
−

�
�TiO2
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3
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− 1
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�f
+ 2

�
−

�
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�
�SiO2

⎤⎥⎥⎥⎦
.

Table 1   Nanoparticles and H2O thermophysical characteristics (Man-
junatha et al. 2021; Nazir et al. 2021; Nasir et al. 2018)

Property SiO2 TiO2 Al2O3 H2O

� (kg m−3) 2270 4250 6310 997.1

k (Wm−1 K−1) 1.4013 8.953 32.9 0.6071

� (S m−1) 3.5 × 106 2.6 × 106 5.96 × 107 5.5 × 10−6

Cp (JK
−1 g−1 K−1) 730 711 686.2 4179

�f × 105 (K−1) 1.02 0.9 0.85 21
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Both Eqs. (2), (3) become in form of ordinary differential 
equations after inserting the above-mentioned thermophysi-
cal parameters Eqs. (15–19) and transformations Eq. (14) 
in it

The corresponding transformed boundary condition are

Table 2 lists the dimensionless formulas for all physical 
parameters.

The interest physical quantities

For the present model, the Cf and Nux are key engineering 
physical parameters described as

(20)

f ��� −
�thnf

� f

� f

�thnf

[
f �2 − ff �� +

2� Θ1

�thnf
(� + �∗)

4

]
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(21)
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1
+
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(�Cp)f

[
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f

(
fΘ�

1
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)
+
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(
Θ1 − �

)
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3

− 4�f �2
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4
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[
Pr
f

(
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2
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)
−
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3
+ ��

(
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)( 2f �

(� + �∗)
4
+

4f

(� + �∗)
5

)
− �f ��2

]
= 0.

(23)
f (0) = 0, f �(0) = 1,Θ1(0) = 1,Θ2(0) = 0,

f �(∞) = 0,Θ1(∞) = 0,Θ2(∞) = 0.

whereas Rex =
xUw(x)

Vf

=
Sx2

Vfl
 , reveals the Reynold's number, 

which is dependent on the rate of change of displacement 
Uw(x) as it extends. Also, coefficient of skin friction is rep-
resented as Re

1

2

x Cf  and Nusselt number is Re
−

1

2

x Nux.

(24)

1

2
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1
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2
(0)

)
,

Table 2   Model parameters and their mathematical expressions

Symbol Model parameter Mathematical expression

� Ferrohydrodynamic interaction �

2�

�0K(Tc−Tw)�

�2

Pr Prandtl number �∕�

� Curie temperature T∞

Tc−Tw

� Expression for viscous dissipation S�2

�K(Tc−Tw)

K∗ Couple stress parameter �∗S3

Uw�f

�∗ Dimensionless distance parameter √
S�c2

�

Θw Temperature ratio parameter Tw

T∞

Rd Thermal radiation
4
�∗T3

∞

k∗k

� Kinematic viscosity �∕�

� Thermal diffusivity of fluid k∕�cp

Fig. 2   Variations in f �(�) with various values of �

Solution methodology

In this study, HAM is used to solve the nonlinear ordinary 
momentum and heat equation under permissible boundary 
conditions. The solution of extremely nonlinear problems is 
obtained using this method. When compared to perturbation 
approaches and other traditional investigative procedures, 
the HAM shows good performance. Because HAM provides 
us with a great deal of freedom in terms of choosing the form 
of mathematical expression of linear subproblems. Further-
more, the HAM operates independently of whether or not 
there are any small or massive physical variables in figuring 
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out equation with boundary/initial constraints. Hence, Math-
ematica software is utilized for this determination. For the 
boundary value problem, the corresponding linear operators 
and their associated starting guesses are (Nasir et al. 2018)

Therefore, inform of linear operators

Therefore, the linear operators Lf, LΘ1
 and LΘ2

 are indi-
cated as

where km(m = 1, 2… , 9) are arbitrary constant.

Results and discussion

In this research work, we utilized three different types of 
nanoparticles SiO2 + TiO2 + Al2O3 in base fluid H2O that 
flows over a stretching surface. In the analytical inspection 
of the current mathematical model, the influences of ferrohy-
drodynamic interaction � , magnetic field strength �∗ , nano-
particle concentration parameter � , couple stress Parameter 
K∗ , Prandtl number Pr , thermal radiation Rd parameter are 
considered under some specific boundary conditions. For 
various values of model variables, numerical results are 
given using graphs and tables. The default range of fluid 
flow variables are taken on published works ((Muhammad 
and Nadeem 2017; Manjunatha et al. 2021; Nazir et al. 2021; 
Wang et al. 2022a)) as � = 10 , �∗ = 0.5 , K∗ = 0.1 , Pr = 6.7 , 
Rd = 0.2, � = 0.01 , and � = 0.1.

Figure  2 depicts a comparison of SiO2/H2O nano-
f luid, TiO2 + Al2O3/H2O hybrid nanof luid, and 

(26)f (�) = 1 − e−� , Θ1(�) = e−� , Θ2(�) = �e−� .

(27)Lf (f ) = f v, LΘ1
(Θ1) = Θ��

1
, LΘ2

(Θ2) =Θ
��

2
.

(28)
Lf (k1 + k2� + k3�

2 + k4�
3 + k5�

4) = 0,

LΘ1
(k6 + k7�) = 0, LΘ2

(k8 + k9�) = 0,

SiO2 + TiO2 + Al2O3/H2O ternary hybrid nanofluid on f �(�)
(velocity distribution) as ferrohydrodynamic parameter 
( � ) is varied for various values. The f �(�) profile reduces 
as the magnitude of � rises. In general, the availability of 
dimensionless parameters such as � ,  � and � is required 
to perceive the ferromagnetic influence on the SiO2/
H2O nanofluid, TiO2 + Al2O3/H2O hybrid nanofluid and 
SiO2 + TiO2 + Al2O3/H2O ternary hybrid nanofluid flows. 
Additionally, the impact of magnetic dipole collects parti-
cles of the fluid which enhances nanofluid viscosity, caus-
ing a declination in f �(�) distribution to be detected. The 

Fig. 3   Variations in Θ
1
(�) with various values of �

Fig. 4   Variations in Θ
2
(�) with various values of �

Fig. 5   Variations in f �(�) with various values of �

Fig. 6   Variations in Θ
1
(�) with various values of �
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fluid's f �(�) is significantly influenced by the high magni-
tude of � throughout, and the value of f �(�) falls quicker 
in the presence of SiO2 + TiO2 + Al2O3/H2O ternary hybrid 
nanofluid as compared to TiO2 + Al2O3/H2O hybrid nano-
fluid and SiO2/H2O nanofluid. Similarly, Fig. 3 illustrates 
the effect of � on Θ1(�) heat transmission in the context of 
SiO2/H2O nanofluid, TiO2 + Al2O3/H2O hybrid nanofluid and 
SiO2 + TiO2 + Al2O3/H2O ternary hybrid nanofluid. In this 
case, we observe that an increment in � enhances the Θ1(�) 
profile. Physically, increasing � causes friction within the 
fluid, which transforms mechanical energy to heat energy. 
Therefore, the Θ1(�) profile becomes more prominent. More-
over, � has a significant effect on Θ1(�) profile and such effect 
grows more rapidly in SiO2 + TiO2 + Al2O3/H2O ternary 
hybrid nanofluid as compared to TiO2 + Al2O3/H2O hybrid 
nanofluid and SiO2/H2O nanofluid. At other heat transmis-
sion profile Θ2(�) , an identical effect has been demonstrated 
for � with a little change in behavior for SiO2 + TiO2 + Al2O3/
H2O ternary hybrid nanofluid, TiO2 + Al2O3/H2O hybrid 
nanofluid and SiO2/H2O nanofluid, as illustrated in Fig. 4. 
Figures 5, 6 and 7 present the effects of � (magnetic field 
strength factor) on f �(�) velocity field and temperatures fields 
Θ1(�) , Θ2(�) in presence of SiO2 + TiO2 + Al2O3/H2O ternary 
hybrid nanofluid, TiO2 + Al2O3/ H2O hybrid nanofluid, and 
SiO2/H2O nanofluid.

Figure 5 illustrates a f �(�) profile assessment of SiO2/
H2O nanofluid, TiO2 + Al2O3/H2O hybrid nanofluid, and 
SiO2 + TiO2 + Al2O3/H2O ternary hybrid nanofluid, for 
varying values of the � . The f �(�) of these fluids tends to 
decrease for high values of � . Physically, for growing values 
of � , a resistive force is generated, and as a result of such 
force, the f �(�) profile within the boundary layer is reduced. 
Also, the SiO2/H2O nanofluid exhibits a faster reduction 
in f �(�) profile than TiO2 + Al2O3/H2O hybrid nanofluid 
and SiO2 + TiO2 + Al2O3/H2O ternary hybrid nanofluid, as 
shown in the diagram. In Fig. 6, the effect of � on Θ1(�) pro-
file is seen. We can see that Θ1(�) is an increasing function in 
regard to � . Because the scattering nanoparticles of ternary 
hybrid nanofluid are more impactful to magnetic field than 
the hybrid and nanofluid. The heat transmission effect of the 
ternary hybrid nanofluid is relatively higher than the both 
hybrid and nanoliquid, as density of fluid will improve the 
intermolecular overlap and thus boost the kinetic energy, 
which will increase the Θ1(�) profile. Similarly, in Fig. 7, 
Θ2(�) demonstrates an identical effect for � just a small mod-
ification in behavior for SiO2 + TiO2 + Al2O3/H2O ternary 
hybrid nanofluid, TiO2 + Al2O3/H2O hybrid nanofluid, and 
SiO2/H2O nanofluid. Figures 8, 9 and 10 demonstrate the 
significance of � (nanoparticles’ volume concentration) on 
f �(�) velocity field and temperatures fields Θ1(�) , Θ2(�) in 

Fig. 7   Variations in Θ
2
(�) with various values of �

Fig. 8   Variations in f �(�) with various values of �

Fig. 9   Variations in Θ
1
(�) with various values of �

Fig. 10   Variations in Θ
2
(�) with various values of �
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presence of SiO2 + TiO2 + Al2O3/H2O ternary hybrid nano-
fluid, TiO2 + Al2O3/H2O hybrid nanofluid, and SiO2/H2O 
nanofluid.

Figure 8 shows that as the value of � is enlarged, the 
f �(�) velocity of the existing fluid (nano, hybrid, and ter-
nary hybrid nanofluid) declines. As we proceed away from 
the stretching surface, the f �(�) velocity decreases. Actual-
ity, boosting the � parameter leads the ferromagnetic fluid 
to condense, producing resistance in fluid motion and, as a 
result, the velocity of liquid decreases. Consequently, this 
figure shows that the velocity for TiO2 + Al2O3/H2O hybrid 
nanofluid and SiO2/H2O nanofluid are slower the veloc-
ity than SiO2 + TiO2 + Al2O3/H2O ternary hybrid nano-
fluid in terms of flow rate. Figure demonstrates the effect 
of � parameter on the Θ1(�) temperature field of SiO2/
H2O nanofluid, TiO2 + Al2O3/H2O hybrid nanofluid, and 
SiO2 + TiO2 + Al2O3/H2O ternary hybrid nanofluid. The 
image shows that everywhere in the boundary layer region, 
there is a direct relationship between � and Θ1(�) . Accord-
ing to the physical interpretation, SiO2 + TiO2 + Al2O3/
H2O ternary hybrid nanofluid has higher thermal conduc-
tivity than SiO2/H2O nanofluid, TiO2 + Al2O3/H2O hybrid 
nanofluid. Figure  10 illustrates an equivalent result of 
Θ2(�) for SiO2 + TiO2 + Al2O3/H2O ternary hybrid nano-
fluid, TiO2 + Al2O3/H2O hybrid nanofluid, and SiO2/H2O 

nanofluid with only a small variation in performance of fluid. 
Figure 11 depicts the effect of the K∗ (couple stress factor) 
on the f �(�) velocity profile of SiO2 + TiO2 + Al2O3/H2O 
ternary hybrid nanofluid, TiO2 + Al2O3/H2O hybrid nano-
fluid, and SiO2/H2O nanofluid within the boundary layer. 
Increasing the values of K∗ produces a reduction in hybrid 
nanofluid movement due to a rise in drag force, which cor-
relates to an apparent drop in fluid viscosity, as anticipated 

Fig. 11   Variations in f �(�) with various values of K∗

Fig. 12   Variations in Θ
1
(�) with various values of Rd

Fig. 13   Variations in Θ
2
(�) with various values of Rd

Fig. 14   Skin friction under the influence of nanoparticle volume frac-
tions

Fig. 15   Heat transfer rate under the influence of nanoparticle volume 
fraction
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from the figure. Physically, the flow is delayed as a result 
of the addition of viscous effects which is generated by K∗ , 
resulting in reduction in SiO2 + TiO2 + Al2O3/H2O ternary 
hybrid nanofluid, TiO2 + Al2O3/H2O hybrid nanofluid, and 
SiO2/H2O nanofluid velocity profiles.

Figure  12 illustrates the characteristic of thermal 
profile Θ1(�) for a different set of values Rd (radiation 
parameter) in presence of SiO2 + TiO2 + Al2O3/H2O ter-
nary hybrid nanofluid, TiO2 + Al2O3/H2O hybrid nano-
fluid, and SiO2/H2O nanofluid. There is a direct relation-
ship between Θ1(�) and Rd clearly as shown in the graph. 
When SiO2 + TiO2 + Al2O3/H2O ternary hybrid nanofluid 
is utilized instead of TiO2 + Al2O3/H2O hybrid nanofluid, 
and SiO2/H2O nanofluid, therefore, the profiles show that 
thermal radiation has a greater impact on increasing the 
nanofluid temperature. Physically, strengthening radiative 
features stimulate the molecule mobility within the fluid, 
resulting in heat energy being converted through frequent 
collisions between nanoparticles. As a result, the Θ1(�) tem-
perature has improved. With only a minor difference in fluid 
outcomes for Θ2(�) thermal profile. Figure 13 also a similar 
conclusion like Θ1(�) for SiO2 + TiO2 + Al2O3/H2O ternary 
hybrid nanofluid, TiO2 + Al2O3/H2O hybrid nanofluid, and 
SiO2/H2O nanofluid.

Skin friction declines with the larger amount of the nan-
oparticle volume fractions �SiO2

,�TiO2
 and �Al2O3

 . The tri-
hybrid nanofluid creates more resistive forces to restrict the 
fluid motion and this happens when more nanoparticles are 
added to the base fluid. The comparison is shown in Fig. 14. 
The heat transfer rate varies with the variation of nanopar-
ticle volume fractions �SiO2

,�TiO2
,�Al2O3

 , as displayed in 
Figs. 15 and 16. The obtained results show that heat trans-
fer rate improves with the larger amount of the nanoparticle 
volume fraction, as shown in Fig. 15. The improvement in 
the heat transfer rate is more prominent using the tri-hybrid 
nanofluids and this happens due to the effective thermal 
conductivity of �SiO2

,�TiO2
,�Al2O3

 . The percentage-wise 
enhancement in the heat transfer rate as displayed in Fig. 16 

shows that tri-hybrid nanofluid is more effective to increase 
the thermal efficiency of the fluid. In fact, from the experi-
mental results, �Al2O3

 thermal conductivity provides a greater 
effect than �TiO2

 and �SiO2
 . Therefore, the thermal perfor-

mance increases with the stable dispersion of these three 
different types of nanoparticles in a single base fluid. Com-
parison for various values of Nux is presented in Table 2.

Conclusion

The flow and heat transport comparison of water base nano-
fluid, hybrid nanofluid, and ternary hybrid nanofluid across 
a stretched sheet is explored theoretically and numerically 
in this research work. Nonlinear thermal radiation and mag-
netic dipole effects are also considered. SiO2, TiO2, and 
Al2O3 are three nanoparticles studied in this work with H2O 
as a base liquid. With the help of HAM, the boundary value 
problem is addressed analytically. The following results are 
some of the most noteworthy findings of the current work:

•	 In the presence of a magnetic dipole, f �(�) velocity of 
nano, hybrid, and tri-hybrid nanofluid decline as the 
value of volume concentration of nanoparticle ( � ) rises, 
while the temperature fields Θ1(�), Θ2(�) show opposite 
trend. The velocity and temperature of turnery hybrid 
nanofluid present prominent results.

•	 By enhancing the values of � , the velocities of nano, 
hybrid, and tri-hybrid nanofluid decreases where the tem-
perature fields increase more quickly.

•	 The Θ1(�), Θ2(�) fields of fluid gradually decline by 
improving the Prandtl number, whereas it enhances by 
increasing the values of thermal radiation.

•	 Skin friction declines with the larger amount of the nano-
particle volume fractions �SiO2

,�TiO2
,�Al2O3

 . The com-
parisons among these fluids are shown graphically.

•	 The heat transfer rate improves with the larger amount of 
the nanoparticle volume fraction. Also, prominent results 
presented by using the tri-hybrid.

•	 Therefore, the thermal performance increases with the 
stable dispersion of these three different types of nano-
particles in a single base fluid.

•	 We may deduce from the preceding study and graphs that 
the heat transfer rate in tri-hybrid nanofluid is much more 
effective than the hybrid and nanofluid.

Due to the relevance of modified nanofluid (tri-hybrid 
nanofluid), researchers and scientists may utilize these 
modified nanofluids for effective processing in emerg-
ing technologies and for cooling system in various 
electrical and electronic applications.

Fig. 16   Percentage-wise increase in the heat transfer rate under the 
influence of nanoparticle volume fraction
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