
Vol.:(0123456789)1 3

Applied Nanoscience (2023) 13:1691–1701 
https://doi.org/10.1007/s13204-021-02114-w

ORIGINAL ARTICLE

Design energy efficient shared distributed memory management 
system on SoC’s to improve memory performance

K. Siva Sundari1 · R. Narmadha1

Received: 28 August 2021 / Accepted: 24 September 2021 / Published online: 18 January 2022 
© King Abdulaziz City for Science and Technology 2021

Abstract
System-on-Chip (SoC) design is becoming increasingly complex as a result of trends such as miniaturisation and data-
intensive applications, and it is becoming increasingly difficult to manage without the use of automated design methods. Prior 
work proposed a novel technique called optimal energy efficient load aware memory management, which concentrated on the 
amount of extra storage after mapping using a task monitoring algorithm and reduced the amount of energy consumed. Every 
shared distributed memory algorithm that has been proposed has been influenced by embedded system synthesis theory. The 
following are the contributions made by this work to the fields of SoC design in general and on-chip memory optimization 
in particular. This paper proposes a complete workflow to improve memory subsystems in an application-specific way when 
the system was designed. In general, the proposed memory optimization methods generate good results in Xilinx's 14.2 
integrated simulation environment, when integrated into the complete simulation, optimization, and code generation flow.

Keywords  System-on-Chip (SoC) · Efficient load aware memory management (ELMM) · Shared distributed memory 
(SDM) · Latency · Memory mapping mechanism

Introduction

A SoC can be specified as an integrated circuit (IC) which 
contains multiple independent very large-scale integration 
(VLSI) designs which forms an operational application to 
the chip. The predefined cores in SoC are integrated com-
ponents, which usually include microprocessors, central 
processing unit (CPU), graphical processing unit (GPU), 
large memory arrays, audio and video controllers and so 
on (Yang et al. 2021). These cores are referred to as intel-
lectual property (IP) blocks. Cores can be separated in two 
classes depending on their nature: soft cores are in form of 
synthesizable register-transfer level (RTL) description, and 
the hard cores have been optimized for performance and a 
certain process. The pay-off between these solutions are flex-
ibility, performance, time-to-market and portability among 
others. Cores with more design specific attributes tend to 

have better performance and shorter time-to-market, but they 
have less reusability, flexibility and have higher cost.

Depending on the nature and scale of the SoC project, 
there might be third party IP blocks in use. In this case 
the customer usually offers few premade IP blocks for the 
deliverer company to build the SoC around, or the cus-
tomer orders few IP blocks from the deliverer (Shan and 
Sun 2021). Since all the IP blocks communicate with each 
other via communication channels, it is critical for the SoC 
developers to have precise documentation of the IP blocks. 
SoC design is becoming faster due to the reusability of IP 
blocks. The fact that SoC designers can also use third party 
IP blocks speeds up the time-to-market process.

Embedded systems can be defined in a general form as 
"computer stored on other devices where the computer's 
existence is not immediately evident". Additionally, embed-
ded devices classify as systems with little complexity that 
cannot operate external software from third parties in this 
classification (Failed 2021). This distinguishes them obvi-
ously from desktop and server devices. The embedded field 
is the fastest growing segment of the computer market, 
driven by the wide range of applications that it is intended 
to support. Examples include the advancement of mobile 
devices, the Internet of Things (IoT), natural language 

 *	 K. Siva Sundari 
	 sivasundari2029@gmail.com

	 R. Narmadha 
	 narmadha1109@gmail.com

1	 Department of ECE, Sathyabama Institute of Science 
and Technology, Chennai, India

http://crossmark.crossref.org/dialog/?doi=10.1007/s13204-021-02114-w&domain=pdf


1692	 Applied Nanoscience (2023) 13:1691–1701

1 3

processing, cloud technologies, multimedia content, robots, 
self-contained driving, health-care services, and renewable 
and smart power systems, among many other things. While 
embedded computer challenges can be extremely diverse, 
they are typically resolved using one of three approaches. 
Those are:

1.	 A hardware/software solution consisting of a custom 
hardware in conjunction with one or more embedded 
processors plus appropriate soft-to-use software (such 
as System-on-Chip (SoC) or System-on-Chip (MPSoC) 
multiprocessor software).

2.	 Hardware off-shelf in combination with custom soft-
ware.

3.	 Customized software for a digital signal processor 
(DSP).

Regardless of whether concepts are adopted, certain fun-
damental problems are similar to embedded system design 
(Ahmed et al. 2021). In this respect, memory minimization 
and electricity consumption can be named above all. Robust-
ness, safety and energy efficiency are further criteria.

High pressure on the market makes it difficult in short 
times and at a reasonable price to build new, creative embed-
ded devices with increasing complexity. Consumers want 
more functionality and improved performance on mobile 
devices with stable or lower energy budgets. However, 
batteries do not improve in the same speed and the typi-
cal operation is hampered and already close to the specified 
stringent limit 0:6 V, which should be reduced the system 
supply voltage. Challenges that go beyond Moore law scal-
ing are becoming more and more relevant (Rumyantsev et al. 
2020). As a typical figure for future technological advances, 
the ITRS consortium addresses the Power Performance 
Area Cost (PPAC) value in its 2015 More Moore report. 
The necessity for instant generation of the data and related 
applications in Big Data and cloud, IoT, or RTC domains is 
dictated by > 30% and > 50% power improvements at > 50% 
and by 35–40% lower costs in the next technology nodes, 
equivalent to the 2 or 3-year time frame.

As already mentioned, static energy consumption is 
a function of the current leakage and the current leakage 
stagnates when the system is transacted. However, there is a 
different dynamic power usage (Frolova et al. 2020). Define 
two measurements for the energy assessment, namely the 
architectural and the transferable power estimates, to empha-
sise this discrepancy. The estimate of architectural power 
is the estimate of power in view of the complete transac-
tions of a network. In this example, for all NoC components 
estimate the entire static and dynamic power usage. When 
the NoC is run by a specified traffic pattern, the power esti-
mate is the current consumption. For all components and 
dynamic power, only those that switch in the simulation time 

are estimated to be full statical power. For instance, when 
fluid switching is half the maximum NoC capacity, during 
the simulation time the dynamic power consumption will be 
half the maximum NoC capacity.

In this work, use two area metrics: router area and con-
nection area. The chip area that all NoC routers occupy is the 
router area. The parameters of a NoC system are measurable. 
However, the area of the connection is different. Depending 
on where the routers are in a SoC system, the length of the 
link vary (Endo et al. 2020). During the floor plan of a chip 
which is not accessible during simulation time is allocated 
the location of routers. Here, assume an area for each core 
to solve this problem, and it can measure the NoC area with-
out a connection area by measuring the area of routers. The 
overall link length of the NoC system can now be estimated 
with this area.

Literature survey

These tasks generating overheads are regarded as vital, even 
after prefetching (Enemali et al. 2017). They must be reused 
to remove their overhead reconfiguration (In future iterations 
of the same task graph execution). Reuse the configurations 
already loaded (Enemali et al. 2017) is therefore one of the 
best ways to reduce the overall reconfiguration costs.

The traditional configuration methods have already been 
extended by Clemente et al. (2016) by dividing the set-up 
into blocks. This reduces and efficiently manages the granu-
larity of configurations to reduce overhead reconfiguration.

Although the combination of pre-fetch and reuse methods 
leads to better results, the application's performance isn't 
optimal (Clemente et al. 2014). Consequently Clemente 
et al. (2014) supplied a two-storey memory hierarchy. The 
two levels are on and off the chip. The high speed (HS) 
and low energy memory on the chip is broken down into 
(LE). The authors have also offered two configuration map-
ping algorithms specifically for static and dynamic systems, 
which reduce energy and time overheads.

Background

FIFO designs and architectures of two types exist: serial and 
parallel. As shown in Fig. 1, the first FIFO generation that 
operates with a fall-through principle, such as the shift reg-
ister, was the serial FIFO. The traditional FIFO architecture, 
however, is continually improving. Most FIFOs are currently 
parallel, a suitable way to enhance the number of words 
stored with faster speed. For two key reasons, this trend is 
suited for a chip network. The first reason is the fall via 
concept in which the newly arrived data unit is stored at the 
FIFO tail, and a step is shifted to the head of the FIFO queue 



1693Applied Nanoscience (2023) 13:1691–1701	

1 3

at each application shift. The data units are thus shifted at 
every request throughout the storage space (Tasoulas et al. 
2019). This concept has three drawbacks of long downtime, 
high dynamic energy consumption and high bubble cells. 
The first disadvantage is that the FIFO increase its capacity 
and will lead to an increased FIFI latency as its downtime 
increases. The minimum latency of FIFO depends not on 
the number of stored items but on the depth of the physical 
FIFO. Figure 1 illustrates the second disadvantage of bub-
ble cells in FIFO. When data entry/output rates are differ-
ent, bubble cells can form. Third disadvantage is that data 
shifts from tail to head of FIFO generates dynamic power 
consumption. Serial FIFO is simpler, but is unfit to imple-
ment on-chip. The architecture of FIFO should not move 
data elements across all memory sites (Strobel and Radetzki 
2019). In other words, the arrival packet should be stored 
at the front of empty cell rather than at the tail of a queue.

With 0.1 μm technology with relatively smaller buffer 
sizes and less buffer utilisation the register-based imple-
mentation is still possible, but it is not a good choice for 
35 nm technology. This is mainly because of increased static 
power of 35 nm or less, which is completely reduced by the 
advantage of less activity due to the additional transistors. 
As the buffer capability increases to dozens, register-based 
implementation is inadequate because of the larger buffer 
chip area.

Schematic diagrams used for large-capacity FIFOs are 
shown in Figs. 2 and 3 respectively for a dual-port SRAM 
cell and a D-type flip flop (Fan et al. 2019). Provided that 
two and four transistors in the structure of the NOT gate and 
the NAND gate are needed. Only one third of the flip-flop 

area of type D occupies an SRAM cell. Nowadays, SRAM 
implements noc buffers mainly because of the area, power 
cost and availability of the respective IP cores. The above 
facts have encouraging us in all proposals in this dissertation 
to use an SRAM-based buffer and mechanism for parallel 
style.

Existing work

In this work, which is optimal energy efficient load aware 
memory management (ELMM) technique and it concen-
trated on the amount of extra storage after mapping using 
task monitoring algorithm and it reduces the energy con-
sumption. In shared memory, variables and data structures 
are specified in such a way that the memory optimization 
compiler does not perform and uses the most efficiently 
available Processor Registers as local storage is not available 
at all. This provides the most efficient usage of the processor 
registers. With this improved performance, other forms of 
local storage, such as caches, are circumvented and utilised 
when accessing the shared storage pool (Failed 2018). Data 
from common memory will be read when requested by the 
software, and the results will be returned immediately to the 
shared memory to complete the transaction. This scheme can 
be implemented with moderate effort because of its simplic-
ity. To implement this algorithm, any CPU can be utilised.

This approach can be implemented only if the processor 
can handle explicit instructions for flushing any local stor-
age in memory, which is not always the case due to limits 
on specific CPU's capabilities. The most important advan-
tage of both methods is, as is clear, the lack of expenditures 
incurred during the development process in connection with 

Fig. 1   Conventional shift register (serial) FIFO

Fig. 2   SRAM-based FIFO

Fig. 3   A positive-edge-triggered D-FF



1694	 Applied Nanoscience (2023) 13:1691–1701

1 3

data transfer between software and hardware (Fig. 4) (Ding 
2018).

The benefit of shared memory rather than of local storage 
systems is the ability to preserve data consistency through-
out the course of a transaction, apart from the fact that 
data are not buffered within local memory of the proces-
sor. But the volume of traffic that passes via the processor 
bus grows significantly as a result of increased activity in 
the processor bus while the software part of the programme 
is in use. Due to the much higher mapped memory access 
times than those of unmapped memory, mapped memory 
can lead to a significant drop in performance in comparison 
to unmapped memory (Ahn et al. 2018). It is important to 
take into consideration elements such as processing autobus 
speed, mapped memory speed, and the access logic speed 
connected with mapped memory to ensure these systems 
operate as effectively as feasible.

Latency and memory management 
mechanism of proposed method

The method structure for shared distributed memory (SDM) 
is shown in this section, which is positioned somewhere 
between the memory controller, which serves as the main 
character in the share memory illusion, and the scheme for 
distributed shared memory management (Xu et al. 2017). 
When the SDM algorithm is used in conjunction with the 
memory controller, the memory controller's utilities are 
delivered. With all of the executions, the memory controller 

for the proposed architecture is ecstatic about handling them 
all.

Maintaining the index and other statistics of distributed 
shared memory becomes increasingly important when 
shared data is transferred at a quicker rate than data trans-
ferred by physically dispersed devices (Lapshev and Hasan 
2016). A lookup, for example, is one of its key responsi-
bilities, as is mapping statistics and activities into the dis-
tributed shared memory system. Consequently, the memory 
controller is in charge of the index mechanism and action 
required to maintain a coherent view of the data. Figure 5 
demonstrates the construction of a memory controller in 
conjunction with SDM to create a logical shared space for 
the purposes of storing data. SDM method and the pro-
gramme text or client application can be discovered on any 
distributed network, as can the SDM method and method. 
Because of the employment of virtual address space, which 
is depicted in Fig. 5, the memory controller will assist in 
creating the illusion of having a global address space. The 
SDM approach will establish links to all of the local memory 
in the computer system under consideration (Li et al. 2016). 
Different processes can read and write shared data contents 
in accordance with the SDM technique, which is based 
on full replication and allows for the sharing of data con-
tents between processes. As shown in Fig. 6, it will, among 
other things, manage memory read and write operations to 
the memory controller in the way depicted in the figure. 
Accordingly, whenever an application requires access to data 
from a remote node that has been shared with it, a copy of 
the data will be made available to it through the memory 

Fig. 4   Block diagram of the 
efficient load aware memory 
management (existing method)



1695Applied Nanoscience (2023) 13:1691–1701	

1 3

controller application. Write operations can be accessible in 
the same way that they can be accessed for reading opera-
tions (Kulkarni et al. 2016). When many nodes are running 
the same programme at the same time, it will adhere to the 
consistency mechanism that is currently in use. As well as 
the memory controller's design, Fig. 6 shows an example of 
mapping conducted by the memory controller in the local 
memory of specific sites.

Access control policies include the global allocation pol-
icy (which determines which node will receive a particular 
request) and the coherence protocol, which are both defined 
by an access control system (which determines how requests 
are handled). Figure 7 depicts the memory access policy 

for shared data items that are both locally and remotely 
located, as well as how they are accessed. In this policy, 
both messaging and access controls are used to accomplish 

Fig. 5   Shared virtual space with 
SDM

Fig. 6   Memory controller with SDM algorithm

Fig. 7   Flow of memory access semantics



1696	 Applied Nanoscience (2023) 13:1691–1701

1 3

its objectives. Using this approach, the policy could send 
messages to other sites instructing them to invalidate their 
copies of the data before allowing the local node to write its 
own copy of the data.

A single transition and mapping between physical and 
logical address space is performed by the memory controller, 
and it is carried out by the memory controller and executed 
by the memory controller. Figure 8 shows a diagram of how 
the shared memory region is allocated in terms of memory 
(right). It also aids in the management of shared memory 
resources in a more efficient manner. Each site requires both 
local and global representations of shared data content map-
ping, and each site is required to have both of these repre-
sentations. This means that in order for a process to access 
shared memory every time it grants a logical address to a 
request process, the mapping policy must convert the logical 
address into a physical memory location that is appropriate 
for the request process (50). Given the fact that each indi-
vidual memory reference points to a different memory con-
tent, this conversion is less complicated, resulting in lower 
execution costs and higher memory performance.

Latency

Chip multiprocessor (CMP) systems should have their 
memory request serving latencies kept to a bare minimum 
to improve their overall performance and energy consump-
tion. If you schedule the appropriate memory commands at 
the appropriate times, you can keep this to a bare minimum. 
Our scheduler reduces the latency associated with serving 
read memory requests when the written tail is not full and if 
memory traffic is not heavy, by delaying switching to write 
drain mode (Fig. 9).

The handling of storage reads is more important than the 
handling of storage writes because the memory reads are 
more critical for the performance of the system than that 

recorded. If a read queue becomes entirely empty while serv-
ing read requests, the postponed writing drop policy assumes 
that it is more beneficial to wait for forthcoming requests 
than to enter written drain mode immediately to save time. 
Because reading performance is more important than writing 
performance in the system, this has happened.

Write drain mode should be used if read requests are not 
received within a certain timeframe or if the writing queue 
is overburdened to the point where the high watermark is 
exceeded. The delaying written drain mode is used in an 
adaptive manner to accommodate the amount of memory 
request traffic. Due to the high volume of traffic in memory 
requests, written requests are recommended after reading 
requests as soon as possible instead of waiting for more read 
requests. However, the delayed write drain will automati-
cally be activated if there's not much read/write traffic. It 
is determined how often memory requests were made in 
the past whether there are large or low volumes of memory 
requests.

Results and comparison

The RTL schematic of the cache memory compression block 
is depicted in Fig. 10. It is a design abstraction that mod-
els the circuit in terms of digital signals flowing between 
hardware registers, and it is used in the design of integrated 
circuits.

The RTL schematic of the compression algorithm is 
depicted in Fig. 11 (right). Figure 12 depicts a summary of 
the device utilisation for the design that was implemented. 
This is demonstrated following the synthesis. This is used to 
determine the number of devices that were used in the design 
implementation process (Table 1).

Figure 13 shows the power analysis for the proposed 
SDM algorithm. This analysis shows total power, supply 
power etc., Figure 14 shows timing summary for the algo-
rithm developed (Fig. 15).

Conclusion

According to the results of this work, we can see that 
the proposed scheduler outperforms the single channel 
memory system in terms of execution time when used 
in a multi-channel configuration. When comparing the 
proposed scheduler to other simulated policies, the pro-
posed scheduler outperforms the other simulated policies 
in terms of power consumption. Despite the fact that the 
amount of hardware has increased, the proposed scheduler 
consumes less power than the previous one. The proposed Fig. 8   Memory mapping mechanism



1697Applied Nanoscience (2023) 13:1691–1701	

1 3

scheduler generates speculative precharge and activation 
commands, which results in an increase in performance 
as a result of the increased performance. In addition, row 
hit read/write commands are given a higher priority than 
memory requests in the queue. With respect to all simu-
lated policies, the proposed approach consumed signifi-
cantly less energy, resulting in overall performance that 
was 47.54% better than the existing ELMM technique. 
Eventually, the proposed approach may be combined with 

other scheduling policies to improve the overall efficiency 
of the system. Additional scheduling mechanisms can be 
implemented to reduce the amount of energy consumed 
by the system as a result of the refresh operations them-
selves, as well as the amount of energy consumed during 
the refresh operations themselves. In future work, With 
increasing chip density, FPGAs become increasingly 
resourceful. SoCs are often employed in FPGA application 
design instead of memory mapped bus to use the resource 

Fig. 9   Flow chart of proposed 
scheduling approach



1698	 Applied Nanoscience (2023) 13:1691–1701

1 3

Fig. 10   RTL schematic of the 
memory block in proposed 
system

Fig. 11   Technology view of 
cache memory block



1699Applied Nanoscience (2023) 13:1691–1701	

1 3

Fig. 12   Device utilization sum-
mary

Table 1   Comparision table between the existing and proposed meth-
ods

Supply 
power 
(W)

Maximum 
frequency 
(MHz)

Input arrival 
clock time 
(ns)

Output 
required 
time 
(ns)

ELMM 0.082 736.594 3.648 2.437
SDM (pro-

posed)
0.049 194.74 2.921 1.618

Fig. 13   power consumption 
based on power analysis

completely and to achieve maximum parallelism. This the-
sis is based on the suggested memory allocator that serves 
customers connected to the same bus, but it can adapt the 
communication protocol to systems that have various com-
munication systems, such as SoC. More research is needed 
in this adaptability.



1700	 Applied Nanoscience (2023) 13:1691–1701

1 3

Declarations 

Conflict of interest  The authors declare no conflict of interest.

References

Ahmed MR, Zheng H, Mukherjee P, Ketkar MC, Yang J (2021) Min-
ing message flows from system-on-chip execution traces. In: 
2021 22nd international symposium on quality electronic design 
(ISQED), pp 374–380. https://​doi.​org/​10.​1109/​ISQED​51717.​
2021.​94243​06

Ahn S, Kim J, Kang S (2018) Poster: a novel shared memory frame-
work for distributed deep learning in high-performance comput-
ing architecture. In: 2018 IEEE/ACM 40th international confer-
ence on software engineering: companion (ICSE-companion), pp 
191–192

Clemente JA, Ramo EP, Resano J, Mozos D, Catthoor F (2014) Con-
figuration mapping algorithms to reduce energy and time recon-
figuration overheads in reconfigurable systems. IEEE Trans Very 
Large Scale Integr Syst 22(6):1248–1261

Clemente JA, Gran R, Chocano A, del Prado C, Resano J (2016) Hard-
ware architectural support for caching partitioned reconfigurations 
in reconfigurable systems. IEEE Trans Very Large Scale Integr 
Syst 24(2):530–543

Ding Z (2018) vDSM: distributed shared memory in virtualized envi-
ronments. In: 2018 IEEE 9th international conference on software 
engineering and service science (ICSESS), pp 1112–1115. https://​
doi.​org/​10.​1109/​ICSESS.​2018.​86637​20

Diep T-D, Furlinger K (2021) Nonblocking data structures for distrib-
uted-memory machines: stacks as an example. In: 29th Euromi-
cro international conference on parallel, distributed and network-
based processing (PDP), pp 9–17, https://​doi.​org/​10.​1109/​PDP52​
278.​2021.​00012

Endo W, Sato S, Taura K (2020) MENPS: a decentralized distributed 
shared memory exploiting RDMA. IPDRM 2020:9–16. https://​
doi.​org/​10.​1109/​IPDRM​51949.​2020.​00006

Enemali G, Adetomi A, Arslan T (2017) FAReP: fragmentationaware 
replacement policy for task reuse on reconfigurable FPGAs. In: 
IEEE international parallel and distributed processing symposium 
workshops (IPDPSW), pp 202–206

Fan H et al (2019) High-precision adaptive slope compensation circuit 
for system-on-chip power management. In: 2019 IEEE 38th inter-
national performance computing and communications conference 
(IPCCC), pp 1–2

Fig. 14   Timing summary

Fig. 15   comparision graph 
between existing and proposed 
methods

SUPPLY POWER MAXIMUM 
FREQUENCY

I/P ARRIVAL CLOCK 
TIME 

O/P REQUIRED TIME

Comparision Graph 

ELMM SDM (Proposed)

https://doi.org/10.1109/ISQED51717.2021.9424306
https://doi.org/10.1109/ISQED51717.2021.9424306
https://doi.org/10.1109/ICSESS.2018.8663720
https://doi.org/10.1109/ICSESS.2018.8663720
https://doi.org/10.1109/PDP52278.2021.00012
https://doi.org/10.1109/PDP52278.2021.00012
https://doi.org/10.1109/IPDRM51949.2020.00006
https://doi.org/10.1109/IPDRM51949.2020.00006


1701Applied Nanoscience (2023) 13:1691–1701	

1 3

Frolova PI, Chochaev RZh, Ivanova GA, Gavrilov SV (2020) Delay 
matrix based timing-driven placement for reconfigurable systems-
on-chip. EIConRus 2020:1799–1803. https://​doi.​org/​10.​1109/​
EICon​Rus49​466.​2020.​90391​08

Kulkarni N, Yang J, Seo J, Vrudhula S (2016) Reducing power, leak-
age, and area of standard-cell ASICs using threshold logic flip-
flops. IEEE Trans Very Large Scale Integr Syst 24(9):2873–2886

Lapshev S, Hasan S (2016) New low glitch and low power DET flip-
flops using multiple C-elements. IEEE Trans Circ Syst I Regul 
Pap 63(10):1673–1681

Li Y, Wang H, Liu R, Chen L, Nofal I, Chen Q, He A, Guo G, Baeg 
S, Wen S, Wong R, Wu Q, Chen M (2016) A 65 nm temporally 
hardened flip-flop circuit. IEEE Trans Nucl Sci 63(6):2934–2940

Rumyantsev A, Krupkina T, Losev V, Maksimov A (2020) Develop-
ment of a measurement system-on-chip and simulation on FPGA. 
EIConRus 2020:1851–1854. https://​doi.​org/​10.​1109/​EICon​Rus49​
466.​2020.​90392​49

Shan L, Sun H (2021) Distributed collaborative simulation middleware 
based on reflective memory network. In: 2021 IEEE 24th inter-
national conference on computer supported cooperative work in 
design (CSCWD), pp 274–279, https://​doi.​org/​10.​1109/​CSCWD​
49262.​2021.​94377​93.

Strobel M, Radetzki M (2019) Design-time memory subsystem optimi-
zation for low power multi-core embedded systems. In: 2019 IEEE 
13th international symposium on embedded multicore/many-core 

systems-on-chip (MCSoC), pp 347–353. https://​doi.​org/​10.​1109/​
MCSoC.​2019.​00056.

Tasoulas Z, Anagnostopoulos I, Papadopoulos L, Soudris D (2019) 
A message-passing microcoded synchronization for distributed 
shared memory architectures. IEEE Trans Comput Aided Des 
Integr Circ Syst 38(5):975–979. https://​doi.​org/​10.​1109/​TCAD.​
2018.​28344​23

Xu P et al. (2017) The research of distributed shared memory technol-
ogy in power system. In: 2017 IEEE 2nd information technol-
ogy, networking, electronic and automation control conference 
(ITNEC), pp 1309–1313. https://​doi.​org/​10.​1109/​ITNEC.​2017.​
82850​08

Yang P, Wang Q, Huang X, Mi X (2018) Work in progress: an confi-
dentiality and integrity scheme for the distributed shared memory 
of embedded multi-core system. In: 2018 international conference 
on compilers, architectures and synthesis for embedded systems 
(CASES), pp 1–2. https://​doi.​org/​10.​1109/​CASES.​2018.​85168​86

Yang Z, Zhang A, Mo Z (2021) Psm Arena: partitioned shared memory 
for NUMA-awareness in multithreaded scientific applications. 
Tsinghua Sci Technol 26(3):287–295. https://​doi.​org/​10.​26599/​
TST.​2019.​90100​36

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1109/EIConRus49466.2020.9039108
https://doi.org/10.1109/EIConRus49466.2020.9039108
https://doi.org/10.1109/EIConRus49466.2020.9039249
https://doi.org/10.1109/EIConRus49466.2020.9039249
https://doi.org/10.1109/CSCWD49262.2021.9437793
https://doi.org/10.1109/CSCWD49262.2021.9437793
https://doi.org/10.1109/MCSoC.2019.00056
https://doi.org/10.1109/MCSoC.2019.00056
https://doi.org/10.1109/TCAD.2018.2834423
https://doi.org/10.1109/TCAD.2018.2834423
https://doi.org/10.1109/ITNEC.2017.8285008
https://doi.org/10.1109/ITNEC.2017.8285008
https://doi.org/10.1109/CASES.2018.8516886
https://doi.org/10.26599/TST.2019.9010036
https://doi.org/10.26599/TST.2019.9010036

	Design energy efficient shared distributed memory management system on SoC’s to improve memory performance
	Abstract
	Introduction
	Literature survey
	Background
	Existing work
	Latency and memory management mechanism of proposed method
	Latency

	Results and comparison
	Conclusion
	References




