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Abstract
Data centers are located centralized to do computation and accessing huge amount of data by the network devices which are 
interconnected to form the network path. Servers are stacked, data storage is placed in them. Data server backup and server 
redundancies are the recovery mechanisms implemented. Data centers compute, store, distribute the data by processing them 
and the data center controls all the interconnected network equipment in the distributed network. In current, RAID system is 
implemented to avoid the service disruptions due to disk failures, the availability of system and services are achieved with this 
expensive model. But still the availability is lost, and service disruptions happen due to disk failures, the machine learnings 
models to be used to predict the disk failures well in advance. Data center has increased usage of system with increased data 
storage, the failure in disc makes the system failed and down time increases. Analysis on the methods of problems in disk 
and methods of disk availability and predict the disk failure is the main goal. Various machine learning models are identified 
and discussed along with the SMART parameters for measuring the failure of the disk. Improved method of Ensembling of 
trees, random forest and boosting techniques are also discussed.
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Introduction

Modern data center

Data center are used to compute, process, and store data 
from various end users of the systems like Insurance, Bank-
ing, Educational universities, colleges, Government offices, 
Private offices, etc., The data processed in the data centers 
are extremely large and the high latency or service disrup-
tion is not acceptable for the customers.

Day by day the usage of internet increases, network band-
width increases, increment in number of users, increased 
work load, in addition to this introduction to IoT, all such 
factors would affect the data center when everything has to 
be computed at data center. With respect to IoT environment 
any device will be connected to internet and it will be man-
aged for anywhere which might affect the speed and latency 

and this will also become a overload to the data center when 
all transactions are stored in data center.

For example, is Indian Government is slowly migrating 
to digital by moving all the data of citizens to digital way. 
Example is AADHAAR number for each citizen is represen-
tation of each citizen digitally. And the data like AADHAAR 
must ensure high availability as it is accessed by various 
organisations like Banks or for many welfare schemes by 
the various depts of the govt itself. Event today during the 
COVID pandemic the vaccination drive is tracked by AAD-
HAR. Unavailability of AADHAAR data while accessing 
during vaccination program would disrupt the vaccination 
drive services all over India.

Data center is connected across the core network and con-
nected the end users to access devices, access devices con-
nected to distribution side of the network. The distribution 
network consists of distribution or aggregation switches and 
routers (Dally and Towles 2004). The switches in distribu-
tion side is connected to core-switches. The core switches 
will have uplink which will be connected to cloud or WAN. 
High availability and backup is achieved at all the three lev-
els. At each level there is a backup device at core, distribu-
tion and access devices to ensure the availability and avoid 
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disruption to the end users (https:// it. gwu. edu/ sites/g/ files/ 
zaxdz s1131/f/ image/ Data% 20Cen ter% 20Hos ting% 20Des 
cript ion. pdf). This is depicted in Fig. 1.

There is a backup path at all levels; disaster recovery 
mechanism is important for any data centers to take care of 
the highly valued data of customer data and communication 
between them.

Challenges in Data Center

The challenges faced in data centers are identified and 
explained in detail in this section (Liu et al. 2013; Wu et al. 
2012), (IEEE Standards Association, “Media access control 
(mac) bridges and virtual bridge local area networks,” 2011), 
(A scalable, commodity data center network architecture, 
SIGCOMM’08 Proceedings of the ACM SIGCOMM 2008 
conference on Data communication, Pages 63–74, Seattle, 
WA, USA—August 17-22, 2008).

Network maintenance

Networking is an important element of data center; it 
includes network devices such as routers, switches, storage 
devices, transferring of data over this network, etc., The 
maintenance of this becomes a bigger challenge. Seamless 
traffic should be transmitted over this network. Data center 
inter connection is made possible through metro networking, 
backhaul, wireless, etc. The network maintenance involves 
the lifetime expectancy of network elements and service 
disruptions.

Data center consists of connectivity of blade server, top 
of rack switches, routers, servers for computation and high 
data storage devices. This network path is used to deploy 
the business requirements. TOR (Top Of Rack) switches are 
connected to switch blades and routers.

Ethernet is used as transport medium over the deployed 
network. The devices can be ethernet switches or IP routed 

devices. It connects huge servers and network devices, so 
scalability becomes a challenge. The network processors in 
these devices to be with high end CPU processing cores 
which increases the speed and reduce the latency of data 
response (Greenberg et al. 2009a).

Server maintenance

Data centers handles huge amount of data which results with 
computation with highly scalable size of servers (https:// 
searc hdata center. techt arget. com/ tip/A- simple- server- maint 
enance- check list- for- modern- data- cente rs). Large size busi-
ness needs access to more than one data center. The link 
aggregation is implemented everywhere which increases the 
bandwidth also. Any requirements in business involves both 
the servers and data storage in large size working together to 
achieve the goal. To access any website, it requires commu-
nication between set of servers with contents stored in differ-
ent data storages. By accessing both the servers and storages 
it provides response within seconds (Pinheiro et al. 2007a).

Uptime

Data center operates all the time without break, the break-
ages may be during planned maintenance, software or Hard-
ware failures, planned shutdown, etc., Maintenance happens 
when some unexpected failures to be addressed.

In both the planned and unplanned maintenance (https:// 
it. gwu. edu/ sites/g/ files/ zaxdz s1131/f/ image/ Data% 20Cen 
ter% 20Hos ting% 20Des cript ion. pdf), service disruptions 
are clearly experienced by the customers. Only difference 
is that in planned maintenance, customer is aware of the 
down time well in advance and in unplanned maintenance, 
customer is not aware of the down time and it makes the 
environment chaos. Unscheduled maintenance is due to the 
failure of any critical equipment in the network. This is the 
downtime of the network. The network path deployed should 

Fig. 1  Architecture of data 
center

https://it.gwu.edu/sites/g/files/zaxdzs1131/f/image/Data%20Center%20Hosting%20Description.pdf
https://it.gwu.edu/sites/g/files/zaxdzs1131/f/image/Data%20Center%20Hosting%20Description.pdf
https://it.gwu.edu/sites/g/files/zaxdzs1131/f/image/Data%20Center%20Hosting%20Description.pdf
https://searchdatacenter.techtarget.com/tip/A-simple-server-maintenance-checklist-for-modern-data-centers
https://searchdatacenter.techtarget.com/tip/A-simple-server-maintenance-checklist-for-modern-data-centers
https://searchdatacenter.techtarget.com/tip/A-simple-server-maintenance-checklist-for-modern-data-centers
https://it.gwu.edu/sites/g/files/zaxdzs1131/f/image/Data%20Center%20Hosting%20Description.pdf
https://it.gwu.edu/sites/g/files/zaxdzs1131/f/image/Data%20Center%20Hosting%20Description.pdf
https://it.gwu.edu/sites/g/files/zaxdzs1131/f/image/Data%20Center%20Hosting%20Description.pdf
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be maintained, along with power supply systems and net-
work devices that are deployed in both active and redundant 
network paths. All these maintenance activities are to be 
performed in the late nights of the geographical location 
such that less disruption occurs for the end customer.

Cost

Cost is managed based on size of the data center deployed 
for business. It involves parameters such as number of serv-
ers, storage units, racks, power device capacity, licenses of 
software, requirements of network, etc., Operational and 
maintenance cost also to be considered (Greenberg et al. 
2009b).

Energy efficiency

Energy is also a significant factor for Data centers: when 
the energy consumption is high it directly impacts the 
cost and it increases highly. When there is a over usage of 
Power, Administrator should identify and optimise the usage 
of power.

Data center inspection

Data center administrator monitors the network elements, 
data storages regularly and as a result of avoiding or reduc-
ing the potential down time of the data center. Tools are 
available to alert the operator on any issues on the data 
Center. If operator overlooks then there will be a down time 
in data center; to avoid down time, proactive measurements 
and prediction are required. The disk storage failure can be 
predicted with applications developed using machine learn-
ing models and the data collected from the disk storages over 
a period. Data loss and latency can be reduced if we use this 
prediction model.

Security

When the devices in the data center are not secure it can 
affect the service disruption. The traffic flowing in the data 
center network should be monitored thoroughly to find out 
the malicious traffic (Harsh et al. 2018). It could also iden-
tify the suspicious attacks in the data center network.

High availability

All devices in the network should be highly available and if 
any device restarts or is switched off then the recovery mech-
anism or backup communication path should be defined and 
should be in operational condition.

Speed

With high speed, latency should be less. Should also achieve 
high speed in processing the data, computational speed 
(Harsh et al. 2018).

Data storage

Business requirements should satisfy the required data stor-
age, because it must handle huge amounts of data. Any disk 
repository failures (Patterson et al. 1988b) should be identi-
fied well in advance; currently we have RAID (Redundant 
Array of Inexpensive Disks) (Schulze 1988; Pinheiro et al. 
2007b; Dally and Towles 2004). To be more effective sys-
tems, identify machine learning models and predict the fail-
ures well in advance to reduce the downtime of the data 
center. The various types of storages used in the data cent-
ers are hard disk drive, solid state drive and storage blades 
(Fig. 2).

Previous study

Wang classified the failures by mechanism of failures and 
based on their mode and cause; Murray (Patterson et al. 
1988a) classified failures based on bad sector failure, read 
write failures and logical failures. They have made more 
differential predictions but experimentally failure predic-
tions are less and the method of raising alert was not show-
cased. We included more relevant SMART parameters in 
the experiments made by us. Lu et al. (Lu et al. 2020a, b) 
predicted the disk failures based on SMART, Performance 
and Location of the disk in the data center with F-ratio as 
95% however they used the complex model of CNN. We 
have used the boosting technique to get 99.99% accuracy.

Current limitations

• Devices embedded with predictive models using SMART 
monitoring metrics

• Models are proprietary are of simple, threshold-based 
normalizations

• Gives very high false alarms leading to very weak predic-
tive power

Analysis on selection of smart parameters

SMART is self-monitoring, analysis and reporting tech-
nology (Seagate statement on enhanced smart attributes), 
[http:// smart linux. sourc eforge. net/ smart/ faq. php?#2 (“How 
does S.M.A.R.T. work?”)] which measures the attributes 
that are used to protect and secure the data and to reduce the 

http://smartlinux.sourceforge.net/smart/faq.php?#2
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downtime of the system by predicting the fault, failure, and 
performance degradation of the device. SMART parameters 
(Pinheiro et al 2007b) are mainly used to reduce the hard 
disk failures and avoid loss of data.

Generally SMART parameters have threshold values, 
some of the parameters have values as Zero which means 
disk is in good condition and if it exceeds this then it is likely 
to fail. Some of the parameters have varying increasing val-
ues which means the disk is again likely to fail.

HDD and SSD manufacturers are manufacturing the 
devices by considering reliability factor. Reliability means 
storage devices are performing without failures to avoid 
downtimes. SMART parameters are used to predict the relia-
bility of storage devices. Data loss from disc is unacceptable 
and such loss cannot be incurred in business and personal.

Statistical methods (Patterson et al. 1988b), Ranksum 
Test, Z-score test performed with respect to the period of 
the SMART parameter values and identified the major fail-
ure are due to the below discussed SMART parameters from 
the data sets shared by back blaze (https:// www. backb laze. 
com/ b2/ hard- drive- test- data. html# how- you- can- use- the- 
data). Z-score method is used to compare the data point to 

the mean population. From these test methods, from more 
than hundreds of SMART parameters the following were 
identified, and their values will be learnt and trained. There 
are more than 100 SMART parameters, but we select them 
based on these testing, Please refer Table 1. SMART param-
eters show’s the values and its impact of failure in drive. It 
can be used in SCSI, PCI, ATA, etc.,

Analysis indicates that some signals are used for identify-
ing drive failures.

Fig. 2  Data center challenges

Table 1  SMART parameters

SMART parameter Denotes

SMART 5 Number of re-allocated sectors
SMART 12 Power cycle on / off
SMART 187 Reported uncorrectable errors
SMART 188 Command timeout
SMART 194 Temperature of hard disk drive
SMART 196 Number of remap operations
SMART 197 Number of current pending sectors
SMART 198 Number of uncorrectable sector

https://www.backblaze.com/b2/hard-drive-test-data.html#how-you-can-use-the-data
https://www.backblaze.com/b2/hard-drive-test-data.html#how-you-can-use-the-data
https://www.backblaze.com/b2/hard-drive-test-data.html#how-you-can-use-the-data
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A. Count on reallocated sectors (SMART 5)
  Reallocated sector means bad sectors of disc drive. 

This sector is not safe to store the data. When the hard 
disk experiences read/write error then that sector is 
marked as “reallocated” and it copies the data from this 
sector to another sector to prevent the data loss or cor-
ruption (Murray et al. 2005).

  Number of reallocated sectors is the count of sectors 
that are marked as reallocated sector due to read or write 
error; Growing count is to be considered as a prediction 
parameter for hard disk failure. This smart parameter is 
supported by Seagate, IBM, Samsung, Fujitsu, HP, etc.

  Following are the main aspects to of this failure:

• Reallocated sector count
• When the hard disk identifies an error in read or 

write operation, then it flags the sector as “reallo-
cated”. The data are moved to reserved area. This is 
called as remapping. This is also called as remaps.

• This has the count of bad sectors which have been 
identified and remapped.

• When this parameter has higher value, then it is 
advised to replace the drive.

• Lifetime of the drive can be measured with this 
parameter

• This parameter is very critical
• Crossing the limit of this count is degradation of 

this parameter, which may indicate imminent drive 
failure.

• Immediate back of data and replacement of hard-
ware is recommended

• No Fix for this failure

B. Power Cycle ON/OFF (SMART 12)
  Number of times the power ‘ON’ and ‘OFF’ cycle of 

the hard disk drive completely. If the count is higher, 
then this parameter is degrading.

C. Reported uncorrectable errors (SMART 187)
  Reported uncorrectable errors refers to the number of 

errors which cannot be corrected using Error Correcting 
Code. It is referred as SMART 187 (0xBB). This smart 
parameter is supported by Seagate, IBM, Samsung, 
Fujitsu, HP, etc.

  Following are the main aspects to of this failure:

• Count of reported uncorrectable errors
• This parameter reports the number of reads which 

cannot be corrected using hardware ECC (Error cor-
recting code—Recovery of sector).

• This parameter indicates electromechanical failures 
of the drive

• Hard disks with zero values for this parameter will 
never fail.

• When this SMART parameter raises above zero, 
value other than zero, then the disk should be 
replaced immediately without any delay.

D. Command timeout (SMART 188)
  Command time out is number of times the operation 

is aborted because of the hard disk time out. It is referred 
as SMART 188 (0xBC)

• Number of times the operations are halted or aborted 
due to the timeout of HDD

• In normal condition, value of this parameter should 
be zero

• This is a critical parameter
• This parameter indicates problems with data cable 

or power supply
• If this is above zero, disk should be replaced

E. Temperature (SMART 194)
  Count of temperature is measured by monitoring the 

hard disk. This parameter holds the current temperature 
of the hard disk. This parameter is also informational. 
This parameter has the value of the heat sensor which is 
built inside hard disk (Murray et al. 2005).

F. Remap operations (SMART 196)
  Remap operation count is number of times data are 

transferred from relocated sectors to other sectors of 
the disk. Number of times the operation is successful or 
unsuccessful is stored in this parameter. This SMART 
parameter is a bad sector indicator.

G. Uncorrectable errors while reading/writing sector 
(SMART 198)

  This SMART parameter is used to store the total num-
ber of errors that are uncorrectable while doing write 
and read operation on the sector. Increase in the count of 
this SMART parameter denotes the malfunction on the 
surface of the disk or any failure in mechanical system

Classification of smart parameters based 
on good and bad disks

As there are lot of challenges in classifying the data set, 
disk failures can be predicted based on the smart parameters 
with troubleshooting tools and diagnostic software by the 
network and lab administrators who track the operation and 
maintenance of Data center.

We used correlation matrix by calculating the correlation 
factors between SMART attributes and it is visualized with 
the below graph ignore the uncorrelated parameters and con-
sidered the correlated parameters, below Fig. 3 depicts the 
correlation matrix and SMART parameters selected.
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Top SMART parameters which can be used, and it varies 
from the threshold and the disk failed is measured and % of 

accuracy on failures are based on the data sets and it is in 
the below Fig. 4.

Backblaze has recorded the data from the year 2013 
till the Q3 of 2020. We have used them and identified the 
SMART parameters. From the Fig. 3 we can clearly see 
SMART_187, SMART_196, SMART_5 can be used pri-
marily for identifying the disk likely to fail. SMART 197 and 
198 are 46% and 44% approximately. SMART_188 is 3% 
failed disks where the other parameters have failed. So, we 
can ignore the SMART_188 and build applications are mod-
els based on SMART_187, SMART_196, SMART_5. The 
accuracy of the disk failure identification can be improved 
by using the parameters SMART 197 and 198.

Fig. 3  Correlation matrix—SMART parameter selection

Fig. 4  Percentage based—SMART parameter selection

Fig. 5  Summary of Dataset

Defect data

Gathered data set from 
Backblaze 
Total Number of Disks: 
50174
# of Pass Drives :
# of Drives Failed :

Dataset 
Attributes 

Smart 5
Smart 12
Smart 187
Smart 194
Smart 196
Smart 197 

Desired 
Predictions

Disk Failure 
(Yes/No)
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Data set description

Total Data set is 50174; the SMART parameters considered 
are Smart 5, Smart 12, Smart 187, Smart 194, Smart 196, 
Smart 197, and Smart 198. In the data set number of passed 
disk is 49920, number of failed drive is 254. Please refer 
Fig. 5 and Table 2.

Existing machine learning models

A. K-nearest neighbour algorithm
  It is a supervised learning model, when a new data is 

given as input to this algorithm, it positions the new data 
to the available classified group. This algorithm looks 
for similarity in the available data and groups the new 
input data to the similar group. This algorithm is mainly 
used for the applications where classification is required 
(https:// www. javat point. com/k- neare st- neigh bor- algor 
ithm- for- machi ne- learn ing). During the training phase 
of the algorithm, the complete data set is read and stored 
for training data and when new test data are fed in, it 
classifies based on the available category of classifica-
tion from training model. This algorithm always com-
pares the new test data to the similarities of the existing 
features of the dataset.

  Two classifications are made with a defined data set: 
Group A and Group B. Nearest neighbor’s K value to be 
defined, there is no specific method to define K value of 
KNN algorithm. When K value is smaller such as “1” 
or “2”, the noise in the data will be higher. It’s better 
to have K value as “5”. K value can be even more but 
calculation will be higher.

  In Fig. 6, blue data point is new input data: the more 
neighbors are shown in black data points, and the new 
blue data point would be classified as black data clas-
sification.

B. Support vector machine learning model
  Support vector machine (SVM) is used for classifica-

tion of the inputs and it is known as supervised learning 

Table 2  Dataset description Data set description—Black blaze data set

Statistics Smart 5 Smart 187 Smart 188 Smart 196 Smart 197 Smart 198

Count 50,174 50,174 50,174 50,174 50,174 50,174
Mean 101.52 99.94 100.00 101.07 101.52 100.87
STD 13.99 1.42 0.14 15.70 13.91 11.46
Min 31 1 91 0 88 78
25% 100 100 100 100 100 100
50% 100 100 100 100 100 100
75% 100 100 100 100 100 100
Max 252 100 100 252 252 252

Fig. 6  K-nearest neighbor with k = 3 and k = 5

Fig. 7  Support vector machine. XP is a positive point, XN is a nega-
tive point, t is a weight vector, c is the bias

https://www.javatpoint.com/k-nearest-neighbor-algorithm-for-machine-learning
https://www.javatpoint.com/k-nearest-neighbor-algorithm-for-machine-learning
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model. It detects the outliers. In the given dimension, 
hyper plane is constructed between classes which can 
be used for classification (Cristianini and Shawe-Taylor 
2000). Marginal lines are constructed between classes 
and data points near to these marginal lines are called as 
support vectors. Please refer Fig. 7.

  Equation of a line is y = mx + c; this is same as 
y – mx − c = 0.

  Two vectors,t =
⎛⎜⎜⎝

−c

−m

1

⎞⎟⎟⎠
  And x =

⎛⎜⎜⎝

1

X

Y

⎞⎟⎟⎠

  Maximum margin can be calculated using the above 
graph; maximum margin = XP − XN.

C. Random forest classifier
  Random forest classifier is a supervised learning 

method which constructs several decision trees by 
selecting various features of the data set and it finally 
merges the prediction output with various decision trees 
to identify an accurate prediction result (Anantharaman 
et al. 2018).

Please refer Fig.  8. In these two subsets of features 
smart_198 and smart_197 are taken and the prediction hap-
pens using both the trees and finally the results are summed 
up or average can be taken as the final prediction.

Solution approach

Increase in cost due to data center downtime is significant 
between the years 2010 and 2016 as per the case study done 
in US based on 63 data center organizations.

Machine learning is a process in which learning model is 
built based on the past and reacting and predicting. Machine 
learning is based on the historical data of the application. 
The machine learning model should be efficiently used.

tTx = −c ∗ 1 + −m ∗ x + 1 ∗ y

tTx = −c − mx + y

Fig. 8  Random forest classification

Fig. 9  Prediction sequence—software blocks
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Storage failures can be predictable, the machine learn-
ing approach can be implemented, and disk failures can 
be predicted using disk SMART parameters with ensem-
bling approach of decision trees, random forest classifier 
and recursive boosting approach. This solution will help in 
early prediction of disk failures thus by reducing the down 
time and related cost impact can be reduced for data centers. 
Please refer the sequence of blocks in Fig. 9.

Data center monitors the disk and stores the data in 
the CSV format or in spread sheet format. The dataset are 
extracted, and the data transformation is made by filling the 
non-filled values and removing the data samples which are 

exceptional and not related to the range. From the cleaned 
data set, the data set is identified with feature set. Supervised 
learning model is implemented using the transformed data 
set. The prediction is made on the learnt model. If the pre-
diction says the disk is going to fail, then the alert message 
is raised to the administrator.

Pseudo code 1

Train the machine learning model with 11 Months’ data and 
the current month data.
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Disk prediction system predicts, and alert message is sent 
to administrator. Alert message consist of Disk ID, failure 
probability, days in advance the disk is going to fail. Please 
refer below.

Flow chart: RandomTreeRecursiveBoosting

The sequence of the solution is depicted in Fig. 10 using 
flowchart for RandomTreeRecursiveBoosting.

Logarithmic loss

Boosting is to identify the weak learner from the previous 
execution (i − 1)th stage of model and tune that error to the 
ith stage of the model; incremental learning is performed, 
until the logarithmic loss is reduced.

Logarithmic loss is calculated by summing up the actual 
outcome and other possible outcome with probability predic-
tion of each sample of the training set.

Y—Number of samples in training data set.
xi—actual outcome of the “i” th sample, 1 − xi – second 

classification of the ith sample.
If xi is 0 (True), (1 − xi) is 1 (False).
pi—Probability with respect to xi for the ith sample.
Bias is generally defined as difference between the pre-

diction of our model output (average) and the correct value 
which we are trying to predict. Model with high bias over-
simplifies the model which cause pays very little attention to 
the training data. It might lead to high error on training and 
test data (https:// towar dsdat ascie nce. com/ under stand ing- the- 
bias- varia nce- trade off- 165e6 942b2 29).

Variance is used to calculate the spread of the data set 
used for learning. For the given value of data, the prediction 
model’s variance is calculated (https:// towar dsdat ascie nce. 
com/ under stand ing- the- bias- varia nce- trade off- 165e6 942b2 
29). Calculating the standard deviation, that is how far the 
data from the mean is the Variance. When the variance is 

LogLoss Factor = −
1

Y

i=Y∑
i=1

[
x
i
log p

i
+
(
1 − x

i

)
log

(
1 − p

i

)]

Fig. 10  Flowchart of the solu-
tion

Fig. 11  Recursive boosting learning with estimator = 3

https://towardsdatascience.com/understanding-the-bias-variance-tradeoff-165e6942b229
https://towardsdatascience.com/understanding-the-bias-variance-tradeoff-165e6942b229
https://towardsdatascience.com/understanding-the-bias-variance-tradeoff-165e6942b229
https://towardsdatascience.com/understanding-the-bias-variance-tradeoff-165e6942b229
https://towardsdatascience.com/understanding-the-bias-variance-tradeoff-165e6942b229


1579Applied Nanoscience (2023) 13:1569–1590 

1 3

high the model is not generalized, and when the variance 
is small, they are very close to mean of the dataset. Lot of 
attention is made to training data which makes the model 
efficient with training data and having high error rate on the 
test data splitted.

Here both bias and variance are considered which makes 
it more effective which help us to reduce Mean square error 
(MSE).

Error (x) is the sum of  Bias2, Variance, Remaining Error.
In boosting method, predicts from multiple decision trees. 

Each decision tree has the nodes from various subset of fea-
tures from the dataset. Each individual formed decision trees 
are unique and not same. Now, the various decisions from 
these trees are captured and finalized.

Error(x) =
(
E
[
q�(x)

]
− q(x)

)2
+

[(
q�(x) − E

[
q�(x)

])2]
+ �

2

In this method, the trees are built sequentially, and it 
corrects the errors of the previous trees. The tress which 
are not having many levels are easily understandable and it 
becomes simple for making decisions instead of analyzing 
sequentially by iterating through the trees to decide. But for 
a larger tree boosting algorithm helps with splitting the trees 
with various parameters. Prediction with estimator iterator 
as 3 is depicted in Fig. 11

Parameters to be considered for efficient learning:

1. Number of times the execution to be estimated, when 
there is no improvement in loss or error reduction

2. Minimum number of samples used to split
3. Maximum depth of the tree
4. Maximum number of terminal nodes.
5. Number of features to be considered

Pseudo code 2: RandTreeRecursiveBoosting
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Metrics—performance evaluation

The efficiency of the machine learning models can be evalu-
ated based on the various performance evaluation methods, 
they are discussed as follows:

True positive True positive indicates correctly predicting 
the failure from the disks with failures.

True negative True negative indicates that a disk is pre-
dicted as healthy and which is free from failures.

False positive False positive indicates that disk in a good 
condition as failed.

False negative False negative indicates that a disk with a 
failure is predicted as healthy and free from failures.

Accuracy

Accuracy metric defines the overall accuracy in predicting 
whether disk is pass or fail.

Error

Error estimate is used to identify the false disk prediction

Confusion matrix

Confusion matrix is a matrix which is used to visualize the 
number of disks passed and failed with respect to prediction 

Accuracy

=
TruePositive + TrueNegative

TruePositive + True Negative + FalsePositive + FalseNegative

× 100%

Error

=
FalsePositive + FalseNegative

TruePositive + True Negative + FalsePositive + FalseNegative

× 100%

and actual status of the disk.  This matrix will have four 
entries, it is a 2 X 2 Matrix for Pass and Fail classifica-
tion. The four entries of confusion matrix are explained 
below. Please refer Fig. 12.

• True Positive “P” represents the “P” Number of disks 
which are failed in actuals are classified as failed using 
the identified algorithm. This is a correct classification.

• False Negative “R” represents the “R” number of disks 
are misclassified as not going to be failed but in actual 
the disks are failed.

• False Positive “Q” represents the “Q” number of disks 
are misclassified as failed but in actual the disks are in 
good health.

• True Negative “S” represents the “S” Number of disks 
are classified as failed where the actual disk status is also 
failed. This is a correct classification.

Recall

The sensitivity or recall compares the total number of disks 
that are predicted to fail with the total number of disk failures 
present. The Recall metrics is used to predict the positive 
instances present in the data set. The recall value denotes 
the instance in the data set predicted to have the actual disk 
failure, below is used to calculate the sensitivity data,

Sensitivity =
TruePositive

TruePositive + FalseNegative
× 100%

Disk Fail = Yes Disk Fail = No

Predicted

Disk Fail = Yes

True Positive

(Actual Hit)

“P”

False Positive

(Actual Miss)

“Q”

Predicted

Disk Fail = No

False Negative

(False Alarm)

“R”

True Negative

(Correct Rejection)

“S”

Actual Actual

Fig. 12  Confusion matrix
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3

True 
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Fig. 13  Confusion Matrix—KNN
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Specificity or true negative rate

When the prediction output is zero and the disk is free from 
failures, this evaluation is called as Specificity

Precision

The precision value is the percentage of ratio of True Posi-
tive and the sum of true and false positives. The following 
equation is used to calculate precision value:

Specificity =
TrueNegative

TrueNegative + FalsePositive
× 100%

Precision =
TruePositive

TruePositive + FalsePositive
× 100%

Correlation coefficient

The correlation co-efficient is a performance evaluation 
metric using  statistical concepts. The correlation coef-
ficient has relationship between the predicted disk status 
obtained from the experiment and the actual disk failure 
data. This is a performance  measurement between the pre-
dicted and actual value. The prediction of the framework 
lies between − 1 and + 1. If the model has the correlation 
co-efficient value as − 1 then the model makes incorrect pre-
dictions. It becomes unreliable model. When the correlation 
co-efficient value is + 1, the model makes correct predictions 
and it is a reliable model.

CorrelationCo - efficient =
TruePos × TrueNeg − FalsePos × FalseNeg√

(TruePos + FalsePos)(TruePos + FalseNeg)(TrueNeg + FalsePos)(TrueNeg + FalseNeg)
× 100%

Fig. 14  Precision, Recall, 
F1-Score—KNN

Fig. 15  Count of actual and predicted test data
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F‑Measure

Accuracy of Prediction Model can be evaluated using this 
metric. F-Measure is calculated using the values of preci-
sion and recall which are measured from the prediction 
made using various classification and learning models. The 
recall value is same as the sensitivity value. Calculation of 
F-Measure is as follows:

Results

Various machine learning models were implemented along 
with the boosting techniques whose results are depicted in 
this section.

F - Measure = 2 ×
Precision × Recall

Precision + Recall

Confusion

Matrix

Actual

Disk Pass Disk Fail

Pr

ed

ict

ed

Disk Pass

True 

Posi�ve

9977

False 

Posi�ve

1

Disk Fail

False 

Nega�ve

1

True 

Nega�ve
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Fig. 16  Confusion matrix—Random Forest Classifier

Fig. 17  Performance metrics—Random Forest Classifier

Fig. 18  Count of actual and predicted test data—Random Forest Classifier
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KNN

The following is the confusion matrix results (Fig. 13) of 
K-Nearest neighbour machine learning model. In 10,035 
test data, Correct classified disk pass is 9975 and disk 
failed is 54. 6; disk data are not predicted correctly, and it 
is misclassified.

In the below graph (Fig. 14), blue colour is disk pass and 
orange colour is disk failed. The prediction of disk which 
are in healthy state are mostly predicted correctly, in which 
the precision, recall and F1 score value of disk with good 
health is 1, and it is lesser in disk whose health is not good.

In the given test data, 9978 disk data are with Disk Pass 
label and 57 are disk Fail labelled, whereas the predicted 
data have 9975 passed and 54 failed. It is represented in the 
following Fig. 15.

Random forest classifier

The following is the confusion matrix (Fig. 16) results of 
Random Forest Classifier machine learning model. In 10,035 
test data, Correct classified disk pass is 9975 and disk failed 
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False 
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0
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True 
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0

Fig. 19  Confusion matrix—SVM

Fig. 20  Performance metrics—SVM

Fig. 21  Count of actual and predicted test data—SVM
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is 54. 6. Disk data are not predicted correctly, and it is 
misclassified.

In the below graph Fig. 17, blue colour shows disk pass 
and orange colour is disk failed. The prediction for disks 
which are in healthy state are mostly predicted correctly, in 
which the precision, recall and F1 score value of disk with 
good health is 1, and it is approximately nearer to the disks 
whose health is not good.

99.88% is correctly classified and 0.02% is incorrectly 
classified using this learning model; this model looks more 
nearer to the prediction.

In the given test data, 9978 disk data instances are 
labelled with Disk Pass and 57 disk data instances are 
labelled as Disk Fail. The predicted output shows 9977 
disk data instances are in Disk Pass status and 56 disk data 
instances are in Disk Fail Status shown in the following 
Fig. 18.

SVM

The following Fig. 19 is the confusion matrix of Supervised 
Machine Learning model. In 10,035 test data, correctly 
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Fig. 22  Confusion matrix—logistic regression

Fig. 23  Performance metrics—logistic regression

Fig. 24  Count of actual and predicted test data—logistic regression
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classified disk pass is 9978 disk instances and there is no 
disk failures and it is Zero. In this model, 57 disk data are 
not predicted correctly. All 57 failed (Unhealthy) disks 
which are likely to be failed is incorrectly classified as 
passed and not going to fail. This is the major disadvantage 
in using SVM for disk failure prediction.

In the below graph Fig. 20, blue colour is disk pass and 
orange colour is disk failed. The prediction of disk which 
are with status as Pass is predicted correctly.  The precision, 
recall and F1 score value of disk with status as Pass is always 
one, but disk with status as Fail has these values as zero. All 
the disk with status as Fail is predicted as Pass.  

99.43% is correctly classified and 0.57% is incorrectly 
classified using this learning model, however all the 0.57% 
are misclassified as disk are healthy which are failed in 
actuals.

In the given test data, 9978 disk data instances are 
labelled with Disk Pass and 57 disk data instances are 
labelled as Disk Fail. The predicted output shows 9978 disk 
data instances are in Disk Pass status and zero disk data 
instance as Disk Fail Status. When it predicts as no disk 
failure, it becomes a major error in prediction. Therefore, 
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Fig. 25  Confusion matrix—Naïve Bayes

Fig. 26  Performance metrics—Naïve Bayes

Fig. 27  Count of actual and predicted test data—Naïve Bayes
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SVM is not suitable for disk failure prediction. It is shown in 
the following Fig. 21.

Logistic regression machine learning algorithm

The following Fig.  22 is the confusion matrix out-
put of Logistic Regression model. In 10,035 test data, 9902 
disk data instances are correctly classified the disk status as 
pass and 22 disk data instances are correctly classified the 
disk status as Fail. In logistic regression model, there lot of 
misclassifications in the predictions. In this test data,"111" 
disk data instances are not predicted correctly. In the mis-
classified 111 disk data instances, 35 failed (Unhealthy) 
disks which are likely to be failed is incorrectly classified as 
passed and 76 disks are predicted as failed which are passed 
in actuals.

In the below graph Fig. 23, blue colour is disk pass and 
orange colour is disk failed. The prediction for disks which 
are in healthy state are mostly predicted correctly, in which 
the precision, recall and F1 score value of disk with good 
health is 1, and most of the disk fail is predicted incorrectly 
as disk pass and performance metrics in the graph has lower 
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Fig. 28  Confusion matrix—RandTreeRecursiveBoosting

Fig. 29  Performance metrics—RandTreeRecursiveBoosting

Fig. 30  Count of actual and predicted test data—RandTreeRecursiveBoosting
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Fig. 31  Comparison of correctly classified and misclassified—various ML algorithms

Fig. 32  Comparison of precision and recall—various ML algorithms

Fig. 33  Comparison of F-meas-
ure—Various ML algorithms
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values especially Recall and F1 score are very low for disk 
fail labelled data set.

99.93% is correctly classified and 1.1% is incorrectly clas-
sified using this learning model; however, most of the disks 
(34 disks) that are classified as False is predicted as pass and 
76 disks which are passed are misclassified as false.

In the given test data, 9978 disk data are with Disk Pass 
label and 57 are disk Fail labelled and whereas in the pre-
dicted data has 9902 pass and 22 disk failures, whereas 111 
are misclassified. Therefore, there are higher misclassifica-
tions in logistic regression algorithm. It is represented in the 
following Fig. 24.

Naïve Bayes machine learning algorithm

The following Fig. 25 is the confusion matrix results of 
Naive Bayes Learning model. In 10,035 test data, 9978 disk 
data instances are  correctly classified as disk pass and zero 
disk data instance as Fail. 57 disk data are not predicted cor-
rectly, and it is misclassified. These 57 disk data instances 
which are misclassified as Pass is going to be Fail in actual. 

In the below graph Fig. 26, blue colour represents disk 
pass and orange colour indicates disk failed. The prediction 
of disks which are in healthy state is mostly predicted cor-
rectly, in which the precision, recall and F1 score value of 
disk with good health is 1, and most of the disk fail is pre-
dicted incorrectly as disk pass and performance metrics in 
the graph have lower values; especially Recall and F1 score 
are very low for disk fail labelled data set.

99.43% data are correctly classified and 0.54% incorrectly 
classified using this learning model. Most of the disks are 
classified as disk is in Pass status in the prediction however 
those disks are with Fail status. In the given data set, 0.54% 
test data is classified the Disk status as Pass but in actual 
they are in Fail Status. 

In the given test data, 9978 disk data instances are 
labelled with Disk Pass and 57 disk data instances are 

labelled as Disk Fail. The predicted output shows 9978 disk 
data instances are in Disk Pass status and 56 disk data 
instances are in Disk Fail Status and 54   disk instances 
are misclassified the Disk Status as Pass but in actual it is 
Fail. Misclassification rate is higher in Naïve Bayes algo-
rithm. This algorithm will not suit for disk failure prediction. 
It is shown in the following Fig. 27.

RandTreeRecursiveBoosting

Figure 28 lists the confusion matrix results of RandTreeRe-
cursiveBoosting model. In 10,035 test data, Correct classi-
fied disk pass is 9975 and disk failed is 56. Data of one disk 
data are not predicted correctly and are misclassified.

In the below graph Fig. 29, blue colour represents disk 
pass and orange colour represents disk failed. The predic-
tion of disks which are in healthy state are mostly predicted 
correctly, in which the precision, recall and F1 score value 
of disk with good health is 1, and it is approximately nearer 
to the disk whose health is not good.

Using this learning model, 99.88% is correctly classified 
and 0.02% is incorrectly classified using this learning model; 
this model looks more nearer to the prediction.

In the given test data, 9978 disk data instances are 
labelled with Disk Pass and 57 disk data instances are 
labelled as Disk Fail. The predicted output shows 9978 disk 
data instances are in Disk Pass status and 56 disk data 
instances are in Disk Fail Status. It is shown in the follow-
ing Fig. 30.

Comparison of identified machine learning 
algorithms

From the following Fig. 31, Random classifier method pre-
dicted 10,033 disk data as correct classification and 2 disks 
are not correctly classified.

Fig. 34  Comparison of accuracy score and error—various ML algorithms
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Precision value and Recall is ‘1’ for Random classifier 
comparing to other learning models in Fig. 32. SVM, Logis-
tic regression and Naïve Bayes are not suitable for the disk 
failure precision since they have lesser precision and recall 
value.

F-Measure value is higher  for RandTreeRecursiveBoost-
ing and Random Forest classifier when compared to KNN 
algorithm. However the F-Measure value is very less for 
SVM, Logistic regression and Naive Bayes algorithms. As 
the output value of F-Measure is very low from the test 
data, SVM, Logisitc Regression and Naive Bayes algorithm 
is not suitable for disk failure prediction. Please refer the 
following Fig. 33

Accuracy score and error on disk failure prediction using 
various machine learning models as given below in Fig. 34.

Earliest detection

Our approach helps an early detection of failure from 3 days 
up to 30 days in advance with ~ 75% probability. X-axis rep-
resents the number of days in advance the failure is pre-
dicted, and Y-Axis represents the percentage of prediction. 
The following Fig. 35 depicts the same.

Conclusion

In this paper, analysis made on the selection of SMART 
parameters, identified the required SMART parameters as 
features for the training models. SMART Parameters are 
identified using the techniques such as correlation matrix 
and rank sum test. Also compared the solution with the 
various traditional machine learning models. Our solution, 
uses  combination of ensembled method of decision trees, 

building random forest trees and boosting techniques. Ran-
dom forest is built with the  subset of features. The learning 
model is boosted for number of iterations which is defined 
by the value of estimator. Estimator has the value which 
reduces the error (defined by Bias, Variance) or by using 
the logarithmic loss method. When there is no improvement 
in the model it is stopped, and prediction is made. Results 
of various existing models and the ensembled approach of 
RandTreeRecursiveBoosting are executed and portrayed 
in this paper. From this paper, we can use boosting tech-
nique along with Random forest for accurate prediction at 
the rate of 99.99%. Disk failure can be predicted in advance 
from 3 to 30 days at 75% probability.

Future work

The machine learning model should be fine-tuned with all 
the parameters identified for efficient learning to be learnt 
more with features, and dataset should be increased for more 
than 1 lakh data samples in the set. Prediction probability 
of having prediction at least 8 days prior would help the 
administrator to perform proper databackup and replace-
ment, whereas 3 days is lesser to replace the disk data set. 
RandTreeRecursiveBoosting to be improved with more 
weight and logarithmic steps to be decreased such that com-
plexity of the algorithm can also be reduced.
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