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Abstract
It has only recently become possible to build the system on a chip (SoC) platform that makes use of field-programmable gate 
arrays (FPGAs) to moderate the amount of computational load placed on the main processor's CPU core. On the reconfigur-
able fabric, data used by both the software and the hardware is mapped using optimised memory mapping algorithm that 
was developed specifically for this purpose. This memory mapping algorithm serves as the base for the entire method. In 
this work, proposed a novel technique which is optimal energy efficient load aware memory management (ELMM) technique 
and it concentrated on the amount of extra storage after mapping using task monitoring algorithm and it reduces the energy 
consumption. The experimental results reveal that the proposed ELMM system of FPGA memory resources can be obtained 
at a much lower latency with minimal resource overhead and lower power consumption. Implementation of this work can 
done by using the Xilinx ISE 14.4 simulator and also generated the waveforms.

Keywords Energy efficient load aware memory management (ELMM) · Latency · Memory management · Power 
consumption · System-on-chip

Introduction

System on chip (SoC) is a chip which has multiple differ-
ent components on same silicon. These components can be 
processing units, memories or other functions. These SoCs 
are integrated circuits (ICs) but in larger scale and SoCs 
are usually considered to have more functionality where 
ICs usually are considered to have one specialised function 
(Chusov et al. 2021). The key is the combination of software 
and hardware. Hardware is very fast and has low power con-
sumption but is not flexible, adaptable and is hard design 
and test. Software is very flexible, adaptable, easy to write 
and test but also slow and has high power consumption. This 
means that with programmability we lose performance and 
with performance we lose adaptivity. SoCs are a good mid-
dle ground when both programmability and performance are 
wanted (Ahmed et al. 2021).

SoCs communicate internally with interconnects and 
externally with communication protocols. For example, an 
SoC for smart phone would need a communication protocol 
to be able to communicate with peripheral devices. These 
devices can be cameras, screens or other chips. Communi-
cation protocols can be used internally as well between the 
different components of the SoC. Figure 1 shows an example 
of a high level representation of an SoC. The figure shows 
possible modules inside an SoC and how they are connected 
with an interconnect (Rumyantsev et al. 2020).

SoCs are becoming more complex and contain more func-
tionality. Complexity of design means more transistors but 
short time to market forces designers to use transistors less 
efficiently (Frolova et al. 2020). The efficient usage of tran-
sistors comes from optimization for which the designers do 
not have enough time. One way to battle this is the design 
re-usability where same design would be used for multiple 
applications. These designs usually leave room for some 
customization in architectural parameters. * K. Siva Sundari 
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Energy optimization

The following section of this paper will provide a more in-
depth discussion of an optimization concept for memory 
subsystems that are composed of STT-RAM blocks. Due 
in part to the optimization potential offered by the follow-
ing two characteristics of this memory technology, which 
can be observed in conjunction with it and which can be 
observed in conjunction with it. Most importantly, the 
trade-off between the energy consumption of STT-RAM 
write operations and the latency of the write operation 
must be taken into account. As has been demonstrated for 
static random access memory memories, the impact of 
the required memory access logic results in an increase 
in dynamic energy consumption with increasing memory 
size (Rudolf et al. 2019). Also discussed is how to take 
advantage of this fact by optimising SRAM memory sub-
systems in the same way that DRAM memory subsystems 
are. However, while selecting an energy-efficient set of 
STT-RAM memories is straightforward, it does involve 
aspects that can be classified as allocation and binding 
problems, which will be discussed in greater detail further 
down this page on this page (Strobel et al. 2019). We have 
already discussed how allocating different-sized memory 
blocks can make a significant difference in terms of write 
and read energy consumption, particularly when combined 
with application segment binding and taking into account 
different memory access frequencies.

Because of this, the system’s overall performance is 
influenced by several factors, including the memory 
subsystem’s operation frequency and the overall system 

performance as a result, as well as memory blocks’ operat-
ing voltage levels and the processor’s operating frequency. 
In a single memory block, it is referred to as different 
operation voltage levels assignment when different mem-
ory blocks are assigned different voltage levels (Strobel 
and Radetzki 2019a). When integrated into a 45 nm node, 
a 4 MiB STT-RAM memory can operate at a maximum 
operation frequency ranging from 48 to 57 MHz, depend-
ing on the selected operation mode. Figure 1 depicts a 
trade-off diagram for the 45 nm node, which provides a 
more detailed illustration of the subject (Strobel and Rade-
tzki 2019b). This paper investigates the write operation in 
relation to other memory sizes, and it is discovered that 
a much broader range of design possibilities is revealed; 
for example, it is possible to use write frequencies as low 
as 40 GHz in megabyte memory and write frequencies 
of more than 100 MHz in smaller memories with storage 
capacities as small as a few thousand bytes or even smaller 
than that. Because energy consumption changes at the 
same rate as the environment, it is not difficult to identify 
a good or even optimal solution within this design space 
(Fan, et al. 2019). In the following section, we will discuss 
a memory optimization method for STT-RAM memories 
that takes into account both the impact of memory size and 
the effects of different operation voltage levels at the same 
time. It is possible to account for the effects of memory 
size and different operation voltage levels in STT-RAM 
memories at the same time using this method, which saves 
both time and effort by eliminating the need for multiple 
calculations (Strobel and Radetzki 2019c).

Fig. 1  Block diagram for high 
level representation of SoC
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Efficient load aware memory management 
(ELMM) algorithm

Variables and data structures in shared memory are declared 
in such a way that the compiler does not perform memory 
optimizations and makes the most efficient use of the pro-
cessor registers that are currently available because there 
is insufficient local storage available. This ensures that the 
processor registers are used in the most efficient manner 
possible. As a result of this performance optimization, 
when accessing the shared memory pool, other forms of 
local storage, such as processor caches, are bypassed and 
used instead (Sergey et al. 2019). Data is read from shared 
memory whenever software requests it, and the results are 
immediately written back to shared memory to complete 
the transaction. Due to its simplicity, this scheme can be 

implemented with some difficulty. Any processor can be 
used to implement this algorithm.

Despite the fact that this scheme is feasible, it can only 
be implemented if the processor is capable of supporting 
explicit instructions for flushing all local storage into mem-
ory, which is not always the case due to limitations in the 
capabilities of some CPUs. As is readily apparent, the most 
significant advantage of both schemes is the fact that there 
are no costs associated with data transfer between software 
and hardware during the development process (Casini et al. 
2018). The advantage of using shared memory rather than 
a local storage scheme, aside from the fact that data is not 
buffered within the processor's local memory, is the abil-
ity to maintain data consistency throughout the duration of 
the transaction. However, when the software portion of the 
application is in use, the amount of traffic that travels across 
the processor bus increases dramatically as a result of the 
increased activity on the processor bus. Because mapped 
memory access times are significantly longer than those 
of unmapped memory, using mapped memory in place of 
unmapped memory can result in a significant reduction in 
performance when compared to unmapped memory (Kuan 
and Adegbija 2018). To ensure that these schemes perform 
as efficiently as possible, it is critical to take into account 
factors such as the processor bus speed, the speed of mapped 

Fig. 2  System architecture

Fig. 3  Block diagram of the 
efficient load aware memory 
management
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memory, and the speed of the access logic that is associated 
with mapped memory (Figs. 2, 3).

As a result, the vast majority of microprocessors currently 
available on the market are Von Neumann machines in their 
most basic configuration, which is true for the vast major-
ity of microprocessors (Sayed et al. 2018). Keep in mind 
that the memory architecture (Fig. 4) is the most notable 
exception to this rule because it stores instructions and data 
in separate memory spaces and has separate data, address 
and control buses for each memory space, as opposed to the 
conventional architecture, which has one data, address and 
control bus for each memory space and one control bus for 
each memory space. In addition to the fact that instruction 
and data fetches can occur at the same time, this approach 
has a number of advantages, including the fact that the size 
of an instruction is not limited by the size of a standard data 
unit. The following are some of the additional benefits of 
employing this strategy, which are listed below (word).

The memory system architectures are made up of a cluster 
of high-speed processors, each of which has its own cache or 
local memory and access to a large, shared global memory 

pool, as well as a shared global memory pool, and a shared 
global memory pool (Fig. 5). Wikipedia states that data and 
programmes that will be executed by the computer are stored 
in the global memory of the computer before being executed 
by the computer itself. Also stored in this memory is a table 
containing the names of processes that are currently awaiting 
execution; this table is referred to as the “waiting list”, and it 
contains information about each process’ (or sub- program’s) 
status while it is awaiting execution (Xu et al. 2018). To be 
able to run semi-independently of another processors in the 
system, it is necessary to load the processes and data associ-
ated with them into local memory or cache on each proces-
sor’s behalf. This is accomplished by storing the processes 
and data associated with them in local memory or cache on 
each processor’s behalf (Chen et al. 2018). It is also pos-
sible to communicate with other processes through the use 
of the global memory system, which is accessible through 
the global memory system, which is accessible through the 
global memory system.

Xtra storage mapping algorithm

Memories mapping is the process of associating data from 
one file with an aspect of a process’s virtual address space 
that is currently being performed, and it is also known as 
memory mapping (also known as virtual address transla-
tion). In some circles, it is referred to as data association, 
data association and association, or data association and 
association, and it is also referred to as data association and 
association (Calinescu et al. 2018). When a file mapping 
object is created and stored in the database, it is possible 
for the system to keep track of the relationship between two 
files. When a process makes use of a portion of the virtual 

Fig. 4  Memory architecture

Fig. 5  ELMM shared-memory
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address space that has been allocated to it to access the con-
tent of files that are currently being accessed, this is referred 
to as the file view in computing terminology (Long et al. 
2018). Reading and writing from a file are both examples of 
file mapping. A process can benefit from both random and 
sequential input and output by using file mapping. Large 
data files can be processed without the need to map the 
entire data file into memory, which is particularly advanta-
geous when dealing with large data files. Multiprocessing 
is a term that refers to the use of memory-mapped files to 
share data among multiple processes that are running at the 
same time.

It is possible to perform multiprocessing using memory-
mapped files. The fact that processes can read from and write 
to the file view when using dynamically allocated memory 
means that when using dynamically allocated memory, 

pointers are used to read from and write to the file view 
rather than direct access to the file view when using dynami-
cally allocated memory. In order to improve performance, 
file mapping stores the file on disc while keeping a copy of 
the file view on the computer’s hard drive (Zhao et al. 2018). 
As a result, the system becomes more responsive as a result 
of the implementation of file mapping. The virtual protect 
function, which allows processes to manipulate the file view 
when the function is enabled, can be used to manipulate the 
file view by manipulating the file view. Figure 6 depicts the 
relationship between a, a file view, file mapping object and 
a file on disc (Chang et al. 2017). It also depicts the relation-
ship between a file mapping object and a file on disc.

Storage systems have not improved in terms of perfor-
mance when measured in terms of the amount of stor-
age available, even though processor performance has 
increased dramatically. While data can be processed 

Fig. 6  Xtra storage mapping algorithm
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quickly by the CPUs, system problems can still occur as 
a result of the latency introduced by a data storage device 
(Park et al. 2017). Data-intensive workloads are associated 
with a significant amount of overhead, which accounts for 
a significant portion of the time lost to inefficiency. With 
the recent increase in the amount of data that is being 
processed by applications, there is an urgent need for a 
significant improvement in the overall performance of 
the system. In recent years, in-memory data processing 
has gotten a lot of attention because of its ability to pro-
cess workloads more quickly by eliminating the need for 
I/O. In-memory data processing is becoming increasingly 
popular because of its ability to process workloads more 
quickly. Such issues, on the other hand, can be avoided in 
the long run by including memory-mapped file I/O func-
tionality in your application.

Memory access latency

The actual data transmission latency calculation starts by 
dividing the “chunks” parameter with the mem_t data struc-
ture’s bus_width variable to obtain the total amount of data 
columns to be transmitted. Once the total amount of data 
columns is determined, the latency function will divide the 
amount by two and store the result to a temporary variable 
known as access_transfer (DOR3 memory can transmit 
twice per memory clock and transmit one data column per 
transmission).

At this point, the latency function is still expressed in 
terms of memory clock cycles, as it was previously stated 
(Lapshev and Hasan 2016). The latency function will con-
vert the result to processor clock cycles by multiplying the 
values (“latency” and “Access _transfer”) by the mem t vari-
able, mem to CPU clk, in the latency function. When a value 
is converted to a processor clock cycle, the latency function 
stores the value of access transfer in the channel's pre v burst 
variable for use in subsequent latency calculations.

Because the data bus will be busy until the most 
recent memory access (the current access) is completed, 
the latency function will also store the value of start 
time + “latency” + access transfer to the bus timer variable 
of the channel (Li et al. 2016). Finally, the latency function 
performs one final action, which is to calculate the memory 
access latency that is relative to the “now” parameter in the 
input parameter. This is completed by returning the value of 
bus timer, which is the word “now”.

Latency optimisation

It is necessary to employ the latency pragma because it 
ensures that the implemented design executes all of the 
operations in the functions within a specified range of 
clock cycles. However, while it is possible to announce the 
latency pragma while still inside the loop, this will result in 
the loop’s total latency being specified for each repetition 
(Kulkarni et al. 2016), however, if it is desired to operate on 
the total latency of the loop, it is necessary to announce the 
latency pragma while outside the loop as described above 
(Fig. 7).

The following is the declared separating latency for all 
iterations:

In addition to using sequential loops for further optimiza-
tion, another method of reducing latency is to combine them 
all. By flattening the nested loop, it is possible to reduce 
additional latency, which is a positive development (Balasa 
et al. 2017). This directive should be applied to the loop 
that is located at the innermost point of its parent loop body 
in order to flatten it out. It can be defined as: Set_direc-
tive_loop_flatten top/inner.

Implementation and results

The memory controller implementation were evaluation 
using trace based simulation. A VHDL testbench was used 
to read request from a text file and them to the controller 
via the host input interface. The testbench records requests 
as complete when they are signalled on the host output 
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interface, which simulates the overall latency of memory 
request to real host as shown in Fig. 8.

The testbench load request as fast as possible with-
out regard for the timing information in the trace is itself 
dependent on the average memory access time and using it 
would not give an accurate picture of how the design imple-
mented in this work actually affect the average memory 
latency. It would have been preferable to perform the trace-
based simulation using realistic timing, but the inter depend-
ence of the rate at which memory requests are used with the 
average response time for the memory requests makes the 
synthesis of such timing difficult. Therefore, the traces were 

read into the simulation as quickly as posible. Accelerated 
traces allow the controller to achieve its maximum possible 
performance because the maximum amount of concurrency 
is available. Although using accelerated traces can hide 
some of the downfalls of certain controller implementations.

However, because of intellectual property protection, 
obtaining memory figures that are suitable for use in indus-
trial applications is difficult. The use of nonlinear regression 
modelling of memory properties in conjunction with a black 
box approach is one approach that can be used to deal with 
a lack of available numbers in this scenario.

Fig. 7  Memory_access_latency function work flow
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Figures 9 and 10 show the simulation results of the pro-
posed method. RTL and Technology diagram of the cache 
memory block of the proposed method. Everything about 
memory characteristics that were used in the experimental 
evaluation was presented in the same way it had been before.

As shown in Fig. 11, the results of dynamic energy mini-
mization experiments conducted on 16 benchmark applica-
tions in terms of normalised average power consumption, 
along with a power analysis performed on the proposed algo-
rithm, were compared to the theoretical results. This analysis 
displays total power, supply power, and other information 
(Fig. 12).

Conclusion

When developing and designing for high performance 
microprocessors, it is essential to develop and design an 
effective cache memory algorithm that generates an effec-
tive system. Memory-intensive applications can benefit 
from the first method, which combines optimization of 
memory allocation with application binding to provide 
a more efficient solution. It is possible to achieve appli-
cation-specific dynamic energy minimization in memory 
subsystems when running memory-intensive applications 
using this method, which is particularly advantageous 
when running memory-intensive applications. Based on 

Fig. 8  Simulation method
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Fig. 9  Technology view of cache memory block
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Fig. 10  RTL schematic view of memory block
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a comparison with using a single memory block only, the 
determined results are optimal, with average reductions of 
more than 80% on an ongoing basis on an ongoing basis. 
ELMM memory subsystem configurations with split 
ELMM memory subsystems have proven to be a highly 
efficient switch when it comes to designing low-power 
System-on-Chip devices. Two memory blocks can be used 
in this area to achieve the greatest possible improvement 
instead of just one memory block, which is the case with 
the former. It turns out, on the other hand, that the allo-
cation of additional memories results in only a marginal 
increase in the amount of energy saved.
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