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Abstract
This article presents the theoretical results for Multi-route reaction model of chemical kinetics. The steady-state approxima-
tion of the participating chemical species and the relationship between the common species in multi-routes mechanism is 
preserved. It has observed that some reaction routes complete their cycle before the others. The reason behind the reaction 
completion is the transition time of the species during the reaction. Graphical results obtained through MATLAB are used 
to describe the physical aspects of measurements.
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Introduction

All chemical reactions that are classified into several catego-
ries i.e. simple and multiple reaction mechanisms, elemen-
tary and non-elementary reactions homogeneous and inho-
mogeneous reactions. Most chemical reactions are complex 
in nature, to cope with this type of reactions; the reaction 
mechanism consists of many chemical reaction phases called 
elementary phases (Constales et al. 2016; Shahzad and Sul-
tan 2018; Shahzad et al. 2015a; Maxwell 1867). Many chem-
ical systems that include homogeneous and heterogeneous 
reactions simultaneously with many applications, such as 
photosynthesis in plants, carbon dioxide and water converted 
to food due to photosynthesis. Batteries and combustion are 
the common examples of electrochemistry and polymer pro-
duction (Sultan et al. 2019; Aris 1965).

By applying the Horiuti rule, the complex reaction 
mechanisms are divided into dissimilar available reaction 
paths (Shahzad et al. 2019a, 2020; Ali et al. 2019). While 
the smallest amount of energy is required to start the mol-
ecules or atoms in a situation where they can experience 
organic transformations. Before the reagents are converted 

into products, the free energy of the system must exceed 
the activation energy for the reaction (Sultan et al. 2019; 
Yaublonsky et al. 2020). The classical reduction and modi-
fication methodologies for the dissimilar reaction pathways 
strongly depend on the approximations of the slow invariant 
manifold and the steady-state approximation (Shahzad et al. 
2015b,2016a, b,2019b,c; Gorban and Shahzad 2011).

Mathematical modeling

A flexible chemical reaction can be symbolized as:

where rj besides sj are the stoichiometric coefficients of reac-
tants and products and Rj, Sj are reactants and products. The 
reaction speed of each elementary step R can be measured 
by calculating its forward ( Rf  ) and backward ( Rb ) reaction.

The system (2) attains its equilibrium state when 
R+

f
= R−

b
.

Applying mass action law, forward and backward reaction 
rates can be stated as:

(1)
n∑
j=1

rjRj ⇔

n∑
j=1

sjSj,

(2)R = R+

f
− R−

b
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Here, CRj
, CSj

 are the concentration of reactant and prod-
uct species,�j, �j are the stoichiometric coefficients and k+, k− 
are the reaction rate coefficients for the forward and back-
ward reactions, respectively.

Finally, the addition of the product of rate equation and 
stoichiometric vectors gives equations of kinetics.

Mathematical model for reversible reaction 
mechanism

To study the different reaction paths, we necessity to con-
sider a reversible non-homogeneous reaction mechanism in 
two ways that are of equal proportions with six chemical 
ingredients.

CA2
 , CZ , CAZ , CBZ , CAB  and CB. Here, (A, Z and B) are 

three independent elements

The above reaction mechanism (5) can be divided in two 
different reaction routes by using Horiuti rule.

First reaction route

An initial reaction-path completes its phase in the double 
steps 1st and 4th, total contributing chemical species in the 
first path are formed by three elements ( Ne  = 3) are Nc  = 5.

The Eq. (6) represents the double phase flexible reaction 
mechanism, now CA2

 and CB responding to individually other 
in the existence of reagent Z provides the products CAB.

(3)
R+

f
= k+

∏
c
rj

Rj
= k+c

r1
R1

c
r2
R2

R−

b
= k−

∏
C
�j

Sj
= k−c

�1

S1
c
�2

S2
.

(4)c⋅
i
=

n∑
i=1

�iRi(c).

(5)

CA2
+ 2CZ

K+

1

⇌
K−
1

2CAZ

CB + CZ

K+

2

⇌
K−
2

CBZ

CAZ + CBZ

K+

3

⇌
K−
3

CAB + 2CZ

CB + CAZ

K+

4

⇌
K−
4

CAB + CZ .

(6)
CA2

+ 2CZ

K+

1

⇌
K−
1

2CAZ

CB + CAZ

K+

4

⇌
K−
4

CAB + CZ

Increasing reaction comparison in 1st and 4th step with 
the Horiuti matrix [−1 − 2]T individually we get.

The overall reaction mechanism involves three chemical 
species CA2

 , 2CB and 2CAB , while 2CZ , 2CAZ and 2CAZ are the 
surface intermediates.

Second reaction route

The second reaction route completes their phase in 2nd, 3rd 
and 4th steps of their whole mechanism.

There are five chemical species ( Nc = 5) and three chemi-
cal elements ( Ne = 3) that are participating completely in 
their phase.

Results and discussion

The goal of finding a state of equilibrium is generally to 
calculate the concentrations of the participating species and 
the elapsed time of the species in the two reaction paths. 
This period allows us to compare the efficiency of the two 
reaction pathways as a function of time.

Initially, the first reaction mechanism is considered with 
the initial parameters taken as,

where C1 = CA2
 , C2 = CZ , C3 = CAZ , C5 = CBZ , C6 = CAB , C4 

= CB.

The stoichiometric vectors of Eq. (2) are given by

Equation (6) implies that

−CA2
− 2CZ − 2CB − 2CAZ ⇌ −2CAZ − 2CAB − 2CZ

CA2
+ 2CB ⇌ 2CAB.

(7)

CA2
+ 2CZ

K+

1

⇌
K−
1

2CAZ

CB + CZ

K+

2

⇌
K−
2

CBZ

CAZ + CBZ

K+

3

⇌
K−
3

CAB + 2CZ .

(8)c1 = 0.5, c2 = 0.1, c3 = 0.1, c4 = 0.4, c5 = 0.1.

(9)�i =

[
−1 − 2 2 0 0

0 1 − 1 − 1 1

]
.

(10)
C1 + 2C2

K+

1

⇌
K−
1

2C3

C4 + C3

K+

2

⇌
K−
2

C6 + C2.
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The reaction rates are given as R1 = k+
1
c1c

2

2
− K−

1
c2
3
 and 

R2 = k+
2
c3c4 − k−

2
c2c6.

Now using Eq. (4) we develop the system equations of 
kinetic

The reduced description form the system (11) in c⋅
1
  and 

c⋅
4
 is

Likewise, the initial parameters for the second path of the 
reaction mechanism are:

Vectors are stoichiometric

Now we denote the species with different constant, 
c1 = CA2

 , c2 = CZ , c3 = CAZ , c4 = CB , c5 = CBZ , c6 = CAB.

Now Eq. (7) implies that

(11)

c⋅
1
= −k+

1
c1c

2

2
+ K−

1
c2
3

c⋅
2
= 2k−

1
c2
3
+ k+

2
c3c4 − 2k+

1
c1c

2

2
− k−

2
c2c6

c⋅
3
= 2k+

1
c1c

2

2
− 2k−

1
c2
3
− k+

2
c3c4 + k−

2
c2c6

c⋅
4
= k+

2
c2c5 − k−

2
c3c4

c⋅
5
= k+

2
c3c4 − k−

2
c2c6.

c⋅
1
= −k+

1
c1(2c1 − c4 − 0.5)2 + k−

1
(−2c1 + c4 + 0.7)2,

c⋅
4
= −k+

2
(2c1 − c4 − 0.5)(0.5 − c4) + k−

2
c4(−2c1 + c4 + 0.7).

c1 = 0.500000000, c2 = 0.1, c3 = 0.1, c4 = 0.4, c5 = 0.2, c6 = 0.1.

(12)�i =

⎡⎢⎢⎢⎣

−1 − 2 2 0 0 0

0 − 1 0 − 1 0 1

0 2 − 1 0 1 − 1

⎤⎥⎥⎥⎦
.

(13)

C1 + 2C2

K+

1

⇌
K−
1

2C3

C4 + C2

K+

2

⇌
K−
2

c6

C3 + C6

K+

3

⇌
K−
3

C5 + 2C2.

Here

The system of equations for the second reaction route can 
be defined as:

The reduced form of the system of differential Eq. (15) is

(14)

R1 = R+

f1
− R−

b1
= k+

1
c1c

2

2
− k−

1
c2
3
, R2 = R+

f2
− R−

b2
= k+

2
c2c4 − k−

2

and R3 = R+

f3
− R−

b3
= k+

3
c3c6 − k−

3
c5c

2

2
.

(15)

c⋅
1
= −k+

1
c1c

2

2
+ k−

1
c2
3

c⋅
2
= −2k+

1
c1c

2

2
+ 2k−

1
c2
3
− k+

2
c2c4 + k−

2
c6 + 2k−

3
c3c6 − 2k−

3
c5c

2

2

c⋅
3
= 2k+

1
c1c

2

2
− 2k−

1
c2
3
− k+

3
c3c6 + k−

3
c5c

2

2

c⋅
4
= −k+

2
c2c4 + k−

2
c6

c⋅
5

= k+
3
c3c6 − k−

3
c5c

2

2

c⋅
6
= −k+

3
c3c6 + k−

3
c5c

2

2
+ k+

2
c2c4 − k−

2
c6.

(16)

c⋅
1
= −k+

1
c1c

2

2
+ k−

1
c2
3

c⋅
2
= −2k+

1
c1c

2

2
+ 2k−

1
c2
3
− k+

2
c2(2c1 + 2c3 + c2 − 0.9) + k−

2
(0.3 − c2 − c3) + 2k+

3
c3(0.3 − c2 − c3)

−2k−
3
(1.3 − 2c1 − c3)c

2

2
+ 2k+

3
c3 × (0.6 − c2 − c3) − 2k−

3
c2
2
(1.35 − 2c1 − c3)

c⋅
3
= 2k+

1
c1c

2

2
− 2k−

1
c2
3
− k+

3
c3(0.3 − c2 − c3) + k−

3
(1.3 − 2c1 − c3)c

2

2
.
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Fig. 1  The transition time period of A
2
 k+

1
 = 1; k−

1
= 0.5 ; k+

2
= 0.5 ; 

k
−
2
= 1 with started initial points 0.2, 0.4 and 0.8 approaches to its 

balanced state of three possible kinds of trajectories
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Here, k+
1
= 1 and k+

2
= 0.5 = k+

3
.

Based on Figs. 1, 2, 3, 4, and 5, we can observe the transi-
tion time used by each chemical species A_2, Z, AZ, B and 
AB at constant speeds and the first route from different ini-
tials and all trajectories takes a steady-state condition after 
completing their transition time. While, the transition time 
used by each chemical species A_2 Z, AZ, B, AB and BZ 
for second reaction route can be observed at constant speeds 
in Figs. 6, 7, 8, 9, 10, and 11.

Species participating in these two paths approach their 
equilibrium after passing through a different transition 
period but have a different period of time. This shows that 
some reactions are faster than others (Figs. 12, 13, 14, 15, 
and 16).    

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

time

Z

Fig. 2  The transition time period of Z k+
1
 = 1; k−

1
= 0.5;k+

2
= 0.5 ; 

k
−
2
= 1 with started initial points 0, 0.15 and 0.25 approaches to its 

balanced state of three possible kinds of trajectories
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Fig. 3  The transition time period of AZ k+
1
 = 1; k−

1
= 0.5 ; k+

2
= 0.5 ; 

k
−
2
= 1 with started initial points 0.02, 0.15 and 0.25approaches to its 

balance state of three possible kind of trajectories
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Fig. 4  The transition time period of B k+
1
 = 1; k−

1
= 0.5 ; k+

2
= 0.5 ; 

k
−
2
= 1 with started initial points 0.1, 0.2 and 0.3 approaches to its 

balanced state of three possible kinds of trajectories
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Fig. 5  The transition time period of AB k+
1
 = 1; k−

1
= 0.5 ; k+

2
= 0.5 ; 

k
−
2
= 1 with started initial points 0.3, 0.4 and 0.6 approaches to its 

balanced state of three possible kinds of trajectories
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Conclusion

Analysis of steady-state approximation in both reaction 
routes is a step towards the understanding the slow and 
fast behavior of complex chemical reactions. The present 
dogma states that the behavior of chemical species in both 

routes approaching towards their equilibrium after passing 
through a different transition period but they have a differ-
ent time period. This shows that some reactions are faster 
than the others. Similarly, it indicates that the activation 
energy requires for the system is different in both the reac-
tion routes.
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0.55
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time

A
2

Fig. 6  The transition time period of A
2
 k+

1
 = 1; k−

1
= 0.5 ; k+

2
= 0.5 ; 

k
−
2
= 0.2 ; k+

3
= 0.5 ; k−

3
= 2.5 with started initial points 0.25, 0.4 and 

0.6 approaches to its balanced state of three possible kinds of trajec-
tories
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Fig. 7  The transition time period of Z k+
1
 = 1; k−

1
= 0.5 ; k+

2
= 0.5 ; 

k
−
2
= 0.2 ; k+

3
= 0.5 ; k−

3
= 2.5 with started initial points 0.15, 0 and 0.2 

approaches to its balanced state of three possible kinds of trajectories
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Fig. 8  The transition time period of Z k+
1
 = 1; k−

1
= 0.5 ; k+

2
= 0.5 ; 

k
−
2
= 0.2 ; k+

3
= 0.5 ; k−

3
= 2.5 with started initial points 0.06, 0.15 and 

0.2 approaches t0 its balanced state of three possible kinds of trajec-
tories
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Fig. 9  The transition time period of B k+
1
 = 1; k−

1
= 0.5 ; k+

2
= 0.5 ; 

k
−
2
= 0.2 ; k+

3
= 0.5 ; k−

3
= 2.5 with started initial points 0.3, 0 and 0.6 

approaches to its balanced state of three possible kinds of trajectories
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Fig. 10  The transition time period of AB k+
1
 = 1; k−

1
= 0.5 ; k+

2
= 0.5 ; 

k
−
2
= 0.2 ; k+

3
= 0.5 ; k−

3
= 2.5 with started initial points 0.04, 0.1 and 

0.2 approaches to its equilibrium state of three possible kinds of tra-
jectories
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Fig. 11  The transition time period of B k+
1
 = 1; k−

1
= 0.5 ; k+

2
= 0.5 ; 

k
−
2
= 0.2 ; k+

3
= 0.5 ; k−

3
= 2.5 with started initial points 0.15, 0 and 0.4 

approaches to its balanced state of three possible kinds of trajectories
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Fig. 12  The comparison between two species (A_2 and A_2) for both 
reaction routes are given as the first and second routes attain their 
equilibrium position at a point 277.8, respectively
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Fig. 13  The comparison between two species (Z and Z) for both reac-
tion routes are given as, the first path attain their equilibrium position 
at a point 116.7 and the second path attain their equilibrium position 
at a point 187.4, respectively
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