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Abstract
In this article, we prepared efficient ZnO@MoS2 composites through hydrothermal and solvothermal method for photo-
catalytic hydrogen evolution. The structural, morphological, surface area and optical properties were investigated using 
transmission electron microscopy (HR-TEM), X-ray diffractometer (XRD), Brunauer Emmett Teller (BET), UV–visible 
(UV-vis) absorption and Photoluminescence (PL) emission spectroscopy. The incorporating effect of MoS2 on the photo-
catalytic performance of ZnO photocatalyst has been studied. The PL emission spectra of prepared composites elucidate that 
recombination of electron/hole pairs is greatly suppressed owing to the incorporation of MoS2 sheet-like nanostructures. 
The composite sample (3wt % of MoS2 in ZnO) showed the excellent photocatalytic efficiency when compared to pure 
photocatalyst. The considerable increase in the efficiency of nanocomposites may be accredited to extended absorption 
region, favorable band structure, and effective separation of charge carriers, large surface area and the reactive active sites 
provided by layered structure of MoS2. This study demonstrates that prepared composites could be promising and efficient 
photocatalysts for the evolution of hydrogen through water-splitting under visible light illumination.
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Introduction

Clean and renewable energy is probably the most important 
challenge facing mankind in the twenty-first century. It is 
estimated that global energy demand doubled in the middle 
of this century, and by 2100, global energy demand will 
be tripled. One of the most important goals of our modern 

society is to build a sustainable environment (Gertler et al. 
2019). The growing environmental problems associated with 
the widespread use of unsustainable fossil fuels (oil, natural 
gas and coal) and the growing demand for energy will sooner 
or later force humans to use clean and sustainable energy. 
Over the years, the scarcity of fossil fuels from biological 
remains of dead animals and plants for hundreds of mil-
lions of years ago and the environmental problems caused 
by their combustion have prompted research into the devel-
opment of novel renewable energy production technique. 
Several methods have been proposed so far (Papadimitriou 
2019; Tronchin et al. 2018). A combination of photocata-
lysts and solar energy has been identified by investigators as 
an associated source of clean and abundant energy (Chris-
toforidis and Fornasiero 2017). The sun produces about 
3 × 1024 J of energy each year, about 12,000 times greater 
than current energy requirement (Shaner 2016). Therefore, 
solar energy can be used as an alternative energy source. 
So far, water-splitting converts solar energy into hydrogen 
and considered an effective hydrogen preparation method to 
solve the energy problem. Research on photocatalysis has 
been carried out since last century and make a significant 
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contribution to renewable energy and environmental treat-
ment process (cleaning of emissions and purification of 
water). In the past decades, the number of applications based 
on photocatalysis has greatly increased. Although various 
material systems have been developed, the production of 
 H2 from water is one of the most promising ways to fulfil 
the current environmentally friendly energy demand (Sat-
tler 2017; Hosseini and Wahid 2019; Rathod et al. 2016) 
because this technology is based on the energy of photons 
(or solar energy), which is a source of clean and permanent 
energy, mainly water, a renewable resource. It is an environ-
mental protection technology, free of harmful by-products 
and pollutants. Using photocatalytic process, conversion of 
solar energy to hydrogen is a noble solution for energy and 
environmental problems (Chen et al. 2017). But the biggest 
challenge in using this technology is to develop high-qual-
ity and efficient photocatalyst which must have properties, 
such as higher electron–hole pair separation rate and higher 
surface-to-volume ratio for maximum interaction (Di 2016; 
Tan 2017; Sreethawong et al. 2008; Wang 2019). A huge 
effort has been made recently to build efficient photocata-
lytic systems, based on semiconductor materials photocata-
lyst, such as metal oxides (Kakuta and Abe 2009; Alkaim 
2013), organic polymers (Jun 2013; Schwab 2010), sulfides 
(Xie et al. 2014), phosphates (Yi 2010), oxy-nitrides (Maeda 
et al. 2013), etc. Among all of these semiconductors, pho-
tocatalyst ZnO is a strong candidate for efficient photocata-
lyst because of its low cost, excellent stability, availability, 
and wide band gap and non-toxic properties. However, for 
 H2 evolution, pure ZnO shows weak photocatalytic activity. 
Rapid electron–hole pair recombination before migrating to 
the surface through the reaction is one of the reasons for 
non-effective photocatalyst for  H2 evolution (Pan and Zhang 
2012; Kumar and Rao 2015). Loading noble metal on the 
surface of ZnO is an effective method to form ZnO metal 
hetero-structure to eliminate electron–hole recombination 
and increase photocatalysis ZnO efficiency. Many successful 
systems have been established to combine ZnO and vari-
ous precious metals (such as Ag, Pt, and Au) to evolve  H2 
(Gao et al. 2013; Chung 2019; He 2014). Due to the high 
cost of these precious noble metals, these are not suitable  
commercially as a photocatalyst. So, it is necessary for mak-
ing highly efficient ZnO-based photocatalyst to explore co-
catalysts which are easily available and low cost.  MoS2 is 
an exceptional photocatalyst for  H2 evolution in photocata-
lytic activity and also shows extensive applications toward a 
number of semiconductors, such as  C3N4,(Hou 2013) CdSe 
(Frame and Osterloh 2010),  ZnIn2S4 (Wei 2014) and  TiO2 
(Zhou et al. 2013). Experimental and theoretical results also 
show that the active site of  MoS2 for the  H2 production reac-
tion of unsaturated sulfur atoms terminates at the end of Mo 
edge (Hinnemann 2005; Sabbah 2007). A large number of 
studies have shown that the activity of  MoS2 is higher than 

from mostly used noble metal, such as Pb, Pt, Rh, Au and 
Pd (Sabbah 2007; Zong 2008).  MoS2 is not only suitable 
for (Hou 2013; Hinnemann 2005) electron–hole separation 
rate, but also provides favorable proton reduction sites in 
response to highly  H2 evolution reactions. Therefore,  MoS2 
is considered the best co-catalyst for  H2 evolution and suit-
able alternative for noble metal because it is of less cost, 
outstanding photo-stability, easily available and non-toxic. 
ZnO is expected to hybridize with the  MoS2 layer, reduce 
electron–hole pair recombination rate and increase photo-
catalytic activity. Current research work focus on fabrication 
of ZnO–MoS2 photocatalyst for hydrogen evolution. First, 
we synthesized pure ZnO and  MoS2 via hydrothermal and 
solvothermal method, respectively, and then combine both 
of these via hydrothermal method to study the effect of dif-
ferent concentration of  MoS2 in ZnO. Four composite sam-
ples of ZnO–MoS2 are fabricated by varying  MoS2 (1–4%) 
concentration in pure ZnO.

Materials and methods

Fabrication of ZnO

To fabricate ZnO, 2 g of zinc acetate was dissolve in 80 ml 
ethanol. Then, NaOH solution was prepared in water sepa-
rately and added drop-wise under constant stirring in zinc 
acetate solution until pH of the solution changed from 9 
to 11 and maintained. Then, 80 ml solution was placed in 
sealed 100 ml Teflon autoclave and heated at  1500C for 12 h. 
After reaction was complete, autoclaves were allowed to 
cool at room temperature. ZnO nanoparticles in white color 
were collected after filtering, and then washed with ethanol 
three to four times. To get good crystallinity, calcination of 
the sample was done at 500 °C for 2 h.

Fabrication of  MoS2

To fabricate  MoS2, as a starting material and source 
 CH4N2S thioure, citric acid  (C6H6O7) and hepta-molyb-
date tetra-hydrate ((NH4)6Mo7O24.4H2O) were used. Two 
solutions were prepared; in the first solution, 1.5  g of 
 (NH4)6Mo7O24.4H2O with 0.5 g of  C6H6O7 was dissolved 
in distilled water under constant stirring at 85 °C for 30 min 
and during stirring, ammonia was added drop-wise until 
4 pH of the solution was maintained. In the second solu-
tion, 1.30 g of  CH4N2S was added drop-wise in distilled 
water under constant stirring on hot plate for 10 min. Then, 
both solutions were transferred to 100 ml Teflon autoclave 
and heated at 180 °C for 12 h. After reaction was complete, 
autoclaves were allowed to cool at room temperature. Black 
color precipitates were collected, then filtered and washed 
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with ethanol three to four times. To get good crystallinity, 
calcination of the sample was done at 400 °C for 2 h.

Assembling of ZnO–MoS2 composite

Four samples (1–4) of composite ZnO–MoS2 were prepared 
by varying the mass fraction of  MoS2 1%, 2%, 3% and 4% 
in pure ZnO sample by hydrothermal method. First, sample 
was prepared by taking 99wt % of ZnO mixed with 1wt % of 
 MoS2 for gelatinization and dispersion and added in deion-
ized water. Then, sample was centrifuged at 3000 rpm for 
40 min and dried at 200 °C on magnetic stirrer. Similarly, 
second, third and fourth samples were prepared by varying 
2wt %, 3wt % and 4wt % of  MoS2 in pure ZnO particles.

Characterization

Morphology and composition of the synthesized samples 
were determine by TEM (JEM-2100). Optical and elec-
tronic properties of fabricated samples were investigated by 
UV–visible spectroscopy (UV-1700, Shimadzu) and PL (FP-
8200, JASCO), where the BET surface area of fabricated 
particles were determined using nitrogen  (N2) absorption 
device Micrometer TriStarII-3020 (Fig. 1).

Photocatalytic hydrogen production measurements

Green approach of  H2 production as a fuel is carried out in 
closed quartz reactor, and the reaction chamber was totally 
sealed so that no other gas exchange takes place in it. In the 
reaction chamber, 60 mg photocatalyst was used in 100 ml 
solution containing deionized water with 0.1 M  Na2S and 
0.05  Na2SO3. 300-W Xeon Lamp was used as a light source 
for photocatalytic reaction with wavelength � ≥ 400 nm. Ini-
tially, reaction chamber was placed in the dark with constant 

stirring for 50 min and then to make homogenous solution 
treated ultrasonically for 10 min, after this,  N2 gas was used 
to exhaust  O2 from the reactor. Finally, reactor was exposed 
to light for  H2 evaluation. In reaction chamber,  H2 evalua-
tion was examined by GC-7890II chromatograph (Ar carrier, 
MS − 5Å column, Beifen-Ruili, TCD and SP-2100).

Results and discussion

Photoluminescence (PL) spectrum is used to examine migra-
tion, electron–hole transfer efficiency and trapping in the 
semiconductors. PL spectra of pure ZnO and composite sam-
ples 1–4 were shown in (Fig. 2). PL spectra consist of two 
emission regions, one is UV  region consisting of band-gap 
peaks that range 350–400 nm and the second one is general 
broad-band spectrum region inferring about the structural 
defect in fabricated samples that range 400–700 nm(Peng 
2008; Park 2003). First, peaks of all samples observed in UV 
region almost at the same point show that because of minute 
doping variation in band-gap being very small. Other peaks 
are in visible region from 400 to 470 nm range and show 
the lattice defect in fabricated samples. Figure 2 depicts  
PL spectra, intensity peak falls down as compared to pure 
ZnO in composite samples, maximum intensity peak falls in 
sample three, high-intensity peak shows high electron–hole 
pair recombination, fall-down intensity peak representing 
electron–hole pair recombination decreases and suitable 
for photocatalytic reaction(Dong 2019; Li 2018). However, 
in sample 4, intensity peak once again rises by increasing 
the concentration of  MoS2 representing that further doping 
 MoS2 is not suitable as a photocatalyst.

UV–visible absorption spectra of pure ZnO and 
composite samples one and two are shown in Fig.  3. 

Fig. 1  Assembling of ZnO-MoS2 composite
Fig. 2  Photoluminescence (PL) spectra of pure-ZnO composites 
(ZnO-MoS2) samples
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Absorption peak of all three samples are observed in 
almost same range from 340 to 370 nm, which confirms, 
from doping of  MoS2 in the very minute of variation in 
band gap, that the same trend is observed in above PL 
spectra. Using Tauc plot relation, band gap of pure ZnO 
and composites sample were determine using relation 
describe in Eq. 1 (Saravanan 2016). In (Fig. 3), graph was 
plotted between energy versus � hv.

Band gap of pure ZnO and composite samples are 3.31, 
3.28 and 3.27, respectively. By varying the concentration 
of  MoS2, the band decreases toward the visible region 
because of very small doping minute variation observed 
like PL spectra but variation toward the visible region suit-
able for photocatalytic reaction (Nayak et al. 2015; Taka-
nabe and Domen 2011).

BET surface area of pure ZnO and composite 
(ZnO–MoS2) samples 1, 2, 3 and 4 are investigated via nitro-
gen absorption–desorption spectra shown in (Fig. 4). Results 
show that pure ZnO particles have surface area 33.19 m2/g 
less than the ZnO–MoS2 composite sample, as graphs in 
(Fig. 4) indicate, by increasing the concentration of  MoS2 
in pure ZnO particle, surface area increased 39.43 m2/g, 
76.23 m2/g and 129.79 m2/g, respectively, suitable  for effec-
tive photocatalyst (Tahir 2018). In the last sample, by further 
increasing the concentration 4wt % of  MoS2 in pure ZnO, 
surface area decreased 116.02 m2/g as compared to sample 
3. Same trend was also observed in TEM characterization 
pictures shown in (Fig. 5). By increasing the concentration 
in composite samples, particle size decreases as shown in 
(Fig. 5). 2-D clear nano-sheet morphology was observed 
in sample 3 that by further increasing the concentration of 
 MoS2 in sample 4, size increased and morphology scattered.

(1)�hv = K(hv − Eg)
n

Photocatalytic activity for  H2 evolution with pure 
ZnO,  MoS2 and with composite (ZnO–MoS2) samples 
1–4 were shown in (Fig. 5). Minimum catalytic efficiency 
15 µmolh−1 g−1 was observed from pure  MoS2, then cata-
lytic efficiency varied with pure ZnO 29 µmolh−1 g−1 but 
not enough as an efficient photocatalyst.  H2 evolution results 
from composite (ZnO–MoS2) as compared to pure sam-
ples remarkably, maximum  H2 evolution 165 µmolh−1 g−1 
obtained from sample 3 (ZnO mixed with 3wt % of  MoS2), 
by varying the concentration of  MoS2 in pure-ZnO 1%, 2% 
and 3%.  H2 evolution efficiency increased 54 µmolh−1 g−1, 
117 µmolh−1 g−1 and 165 µmolh−1 g−1, respectively, but 
in sample 4 (ZnO mixed with 4wt % of  MoS2), further 
increase in concentration causes decrease in  H2 evolution 
141 µmolh−1 g−1 as compared to sample 3.

Here, different factors play an important role in  H2 evolu-
tion for efficient photocatalyst surface-to-volume ratio and 
morphology have an important role as also observed here 
in this photocatalytic activity. In (Fig. 4), BET surface area 
graph shows that pure ZnO has the smallest surface-to-vol-
ume ratio, and sample 3 has the highest surface-to-volume 
ratio, and then sample 4 surface-to-volume ratio decreases. 
Surface-to-volume ratio directly links with particle size. 
Similarly, in Fig. 5, TEM images show pure  MoS2 has the 
maximum size 50 µm and composite sample 3 has the small-
est size 10 nm. So, according to TEM and BET surface, 
characterization in composite sample by varying the concer-
tation of  MoS2 in samples 1–3 size decreases and surface-
to-volume ratio increases and in sample 4, size once again 
increases and surface-to-volume ratio decreases. Overall,  H2 
evaluation results are also according to the same trend and 
photocatalytic efficiency also directly links with surface-to-
volume ratio. When high surface-to-volume ratio and maxi-
mum photo-catalytic surface are available for reaction, better 
results are obtained (Fig. 6).

Fig. 3  UV–visible absorption spectra of pure-ZnO composites (ZnO-
MoS2) samples

Fig. 4  BET-Surface area of pure-ZnO composites (ZnO-MoS2) sam-
ples
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Moreover, electron–hole pair recombination has an 
important role, weak activity of pure ZnO could be attrib-
uted to the rapid electron–hole pair recombination.  MoS2 
loading on the pure ZnO surface caused a significant 
increase in  H2 production. Due to narrow band gap  MoS2, 
 MoS2 in composite ZnO–MoS2 acts as photo-sensitizer 
like macro-molecule organic dye (Feng 2014). In addition, 
pure ZnO, after sensitization, effectively used visible light 
(Pawar and Lee 2014; Bu 2013). ZnO–MoS2 intermedi-
ate contact and due to charge-carrier density at boundary, 
hole in  MoS2 diffuses in ZnO. Similarly, electron in pure 

ZnO diffuses to the  MoS2 and form positive- and negative-
charged regions. These charged regions are the source of 
intermediate electrostatic field and band bending shown 
in (Fig. 7). Due to electrostatic field, photo-excited elec-
tron in  MoS2 conduction band transfers to ZnO and hole 
in ZnO transfers to the  MoS2. In this way, in composite 
ZnO–MoS2, electron–hole pair separation rate increases 
and causes maximum  H2 evolution (Tan 2014; Tajima 
1990).  H2 evolution activity of the photocatalyst loaded 
with a relatively high amount of  MoS2 (4wt % of  MoS2 in 
pure ZnO) can be attributed to the shading effect of  MoS2 

Fig. 5  TEM images of fabricated samples
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(Yuan 2015), which suppresses the easy absorption of light 
in ZnO component.

Conclusion

ZnO and  MoS2 samples were successfully fabricated via 
hydrothermal and solvothermal method, respectively, and 
ZnO-MoS2 composite with different concentration of  MoS2 
combined via hydrothermal method. For  H2 evolution, con-
centration of  MoS2 in composite samples (ZnO-MoS2) plays 
an important role. In composite samples, varying concen-
tration of  MoS2 directly affect the composite size, surface-
to-volume ratio, electron–hole pair recombination rate and 
 H2 evolution activity. Maximum photocatalytic activity for 

 H2 evolution was observed with composite (3wt % of  MoS2 
in pure ZnO). Further increase in concentration may cause 
to lower the  photocatalytic performance owing to surface-
to-volume ratio and electron–hole pair recombination rate.
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