
Vol.:(0123456789)1 3

Applied Nanoscience (2023) 13:2103–2114
https://doi.org/10.1007/s13204-021-02098-7

ORIGINAL ARTICLE

Optimal energy efficient, load aware memory management system
on SoC’s for industrial automation

K. Siva Sundari1 · R. Narmadha1

Received: 17 August 2021 / Accepted: 9 September 2021 / Published online: 3 February 2022
© King Abdulaziz City for Science and Technology 2021

Abstract
It has only recently become possible to build the system on a chip (SoC) platform that makes use of field-programmable gate
arrays (FPGAs) to moderate the amount of computational load placed on the main processor's CPU core. On the reconfigur-
able fabric, data used by both the software and the hardware is mapped using optimised memory mapping algorithm that
was developed specifically for this purpose. This memory mapping algorithm serves as the base for the entire method. In
this work, proposed a novel technique which is optimal energy efficient load aware memory management (ELMM) technique
and it concentrated on the amount of extra storage after mapping using task monitoring algorithm and it reduces the energy
consumption. The experimental results reveal that the proposed ELMM system of FPGA memory resources can be obtained
at a much lower latency with minimal resource overhead and lower power consumption. Implementation of this work can
done by using the Xilinx ISE 14.4 simulator and also generated the waveforms.

Keywords Energy efficient load aware memory management (ELMM) · Latency · Memory management · Power
consumption · System-on-chip

Introduction

System on chip (SoC) is a chip which has multiple differ-
ent components on same silicon. These components can be
processing units, memories or other functions. These SoCs
are integrated circuits (ICs) but in larger scale and SoCs
are usually considered to have more functionality where
ICs usually are considered to have one specialised function
(Chusov et al. 2021). The key is the combination of software
and hardware. Hardware is very fast and has low power con-
sumption but is not flexible, adaptable and is hard design
and test. Software is very flexible, adaptable, easy to write
and test but also slow and has high power consumption. This
means that with programmability we lose performance and
with performance we lose adaptivity. SoCs are a good mid-
dle ground when both programmability and performance are
wanted (Ahmed et al. 2021).

SoCs communicate internally with interconnects and
externally with communication protocols. For example, an
SoC for smart phone would need a communication protocol
to be able to communicate with peripheral devices. These
devices can be cameras, screens or other chips. Communi-
cation protocols can be used internally as well between the
different components of the SoC. Figure 1 shows an example
of a high level representation of an SoC. The figure shows
possible modules inside an SoC and how they are connected
with an interconnect (Rumyantsev et al. 2020).

SoCs are becoming more complex and contain more func-
tionality. Complexity of design means more transistors but
short time to market forces designers to use transistors less
efficiently (Frolova et al. 2020). The efficient usage of tran-
sistors comes from optimization for which the designers do
not have enough time. One way to battle this is the design
re-usability where same design would be used for multiple
applications. These designs usually leave room for some
customization in architectural parameters. * K. Siva Sundari

 sivasundari2029@gmail.com

 R. Narmadha
 narmadha1109@gmail.com

1 Department of ECE, Sathyabama Institute of Science
and Technology, Chennai, India

http://crossmark.crossref.org/dialog/?doi=10.1007/s13204-021-02098-7&domain=pdf

2104 Applied Nanoscience (2023) 13:2103–2114

1 3

Energy optimization

The following section of this paper will provide a more in-
depth discussion of an optimization concept for memory
subsystems that are composed of STT-RAM blocks. Due
in part to the optimization potential offered by the follow-
ing two characteristics of this memory technology, which
can be observed in conjunction with it and which can be
observed in conjunction with it. Most importantly, the
trade-off between the energy consumption of STT-RAM
write operations and the latency of the write operation
must be taken into account. As has been demonstrated for
static random access memory memories, the impact of
the required memory access logic results in an increase
in dynamic energy consumption with increasing memory
size (Rudolf et al. 2019). Also discussed is how to take
advantage of this fact by optimising SRAM memory sub-
systems in the same way that DRAM memory subsystems
are. However, while selecting an energy-efficient set of
STT-RAM memories is straightforward, it does involve
aspects that can be classified as allocation and binding
problems, which will be discussed in greater detail further
down this page on this page (Strobel et al. 2019). We have
already discussed how allocating different-sized memory
blocks can make a significant difference in terms of write
and read energy consumption, particularly when combined
with application segment binding and taking into account
different memory access frequencies.

Because of this, the system’s overall performance is
influenced by several factors, including the memory
subsystem’s operation frequency and the overall system

performance as a result, as well as memory blocks’ operat-
ing voltage levels and the processor’s operating frequency.
In a single memory block, it is referred to as different
operation voltage levels assignment when different mem-
ory blocks are assigned different voltage levels (Strobel
and Radetzki 2019a). When integrated into a 45 nm node,
a 4 MiB STT-RAM memory can operate at a maximum
operation frequency ranging from 48 to 57 MHz, depend-
ing on the selected operation mode. Figure 1 depicts a
trade-off diagram for the 45 nm node, which provides a
more detailed illustration of the subject (Strobel and Rade-
tzki 2019b). This paper investigates the write operation in
relation to other memory sizes, and it is discovered that
a much broader range of design possibilities is revealed;
for example, it is possible to use write frequencies as low
as 40 GHz in megabyte memory and write frequencies
of more than 100 MHz in smaller memories with storage
capacities as small as a few thousand bytes or even smaller
than that. Because energy consumption changes at the
same rate as the environment, it is not difficult to identify
a good or even optimal solution within this design space
(Fan, et al. 2019). In the following section, we will discuss
a memory optimization method for STT-RAM memories
that takes into account both the impact of memory size and
the effects of different operation voltage levels at the same
time. It is possible to account for the effects of memory
size and different operation voltage levels in STT-RAM
memories at the same time using this method, which saves
both time and effort by eliminating the need for multiple
calculations (Strobel and Radetzki 2019c).

Fig. 1 Block diagram for high
level representation of SoC

2105Applied Nanoscience (2023) 13:2103–2114

1 3

Efficient load aware memory management
(ELMM) algorithm

Variables and data structures in shared memory are declared
in such a way that the compiler does not perform memory
optimizations and makes the most efficient use of the pro-
cessor registers that are currently available because there
is insufficient local storage available. This ensures that the
processor registers are used in the most efficient manner
possible. As a result of this performance optimization,
when accessing the shared memory pool, other forms of
local storage, such as processor caches, are bypassed and
used instead (Sergey et al. 2019). Data is read from shared
memory whenever software requests it, and the results are
immediately written back to shared memory to complete
the transaction. Due to its simplicity, this scheme can be

implemented with some difficulty. Any processor can be
used to implement this algorithm.

Despite the fact that this scheme is feasible, it can only
be implemented if the processor is capable of supporting
explicit instructions for flushing all local storage into mem-
ory, which is not always the case due to limitations in the
capabilities of some CPUs. As is readily apparent, the most
significant advantage of both schemes is the fact that there
are no costs associated with data transfer between software
and hardware during the development process (Casini et al.
2018). The advantage of using shared memory rather than
a local storage scheme, aside from the fact that data is not
buffered within the processor's local memory, is the abil-
ity to maintain data consistency throughout the duration of
the transaction. However, when the software portion of the
application is in use, the amount of traffic that travels across
the processor bus increases dramatically as a result of the
increased activity on the processor bus. Because mapped
memory access times are significantly longer than those
of unmapped memory, using mapped memory in place of
unmapped memory can result in a significant reduction in
performance when compared to unmapped memory (Kuan
and Adegbija 2018). To ensure that these schemes perform
as efficiently as possible, it is critical to take into account
factors such as the processor bus speed, the speed of mapped

Fig. 2 System architecture

Fig. 3 Block diagram of the
efficient load aware memory
management

2106 Applied Nanoscience (2023) 13:2103–2114

1 3

memory, and the speed of the access logic that is associated
with mapped memory (Figs. 2, 3).

As a result, the vast majority of microprocessors currently
available on the market are Von Neumann machines in their
most basic configuration, which is true for the vast major-
ity of microprocessors (Sayed et al. 2018). Keep in mind
that the memory architecture (Fig. 4) is the most notable
exception to this rule because it stores instructions and data
in separate memory spaces and has separate data, address
and control buses for each memory space, as opposed to the
conventional architecture, which has one data, address and
control bus for each memory space and one control bus for
each memory space. In addition to the fact that instruction
and data fetches can occur at the same time, this approach
has a number of advantages, including the fact that the size
of an instruction is not limited by the size of a standard data
unit. The following are some of the additional benefits of
employing this strategy, which are listed below (word).

The memory system architectures are made up of a cluster
of high-speed processors, each of which has its own cache or
local memory and access to a large, shared global memory

pool, as well as a shared global memory pool, and a shared
global memory pool (Fig. 5). Wikipedia states that data and
programmes that will be executed by the computer are stored
in the global memory of the computer before being executed
by the computer itself. Also stored in this memory is a table
containing the names of processes that are currently awaiting
execution; this table is referred to as the “waiting list”, and it
contains information about each process’ (or sub- program’s)
status while it is awaiting execution (Xu et al. 2018). To be
able to run semi-independently of another processors in the
system, it is necessary to load the processes and data associ-
ated with them into local memory or cache on each proces-
sor’s behalf. This is accomplished by storing the processes
and data associated with them in local memory or cache on
each processor’s behalf (Chen et al. 2018). It is also pos-
sible to communicate with other processes through the use
of the global memory system, which is accessible through
the global memory system, which is accessible through the
global memory system.

Xtra storage mapping algorithm

Memories mapping is the process of associating data from
one file with an aspect of a process’s virtual address space
that is currently being performed, and it is also known as
memory mapping (also known as virtual address transla-
tion). In some circles, it is referred to as data association,
data association and association, or data association and
association, and it is also referred to as data association and
association (Calinescu et al. 2018). When a file mapping
object is created and stored in the database, it is possible
for the system to keep track of the relationship between two
files. When a process makes use of a portion of the virtual

Fig. 4 Memory architecture

Fig. 5 ELMM shared-memory

2107Applied Nanoscience (2023) 13:2103–2114

1 3

address space that has been allocated to it to access the con-
tent of files that are currently being accessed, this is referred
to as the file view in computing terminology (Long et al.
2018). Reading and writing from a file are both examples of
file mapping. A process can benefit from both random and
sequential input and output by using file mapping. Large
data files can be processed without the need to map the
entire data file into memory, which is particularly advanta-
geous when dealing with large data files. Multiprocessing
is a term that refers to the use of memory-mapped files to
share data among multiple processes that are running at the
same time.

It is possible to perform multiprocessing using memory-
mapped files. The fact that processes can read from and write
to the file view when using dynamically allocated memory
means that when using dynamically allocated memory,

pointers are used to read from and write to the file view
rather than direct access to the file view when using dynami-
cally allocated memory. In order to improve performance,
file mapping stores the file on disc while keeping a copy of
the file view on the computer’s hard drive (Zhao et al. 2018).
As a result, the system becomes more responsive as a result
of the implementation of file mapping. The virtual protect
function, which allows processes to manipulate the file view
when the function is enabled, can be used to manipulate the
file view by manipulating the file view. Figure 6 depicts the
relationship between a, a file view, file mapping object and
a file on disc (Chang et al. 2017). It also depicts the relation-
ship between a file mapping object and a file on disc.

Storage systems have not improved in terms of perfor-
mance when measured in terms of the amount of stor-
age available, even though processor performance has
increased dramatically. While data can be processed

Fig. 6 Xtra storage mapping algorithm

2108 Applied Nanoscience (2023) 13:2103–2114

1 3

quickly by the CPUs, system problems can still occur as
a result of the latency introduced by a data storage device
(Park et al. 2017). Data-intensive workloads are associated
with a significant amount of overhead, which accounts for
a significant portion of the time lost to inefficiency. With
the recent increase in the amount of data that is being
processed by applications, there is an urgent need for a
significant improvement in the overall performance of
the system. In recent years, in-memory data processing
has gotten a lot of attention because of its ability to pro-
cess workloads more quickly by eliminating the need for
I/O. In-memory data processing is becoming increasingly
popular because of its ability to process workloads more
quickly. Such issues, on the other hand, can be avoided in
the long run by including memory-mapped file I/O func-
tionality in your application.

Memory access latency

The actual data transmission latency calculation starts by
dividing the “chunks” parameter with the mem_t data struc-
ture’s bus_width variable to obtain the total amount of data
columns to be transmitted. Once the total amount of data
columns is determined, the latency function will divide the
amount by two and store the result to a temporary variable
known as access_transfer (DOR3 memory can transmit
twice per memory clock and transmit one data column per
transmission).

At this point, the latency function is still expressed in
terms of memory clock cycles, as it was previously stated
(Lapshev and Hasan 2016). The latency function will con-
vert the result to processor clock cycles by multiplying the
values (“latency” and “Access _transfer”) by the mem t vari-
able, mem to CPU clk, in the latency function. When a value
is converted to a processor clock cycle, the latency function
stores the value of access transfer in the channel's pre v burst
variable for use in subsequent latency calculations.

Because the data bus will be busy until the most
recent memory access (the current access) is completed,
the latency function will also store the value of start
time + “latency” + access transfer to the bus timer variable
of the channel (Li et al. 2016). Finally, the latency function
performs one final action, which is to calculate the memory
access latency that is relative to the “now” parameter in the
input parameter. This is completed by returning the value of
bus timer, which is the word “now”.

Latency optimisation

It is necessary to employ the latency pragma because it
ensures that the implemented design executes all of the
operations in the functions within a specified range of
clock cycles. However, while it is possible to announce the
latency pragma while still inside the loop, this will result in
the loop’s total latency being specified for each repetition
(Kulkarni et al. 2016), however, if it is desired to operate on
the total latency of the loop, it is necessary to announce the
latency pragma while outside the loop as described above
(Fig. 7).

The following is the declared separating latency for all
iterations:

In addition to using sequential loops for further optimiza-
tion, another method of reducing latency is to combine them
all. By flattening the nested loop, it is possible to reduce
additional latency, which is a positive development (Balasa
et al. 2017). This directive should be applied to the loop
that is located at the innermost point of its parent loop body
in order to flatten it out. It can be defined as: Set_direc-
tive_loop_flatten top/inner.

Implementation and results

The memory controller implementation were evaluation
using trace based simulation. A VHDL testbench was used
to read request from a text file and them to the controller
via the host input interface. The testbench records requests
as complete when they are signalled on the host output

2109Applied Nanoscience (2023) 13:2103–2114

1 3

interface, which simulates the overall latency of memory
request to real host as shown in Fig. 8.

The testbench load request as fast as possible with-
out regard for the timing information in the trace is itself
dependent on the average memory access time and using it
would not give an accurate picture of how the design imple-
mented in this work actually affect the average memory
latency. It would have been preferable to perform the trace-
based simulation using realistic timing, but the inter depend-
ence of the rate at which memory requests are used with the
average response time for the memory requests makes the
synthesis of such timing difficult. Therefore, the traces were

read into the simulation as quickly as posible. Accelerated
traces allow the controller to achieve its maximum possible
performance because the maximum amount of concurrency
is available. Although using accelerated traces can hide
some of the downfalls of certain controller implementations.

However, because of intellectual property protection,
obtaining memory figures that are suitable for use in indus-
trial applications is difficult. The use of nonlinear regression
modelling of memory properties in conjunction with a black
box approach is one approach that can be used to deal with
a lack of available numbers in this scenario.

Fig. 7 Memory_access_latency function work flow

2110 Applied Nanoscience (2023) 13:2103–2114

1 3

Figures 9 and 10 show the simulation results of the pro-
posed method. RTL and Technology diagram of the cache
memory block of the proposed method. Everything about
memory characteristics that were used in the experimental
evaluation was presented in the same way it had been before.

As shown in Fig. 11, the results of dynamic energy mini-
mization experiments conducted on 16 benchmark applica-
tions in terms of normalised average power consumption,
along with a power analysis performed on the proposed algo-
rithm, were compared to the theoretical results. This analysis
displays total power, supply power, and other information
(Fig. 12).

Conclusion

When developing and designing for high performance
microprocessors, it is essential to develop and design an
effective cache memory algorithm that generates an effec-
tive system. Memory-intensive applications can benefit
from the first method, which combines optimization of
memory allocation with application binding to provide
a more efficient solution. It is possible to achieve appli-
cation-specific dynamic energy minimization in memory
subsystems when running memory-intensive applications
using this method, which is particularly advantageous
when running memory-intensive applications. Based on

Fig. 8 Simulation method

2111Applied Nanoscience (2023) 13:2103–2114

1 3

Fig. 9 Technology view of cache memory block

2112 Applied Nanoscience (2023) 13:2103–2114

1 3

Fig. 10 RTL schematic view of memory block

2113Applied Nanoscience (2023) 13:2103–2114

1 3

a comparison with using a single memory block only, the
determined results are optimal, with average reductions of
more than 80% on an ongoing basis on an ongoing basis.
ELMM memory subsystem configurations with split
ELMM memory subsystems have proven to be a highly
efficient switch when it comes to designing low-power
System-on-Chip devices. Two memory blocks can be used
in this area to achieve the greatest possible improvement
instead of just one memory block, which is the case with
the former. It turns out, on the other hand, that the allo-
cation of additional memories results in only a marginal
increase in the amount of energy saved.

Declarations

Conflict of interest The authors declare no conflict of interest.

References

Ahmed MR, Zheng H, Mukherjee P, Ketkar MC, Yang J (2021)
Mining message flows from system-on-chip execution traces,
2021 22nd International symposium on quality electronic
design (ISQED), pp. 374–380. Doi: https:// doi. org/ 10. 1109/
ISQED 51717. 2021. 94243 06.

Balasa F, Abuaesh N, Gingu C, Luican I, Zhu H (2017) Energy-aware
memory management for embedded multidimensional signal
processing applications. EURASIP J Embed Syst 1:2016

Calinescu G, Fu C, Li M, Wang K, Xue C (2018) Energy optimal
task scheduling with normally-off local memory and sleep-
aware shared memory with access conflict. IEEE Trans Com-
put 67:1–1

Casini D, Biondi A, Nelissen G, Buttazzo G (2018) Memory feasibil-
ity analysis of parallel tasks running on scratchpad-based archi-
tectures. In: 2018 IEEE real-time systems symposium (RTSS).
Doi: https:// doi. org/ 10. 1109/ RTSS. 2018. 00047

Chang D, Lin I, Yong L (2017) Rohom: requirement-aware online
hybrid on-chip memory management for multicore systems. IEEE
Trans Comput Aided Des Integr Circuits Syst 36(3):357–369

Chen D, Edstrom J, Gong Y, Gao P, Yang L, McCourt M, Wang J,
Gong N (2018) Viewer-aware intelligent efficient mobile video

Fig. 11 Power consumption based on power analysis

Fig. 12 Device utilisation

https://doi.org/10.1109/ISQED51717.2021.9424306
https://doi.org/10.1109/ISQED51717.2021.9424306
https://doi.org/10.1109/RTSS.2018.00047

2114 Applied Nanoscience (2023) 13:2103–2114

1 3

embedded memory. IEEE Trans Very Large Scale Integr (VLSI)
Syst 26(4):684–696

Chusov SA, Primakov EV, Savchenko YV, Pereverzev AL, Barkov
ES (2021) Configurable test environment for RTL simulation
and performance evaluation of network on chip as part of SoC.
IEEE Conf Russ Young Res Electr Electron Eng (ElConRus)
2021:1969–1974. https:// doi. org/ 10. 1109/ ElCon Rus51 938. 2021.
93966 34

Fan H et al. (2019) High-precision adaptive slope compensation circuit
for system-on-chip power management. 2019 IEEE 38th interna-
tional performance computing and communications conference
(IPCCC), pp. 1–2

Frolova PI, Chochaev RZh, Ivanova GA, Gavrilov SV (2020) Delay
matrix based timing-driven placement for reconfigurable systems-
on-chip. IEEE Conf Russ Young Res Electr Electron Eng (EICon-
Rus). https:// doi. org/ 10. 1109/ EICon Rus49 466. 2020. 90391 08

Kuan K, Adegbija T (2018) Lars: logically adaptable retention time
stt-ram cache for embedded systems. In: 2018 Design, automation
test in Europe conference exhibition (DATE), pp. 461–466. Doi:
https:// doi. org/ 10. 23919/ DATE. 2018. 83420 53

Kulkarni N, Yang J, Seo J, Vrudhula S (2016) Reducing power,
leakage, and area of standard-cell ASICS using threshold logic
flip-flops. IEEE Trans Very Large Scale Integr (VLSI) Syst
24(9):2873–2886

Lapshev S, Hasan S (2016) New low glitch and low power DET
flip-flops using multiple C-elements. IEEE Trans Circuits Syst
I Regul Pap 63(10):1673–1681

Li Y, Wang H, Liu R, Chen L, Nofal I, Chen Q, He A, Guo G,
Baeg S, Wen S, Wong R, Wu Q, Chen M (2016) A 65 nm
temporally hardened flip-flop circuit. IEEE Trans Nucl Sci
63(6):2934–2940

Long L, Ai Q, Cui X, Liu J (2018) TTEC: data allocation optimiza-
tion for morphable scratchpad memory in embedded systems.
IEEE Access 6:54701–54712

Park J, Seo H, Kong B (2017) Conditional-Boosting flip-flop for
near-threshold voltage application. IEEE Trans Very Large
Scale Integr (VLSI) Syst 25(2):779–782

Rudolf J, Strobel M, Benz J, Haubelt C, Radetzki M, Bringmann O
(2019) Automated sensor firmware development—generation,
optimization, and analysis. In: MBMV 2019; 22nd workshop—
methods and description languages for modelling and verifica-
tion of circuits and systems, pp. 1–12

Rumyantsev A, Krupkina T, Losev V, Maksimov A (2020) Devel-
opment of a measurement system-on-chip and simulation on
FPGA. IEEE Conf Russ Young Res Electr Electron Eng (EICon-
Rus). https:// doi. org/ 10. 1109/ EICon Rus49 466. 2020. 90392 49

Sayed N, Bishnoi R, Oboril F, Tahoori MB (2018) A cross-layer
adaptive approach for performance and power optimization in
stt-mram. In: 2018 design, automation test in Europe conference
exhibition (DATE), pp. 791–796

Sergey G, Daniil Z, Rustam C (2019) Simulated annealing based place-
ment optimization for reconfigurable systems-on-chip. IEEE Conf
Russ Young Res Electr Electron Eng (EIConRus). https:// doi. org/
10. 1109/ EICon Rus. 2019. 86572 51

Strobel M, Radetzki M (2019a) A backend tool for the integration of
memory optimizations into embedded software. In: 2019 Forum
for specification and design languages (FDL), pp. 1–7. Doi:
https:// doi. org/ 10. 1109/ FDL. 2019. 88768 95

Strobel M, Radetzki M (2019b) Design-time memory subsystem opti-
mization for lowpower multi-core embedded systems. In: 2019
IEEE 13th international symposium on embedded multicore/
many-core systems-on-chip (MCSoC), pp. 347–353. Doi: https://
doi. org/ 10. 1109/ MCSoC. 2019. 00056

Strobel M, Radetzki M (2019c) Power-mode-aware memory subsystem
optimization for low-power system-on-chip design. ACM Trans
Embed Comput Syst 18(5):1–43. https:// doi. org/ 10. 1145/ 33565 83

Strobel M, Führ G, Radetzki M, Leupers R (2019) Combined mpsoc
task mapping and memory optimization for low-power. In: Proc.
of the 2019 IEEE 15th Asia Pacific conference on circuits and
systems (APCCAS)

Xu Y, Zhu W, Xiao J, Yang G, Hu J, Zhang S, Huang M, Kong W,
Zou S (2018) A 280-KBytes twin-bit-cell embedded NOR flash
memory with a novel sensing current protection enhanced tech-
nique and high-voltage generating systems. IEEE Trans Circuits
Syst II Express Briefs 65(11):1569–1573

Zhao Z, Sheng Y, Zhu M, Wang J (2018) A memory-efficient approach
to the scalability of recommender system with hit improvement.
IEEE Access 6:67070–67081

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1109/ElConRus51938.2021.9396634
https://doi.org/10.1109/ElConRus51938.2021.9396634
https://doi.org/10.1109/EIConRus49466.2020.9039108
https://doi.org/10.23919/DATE.2018.8342053
https://doi.org/10.1109/EIConRus49466.2020.9039249
https://doi.org/10.1109/EIConRus.2019.8657251
https://doi.org/10.1109/EIConRus.2019.8657251
https://doi.org/10.1109/FDL.2019.8876895
https://doi.org/10.1109/MCSoC.2019.00056
https://doi.org/10.1109/MCSoC.2019.00056
https://doi.org/10.1145/3356583

	Optimal energy efficient, load aware memory management system on SoC’s for industrial automation
	Abstract
	Introduction
	Energy optimization
	Efficient load aware memory management (ELMM) algorithm
	Xtra storage mapping algorithm
	Memory access latency
	Latency optimisation
	Implementation and results
	Conclusion
	References

