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Abstract
Here, we report the synthesis of cobalt-doped copper oxide nanoparticles (CuO–NPs) via combustion strategy with lime 
juice as a reductant at relatively low temperature of 600 °C and at shorter duration of 3 h. Powder X-ray diffraction (XRD) 
results revealed that, every compound was in monoclinic structure with space group C12/C1 (No. 15) and average particle 
size were found to be 18–21 nm. These NPs were used to evaluate the antimycobacterial activity against “Mycobacterium 
tuberculosis H37Rv ATCC 27294”, “Mycobacterium abscessus ATCC 19977”, “Mycobacterium fortuitum ATCC 6841”, 
“Mycobacterium chelonae ATCC 35752” and anticancer activity on MDA-MB-231. Antioxidant activity was evaluated by 
DPPH method. The results showed that, doping CuO with cobalt improved the antimycobacterial, anticancer and scaveng-
ing activities of CuO–NPs.

Keywords  CuO–NPs · Cobalt doping · Antimycobacterial · Anticarcinogenic · Antioxidant

Introduction

Copper oxide (CuO) with a band gap of 1.6–2.2 eV is a 
highly promising material since it finds applicable in numer-
ous fields (Kadiyala et al. 2012). It was revealed by many 
researchers that CuO–NPs exhibit anticancer activity against 
various cancer cell lines (Sathyananda et al. 2020), antimi-
crobial activity against several bacterial strains (Sathyananda 
et al. 2020; Ahamed et al. 2014) and also possess antioxi-
dant activity (Sathyananda et al. 2020). Doping of transition 
metal ions introduces intensified properties in CuO (Chavan 
2018). Studies have also shown that cobalt doping led to sta-
ble and efficient CuO NPs as catalyst for reduction reaction 
(Sharma et al. 2017).

Baturay et al. (2016) reported the electrical and optical 
properties of CuO thin films through nickel doping in their 
research. Manganese doped CuO NPs have been studied by 
Singh et al. (2020) for their morphological, optical, mag-
netic, photocatalytic properties and solar cell efficiency. 
An enhanced PVA/PEG cross-linked membrane that was 
loaded with silica nanoparticles have been formed and its 
characterization was studied by Dilshad et al. (2021) using 
cutting-edge analytical methods, and corresponding homo-
geneous dispersal of silica NPs over the membrane was also 
analyzed. Zinc-doped CuO has been studied by Goyal et al. 
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(2020) for their structural, optical, and gas sensing proper-
ties. The optical and ferromagnetic properties of Fe-doped 
CuO has been reported by Mohamed Basith et al. (2013). 
There are merely very less reports on the biological response 
of Co–CuO–NPs. The antibacterial activity of synthesized 
Co-doped CuO nanoparticles was tested against bacteria 
such as Bacillus subtilis, Staphylococcus aureus, Escheri-
chia coli, Pseudomonas aeruginosa by Anu et al. (2020). 
Thakur et al. (2020) have investigated the antimicrobial 
nature of co-doped (Ag and Co) CuO–NPs. Moreover, the 
benefits of introducing Co into the metal oxide crystal lat-
tice as far as bio-activities are concerned were also reported. 
The ways in curbing the disease agents together with the 
clinical conclusions of ivermectin, doxycycline, vitamin-D, 
vitamin-C, zinc, and cannabidiol, and the correlations of 
these molecules towards treating transmissible diseases have 
been explored by Chowdhury et al. (2021).

In the need of potential antimicrobials and anticancer 
agents, synthesis of CuO–NPs in different morphologies 
has gained much importance. Considering the available lit-
erature, this research work aims to establish an eco-friendly, 
and economical route to synthesize single phase pure CuO 
and Co–CuO–NPs by solution combustion synthesis/SCS 
making use of lime juice as reductant.

Various characterization techniques were used on the 
samples. Their antimycobacterial activity was tested against 
Mycobacterium abscessus (M. abscessus), Mycobacterium 
fortuitum (M. fortuitum), Mycobacterium. chelonae (M. che-
lonae), Mycobacterium tuberculosis H37Rv (M. tb H37Rv) 
by Microplate Alamar blue dye assay (MABA). Cytotoxicity 
was tested by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetra-
zolium bromide (MTT) assay. Furthermore, the scavenging 
ability of these samples was measured by the 2, 2-diphenyl-
1-picrylhydrazyl hydrate (DPPH) assay.

Significance of the research

For the first time, we report the antimycobacterial activity 
of pure and cobalt (Co) doped CuO–NPs (Co–CuO NPs). 
The samples were synthesized by low-cost SCS using lemon 
juice as biofuel instead of conventional fuels.

The samples exhibited anticancer activity against MDA-
MB-231. Moreover, the antioxidant activity was found to be 
exhibited by the samples. Consequently, the experimental 
results clearly indicated enhanced antimycobacterial, anti-
cancer and antioxidant activities of CuO–NPs upon cobalt 
doping.

The paper was organized as follows. A detailed introduc-
tion on CuO–NPs featuring on anticancer activity, antimi-
crobial activity, antioxidant activity along with their mor-
phological, optical, magnetic, photocatalytic properties, etc., 
were elaborated in “Introduction”  section. Moreover, the 
significance of this present research was also elaborated. The 

experimental details encompassing the materials, prepara-
tion of pure CuO and Co–CuO–NPs, characterization, evalu-
ation of antimycobacterial activity, anticancer activity and 
scavenging activity were discussed in “Experimental sec-
tion” section. The attained results and their discussions with 
the help of structural studies, antimycobacterial response, 
anticancer response and scavenging response were discussed 
in “Results and discussions” section. Finally, “Conclusions” 
section gives the conclusion with few suggestions towards 
future research.

Experimental section

Materials

Copper nitrate hexahydrate [CuN2O9H6, AR 99%, 
SD Fine], cobaltous nitrate [CoN2O12H12, Fisher, AR 
98% grade], dimethyl sulfoxide [DMSO, C2H6SO, AR 
99% Merck], 3-[4, 5-dimethylthiazol-2-yl]-2,5-diphe-
nyl tetrazolium bromide [MTT, C18H16BrN5S, 97.5%, 
Sigma Aldrich], Dulbecco’s Modified Eagle’s medium 
[DMEM, Gibco], DPPH [C18H12N5O6, > 90% Merck], 
quercetin [C15H10O7, 3,3′,4′,5,6-Pentahydroxyflavone, 
2-(3,4-Dihydroxyphenyl)-3,5,7-trihydroxy-4H-1-benzo-
pyran-4-one, ≥ 95% Sigma], doxorubicin [Hydroxydauno-
rubicin hydrochloride, C27H29NO11.HCl 98%, Sigma] were 
procured commercially and fresh lemons were purchased 
from the local market.

The cell line MDA-MB-231 used for cytotoxicity testing 
and M. H37Rv ATCC 27294, M. abscessus ATCC 19977, M. 
fortuitum ATCC 6841 and M. chelonae ATCC 35752 were 
procured from the American type culture collection (ATCC). 
Isoniazid, Rifampici, Ethambutol, Streptomycin and Levo-
floxacin were purchased from Sigma, USA. The cell line and 
the microbial strains were procured from ATCC.

Preparation of pure CuO and Co–CuO–NPs

Synthesis of was carried out as followed in our previous 
studies (Sathyananda et al. 2020; Prashanth et al. 2017, 
2020). In brief, filtered lemon juice (9 mL) and 4.0 g of 
copper nitrate trihydrate [Cu(NO3)2.3H2O] were taken in 
40 mL of double distilled water and dissolved completely 
under stirring. The petri dish containing the mixture was 
placed in a preheated muffle furnace (375 ± 10 °C). Within 
a short while, the solution was boiled to form a gel followed 
by rapid combustion of the fuel lemon juice. Doped samples 
Cu1–xCoxO (x = 0.01, 0.03, 0.05, 0.07 and 0.09) were synthe-
sized following the same procedure. All the samples were 
calcined at 600 °C for 3 h.
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Characterization

All of the materials had their powder X-ray diffraction (PXRD) 
patterns recorded using a Panalytical X’ Pert Pro MPD powder 
diffractometer with Ni-filtered Cu K radiation (λ = 1.5418 Å) 
as the X-ray source. Morphological and compositional stud-
ies were done on FE-SEM (Nova Nano SEM-450) coupled 
with an EDS detector for Elemental compositional analysis 
(EDAX).

Evaluation of antimycobacterial activity

Antimycobacterial activity of the samples compared to the 
pathogens mentioned above was assessed by the standard 
MABA method (Patil and Taranath 2016) with minor modifi-
cations. Minimum inhibitory concentration (MIC) was visu-
ally assessed based on the color change of Resazurin (from 
blue to pink), a weak fluorescent dye. A blue color was con-
sidered as no bacterial growth, and the pink color was recorded 
as growth.

Anticancer activity

Anticarcinogenic activity of the samples (ranging from 1 to 
320 µg/mL) was tested against MDA-MB-231 as followed in 
the earlier reports (Prashanth et al. 2018; Prashanth et al. 2015; 
Krishna et al. 2016; Krishna et al. 2017). The percentage of 
inhibition shall be expressed as per the expression given in 
Eq. 1 below,

The percentage growth inhibition was thus calculated and 
IC50 values were determined accordingly.

Scavenging activity

Scavenging response was assessed by the standard DPPH 
assay as followed in the earlier work (Rajakumar 1994). DPPH 
scavenging activity (%) was calculated using Eq. 2 as given 
below,

where Ac and As corresrunponds to the intensity of peaks 
for control and supernatant DPPH respectively. Doxorubicin 
was used as the standard.

(1)% of inhibition =

(

ODControl− ODsample

ODControl

)

× 100

(2)Scavenging response in (%) =
1 − As

Ac
× 100

Results and discussions

Structural studies

Figure  1 exhibits the PXRD patterns of pure CuO and 
Co–CuO–NPs. The diffraction pattern clearly showed that 
all the diffraction peaks belong to JCPDS card No. 80–1268, 
indicating the monoclinic CuO phase. Further, trivalent 
cobalt ion (rCo

3+  = 0.61 Å) was substituted to divalent cop-
per (rCu

2+  = 0.73 Å) position in the CuO lattice. The ionic 
radius of Co3+ is smaller than that of the ionic radius of 
Cu2+- ions.

However, 9 mol % cobalt-doped sample showed small 
impurity line at around 2 � and 37° in the PXRD patterns 
corresponding to Co3O4. The average crystallite sizes were 
calculated based on Scherrer equation and found to be in the 
range of 18–21 nm. Figure 2 shows the FESEM images of 
pure CuO and Co–CuO–NPs.

The particles were agglomerated in a spherical shape, as 
shown in these images. The EDS spectra (Fig. 3) revealed all 
predicted elements Cu, O, and Co along with no additional 
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Fig. 1   PXRD patterns of the samples
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contaminants. The homogeneous distribution of elements 
Cu, O, and Co in the samples was clearly confirmed by ele-
ment mapping as seen in Fig. 3.

Antimycobacterial response

The MIC values of antimycobacterial tests are given in 
Table 1. As visualized from the results, 9 mol % Co-doped 
CuO showed better activity than 1 mol % and undoped CuO 
on M. fortuitum. Interestingly, both 1 mol % and 9 mol % Co 
doped CuO–NPs exhibited quite lower MIC when compared 
to the undoped CuO on M. chelonae.

Though there are no existing reports on the antimycobac-
terial activity of CuO–NPs, the antibacterial studies suggest 
free radical generation behind the toxicity of CuO. They 
produce significant reactive oxygen species (ROS) in terms 
of superoxide (Meghana et al. 2015). These results indicated 
the improved activity of CuO NPs (8 µg/mL) against M. tb 
H37Rv when compared with reports of ZnO NPs against the 
same species (12.5 µg/mL) (Prashanth et al. 2017).

Anticancer response

The MTT results of the samples were presented in Fig. 4 
and Table 2, respectively. The optical microscopic images 

of MDA-MB-231 cells treated with pure CuO and Co–CuO 
NPs were given in Fig. 5.

The NPs can suppress and stifle cell viability by different 
mechanisms such as apoptosis and necrosis (Asha Rani et al. 
2009). Apoptosis may be a cell suicide mechanism that con-
trols cell numbers. The apoptotic cascade can be activated 
by means of outward and inherent pathways (Kumar et al. 
2011). The induction of tumor cell apoptosis may be a sig-
nificant mechanism for an anticancer compound (Frankfurt 
and Krishan 2003). Copper compounds were employed to 
treat cancer and several diseases over thousands of years 
(Hajra and Liu 2004).

Copper is a heavy metal that is toxic to mammalian cells. 
However, with the advancement of nanotechnology, the NPs 
can target specific cells with reduced side effects. Results of 
Nagajyothi et al. (2017) come to an agreement with that of 
the reports of Mariappan et al. (2011), which indicated that 
ZnO NPs kill human myeloblastic leukemia cells and are not 
as much of toxic to normal peripheral blood mononuclear 
cells.

Apoptosis process characterized by the morphological 
and biochemical changes and apoptosis of different cells in 
the same tissue does not occur at the same time. CuO NPs 
showed a clear cytotoxic effect on HeLa cells in sulforhoda-
mine B assay (Nagajyothi et al. 2017). On MDA-MB-231 
cells, our results showed the concentration dependent cyto-
toxicity and Co–CuO–NPs possessed better anticancer 
activity when compared with pure CuO–NPs. CuO–NPs’ 
anticancer efficacy, particularly the mechanism of apopto-
sis in cancer cells induced by CuO–NPs, is still not known 
completely.

Scavenging response

The scavenging activity of the samples is presented in Fig. 6 
and the IC50 values were presented in Table 3. In DPPH, 
CuO–NPs can transmit their electron density to the free radi-
cal situated at the nitrogen atom (Das et al. 2013). These 
results very clearly demonstrate higher scavenging activity 
of Co doped CuO–NPs.

Conclusions

Pure CuO and Co–CuO–NPs were prepared by SCS. The 
physiochemical, structural, and biological characteristics of 
the produced NPs were assessed accordingly. The results 
clearly indicated that the doping of Co into CuO had benefi-
cial effect on its antimycobacterial activity against M. fortui-
tum, M. chelonae and anticancer activity on MDA-MB-231. 
Similarly, DPPH scavenging results confirmed enhanced 
activity of Co doped CuO–NPs over undoped CuO–NPs. 

Fig. 2   SEM images of the samples
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Hence, this study successfully demonstrated the increase in 
bioactivities of CuO nanostructures through Co doping.

The bacterial infectious diseases are currently one of the 
serious health problems that have drawn the public attention 
in worldwide as a human health threat, which extends to 
economic and social complications. Increased outbreaks and 
infections of pathogenic strains, bacterial antibiotic resist-
ance, emergence of new bacterial mutations, lack of suitable 
vaccine in underdeveloped countries, and hospital-associated 

infections, are global health hazard to human beings. The 
interaction of NPs with bio-molecules is an expanding area 
of research, which is still largely unexplored yet.

Thus, in the need of potential antimicrobials, and 
anticancer agents synthesis of metal oxides in different 

(a) Undoped CuO 

(b) Cu0.99Co0.01 

(c) Cu0.91Co0.09 

Fig. 3   EDS profile and elemental mapping of the samples
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morphologies has gained much importance. Considering 
the available published literature, this formulated work 
aims to establish eco-friendly, and economical route of sta-
ble undoped and Co-doped CuO–NPs synthesis with wider 
range of application in medicinal domain. As the attained 
results are promising, further studies shall be conducted 
in vivo models to understand the efficacy of undoped/doped 
CuO–NPs as an anti-mycobacterial, anti-oxidant, and anti-
cancer agent.

Table 1   Antimycobacterial 
response of the samples

NT not tested
*Positive control

Sl. no. Sample MIC (µg/mL)

M. tb H37Rv 
ATCC 27294

M. abscessus 
ATCC 19977

M. fortuitum 
ATCC 6841

M. chelonae 
ATCC 35752

1 CuO 8 64 32 32
2 Cu0.99Co0.01O 8 64 32 8
3 Cu0.91Co0.09O 8 64 16 8
4 Isoniazid* 3 × 10–2 NT NT NT
5 Rifampicin* 6 × 10–2 NT NT NT
6 Ethambutol* 2 NT NT NT
7 Streptomycin* 1 NT NT NT
8 Levofloxacin* 0.5 2 0.06 0.06

Fig. 4   Determination of IC50 values in MDA-MB-231 cells

Table 2   IC50 values of the samples

S. No. Sample IC50 values

1 Undoped CuO 60.08 µg/mL
2 Cu0.99Co0.01O 52.61 µg/mL
3 Cu0.91Co0.09O 39.13 µg/mL
4 Doxorubicin (Standard) 19.71 µM

Fig. 5   Optical microscopy images of MDA-MB-231 cells upon NPS 
and Doxorubicin treatment
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