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Abstract
Nanofluids are of excellent significance to scientists, because, due to their elevated heat transfer rates, they have important 
industrial uses. A new class of nanofluid, “hybrid nanofluid,” has recently been used to further improve the rate of heat transfer. 
The current phenomenon particularly concerns the analysis of the flow and heat transfer of SWCNT–MWCNT/water hybrid 
nanofluid with activation energy through a moving wedge. The Darcy–Forchheimer relationship specifies the nature of the flow 
in the porous medium. Further the impact of variable viscosity, velocity and thermal slip, thermal radiation and heat generation 
are also discussed in detail. The second law of thermodynamics is utilized to measure the irreversibility factor. The numeri-
cal technique bvp4c is integrated to solve the highly nonlinear differential equation. For axial velocity, temperature profile, 
and entropy generation, a comparison was made between nanofluid and hybrid nanofluid. The variable viscosity parameter 
enhances the axial velocity and diminishes the temperature distribution for both nanofluid and hybrid nanofluid. Furthermore, 
the solid volume fraction diminishes the velocity and concentration profile while enhancing the temperature distribution.

Keywords  Variable viscosity · Hybrid nanofluid · Partial and thermal slip · Activation energy · Thermal radiation · Entropy 
generation

List of symbols
û	� Along x-axis velocity component
v̂	� Along y-axis velocity component
Q(x)	� Volumetric rate of heat source
K∗∗	� Permeability of porous medium
k∗	� Coefficient of mean absorption
F∗∗	� Nonuniform inertia coefficient
kr	� Reaction rate constant
u∞(x)	� Free stream velocity of the fluid
Ea	� Activation energy
Dhnf	� Mass diffusivity
Pr	� Prandtl number
k(8.61 × 10−5 eV/K)	� Boltzmann constant
N1(x)	� Variable slip factor

D1(x)	� Variable thermal factor
Sc	� Schmidt number
Cf	� Surface drag force
Nux	� Nusselt number
Br	� Brinkman number
Fr	� Inertia coefficient
Ec	� Eckert number
Rd	� Radiation parameter
Rc	� Dimensionless reaction rate
A,B	� Velocity and thermal slip param-

eter, respectively

Greek symbols
�hnf	� Hybrid nanofluid density
�∗	� Stefan–Boltzmann constant
𝜇hnf(T̂)	� Hybrid nanofluid viscosity
�w	� Shear stress
�hnf	� Hybrid nanofluid thermal 

diffusivity
�	� Moving wedge parameter
(�Cp)hnf	� Heat capacity of hybrid nanofluid
�1	� Temperature difference
�f	� Viscosity of fluid
�f	� Density of fluid
(�Cp)f	� Heat capacity of fluid
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�	� Dimensionless heat generation 
parameter

f	� Dimensionless stream function
�2	� Concentration difference
�r	� Variable viscosity parameter

Introduction

Nanofluid has many applications in several crucial areas 
such as transportation, microfluidics, microelectronics, 
medical, manufacturing, and power saving; all these ele-
ments reduce process time and increase heat ratings as well 
as extend the life span of machinery and so on. Nanofluids 
are used as coolants in the automobile and nuclear reactor 
thermal exchange system. In essence, the suspension of nan-
oparticles into the base fluid is nanofluid. The size of nano-
particles is commonly 1–100 nm, but it can contrast slightly 
as demonstrated by their size and shape. Choi and Eastman 
(1995) postulate the idea of nanofluid to upgrade the proper-
ties of certain important fluids; for example, ethylene glycol, 
water, oil, etc. A homogeneous mixture of nanometer-sized 
solid metal particles and a low thermal conductivity base 
fluid results in a nanofluid with improved thermal conductiv-
ity. In numerous medium, the experimental and theoretical 
literature about the synthetization, properties, and conduct of 
nanofluids are noticed in (Buongiorno 2006; Nadeem et al. 
2018; Ahmed et al. 2019; Ellahi et al. 2016).

Mono-nanofluids have a better thermal network and 
strong rheological properties, but they do not have all the 
desirable characteristics required for a specific applica-
tion. Several real-time applications require trade-off among 
various nanofluid properties/characteristics; for example, 
metal oxides such as Al2O3 represent useful chemical iner-
tia and consistency, which, however, show lower thermal 
conductivity, while metallic nanoparticles such as copper, 
aluminum, and silver have higher thermal conductivity, but 
are chemically reactive and unstable. Through hybridizing 
these metallic nanoparticles with metal oxides, the resulting 
fluid called hybrid nanofluid has improved thermophysical 
properties and rheological behavior, together with enhanced 
heat transfer properties. Hybrid nanofluids are developed 
by adding two or more distinct nanoparticles to the base 
fluid that have a higher thermal conductivity comparable to 
mono-nanofluids due to the synergistic effect. The amounts 
of the volume fraction of nanoparticles can be varied to 
obtain the desired heat flow rate. Hybrid nanofluids have 
potential use in the fields of heat transport such as naval 
structures, microfluidics, defense, medical, acoustics, trans-
portation, etc. There are plenty of theoretical and experimen-
tal data available that address hybrid nanofluid behavior in 
various flow frameworks. Through an experimental study, 
Zadkhast et al. (2017) develop a new comparison to estimate 

MWCNT–CuO/water hybrid nanofluid thermal conductiv-
ity. Nadeem et al. (2019) numerically investigate the fea-
ture of heat transfer in the existence of SWCNT–MWCNT/
water hybrid nanofluid. Esfe et al. (2017) computed a hybrid 
nanofluid’s thermal conductivity namely SWCNT–MgO/EG 
and demonstrated the experimental values using artificial 
neural networks. Alarifi et al. (2019) experimentally exam-
ine the impact of temperature, shear rate, and solid con-
centration of nanoparticle on the rheological properties of 
TiO2–MWCNT/oil hybrid nanofluid. It is seen that enhanc-
ing the solid concentration dynamic viscosity of nanofluid 
increases. Experimental investigation of the flow behavior of 
hybrid nanofluids has been done by Esfe et al. (2019), Amini 
et al. (2019) and Goodarzi et al. (2019).

It is known that during every thermal process, the entropy 
age estimates the amount of irreversibility. Cooling and 
heating are an important event in many industrial sectors 
and in the engineering process, particularly in energy and 
electronic devices. Therefore, to avoid any irreversibility 
losses that may influence system efficiency, it is essential 
to maximize entropy production. To control entropy opti-
mization, Bejan (1979) and Bejan and Kestin (1983) first 
concluded an excellent number as the proportion between 
thermal irreversibility and total heat loss because of liquid 
frictional factors, that is called Bejan number (Be). Bhatti 
et al. (2019) analyzed the entropy age (or generation) on 
the interaction of nanoparticle over a stretching sheet satu-
rated in porous medium. Successive linearization technique 
and Chebyshev spectral collocation scheme are employed 
to describe the numerical solution for Bejan number and 
entropy profile. Feroz et al. (2019) demonstrate the mag-
netohydrodynamics (MHD) nanofluid flow of CNTs along 
with two parallel rotating plates under the influence of ion-
slip effect and Hall current. Shahsavar et al. (2019) numeri-
cally investigated the entropy generation characteristic of 
water–Fe3O4/CNT hybrid nanofluid flow inside a concentric 
horizontal annulus. Massive improvements in nanofluid ther-
mophysical properties over the conventional fluids have led 
to the rapid evolution of utilizing MWCNT∕GNPs hybrid 
nanofluids in the field of heat transfer discussed by Hussien 
et al. (2019). Ellahi et al. (2018) scrutinized the influence of 
magnetohydrodynamics (MHD) heat transfer flow under the 
impact of slip past a moving flat plate with entropy genera-
tion. Lu et al. (2018) examined the entropy optimization and 
nonlinear thermal radiation in the flow of hybrid nanoliquid 
over a curved sheet. The finite-difference technique bvp4c 
function is used to solve the numerical solution. Recently, 
the application of entropy generation is found in Khan et al. 
(2019), Sheikholeslami et al. (2019), Zeeshan et al. (2019), 
and Javed et al. (2019).

It has been seen that a lot of thought is busy in litera-
ture with no-slip condition to flow. No-slip phenomenon 
emerges in many assembling progresses at the walls, pipe’s 
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boundary, and curved channel. The liquids indicating bound-
ary slip deserve deliberation in mechanical issues like inter-
nal cavities, transmission lines, and polishing of artificial 
heart valves. Because of the broad application of partial slip, 
analysts take the slip condition instead of the no-slip condi-
tion. The feature of mass and heat transfer in copper–water 
nanofluid with partial slip past a shrinking sheet is examined 
by Dzulkifli et al. (2019). He found that the Soret effect at 
the surface enhances the heat transfer and reduces the mass 
transfer. Ellahi et al. (2019) examined the peristaltic trans-
port of Jeffrey fluid across the rectangular duct in the pres-
ence of partial slip. Alamri et al. (2019) studied the influence 
of second-order slip on plane Poiseuille nanofluid with Ste-
fan blowing. The exact solution of Jeffery fluid incorporated 
in a porous medium through a rectangular duct with partial 
slip is discussed by Ellahi et al. (2019). Zaib et al. (2019) 
studied the aspect of micropolar nanofluid flow via a verti-
cal Riga surface in the result of partial slip. Recently, more 
study about partial slip, nanofluid, and entropy generation 
are found in Sarafraz et al. (2020), Zeeshan et al. (2019), 
Riaz et al. (2020), Ahmad et al. (2020), Ellahi et al. (2019), 
Alamri et al. (2019), and Noreen et al. (2017).

Objective of this communication is to examine entropy 
generation in stagnation point SWCNT–MWCNT/water 
hybrid nanofluid flow due to moving wedge with heat gen-
eration and activation energy. To the best of our knowl-
edge, no one study to investigate the entropy optimization 
for two phase fluid model along with variable viscosity, 
Darcy–Forchheimer, and thermal and velocity slip effect. 
Concluded suitable transformation nonlinear flow expres-
sion is changed to ordinary ones and solved by numerical 
technique bvp4c (Ahmad et al. 2019; Nadeem et al. 2019; 
Suleman et al. 2019). The property of immersed parameter 
on axial velocity, temperature distribution, concentration 
profile, entropy generation, and Bejan number are explored 
graphically.

Mathematical modeling

Figure 1 demonstrates the geometric configuration and the 
considered problem’s schematic physical model. In the pre-
sent analysis, we assume the steady, incompressible two-
dimensional SWCNT–MWCNT/water hybrid nanofluid flow 
in the presence of activation energy and thermal slip past a 
permeable wedge. We find a Cartesian coordinate scheme 
(x, y), where y and x are the coordinates measured normal 
and along to the permeable wedge. The velocity of the free 
stream (inviscid flow) is also thought to be û∞(x) and the 
velocity of the moving wedge is ûw(x) . Liquid and ambi-
ent fluid temperature is T̂w and T̂∞ , where T̂w > T̂∞ is used 

for wedge heating (assisting flow) and T̂w < T̂∞ is used for 
wedge cooling (opposite flow).

Considering the combination of SWCNT into MWCNT/
water, hybrid nanofluid is acquired in the current research. 
First, MWCNT ( �1 ) nanoparticles are inserted in water to 
create a MWCNT/water nanofluid, and then, SWCNT nano-
particles of various fractions ( �2 ) are added to the nanofluid 
blend to obtain the homogeneous mixture of hybrid nano-
fluid SWCNT–MWCNT/water.

Imposing the approximation of the boundary layer and 
assuming that we have a system of equations:

The interrelated conditions are:

(1)
𝜕û

𝜕x
+

𝜕v̂

𝜕y
= 0,

(2)

û
𝜕û

𝜕x
+ v̂

𝜕û

𝜕y
− û∞

dû∞

dx
=

1

𝜌hnf

𝜕

𝜕y

(

𝜇hnf(T̂)
𝜕û

𝜕y

)

−
1

𝜌hnf

𝜇hnf(T̂)

K∗∗
(û − û∞) − F∗∗(û2 − û2

∞
),

(3)

û
𝜕T̂

𝜕x
+ v̂

𝜕T̂

𝜕y
= 𝛼hnf

𝜕2T̂

𝜕y2
+

𝜇hnf(T̂)

(𝜌Cp)hnf

(

𝜕û

𝜕y

)2

+
16𝜎∗T̂3

∞

3k∗(𝜌Cp)hnf

𝜕2T̂

𝜕y2
+

Q(x)

(𝜌Cp)hnf
(T̂ − T̂∞).

(4)

û
𝜕Ĉ

𝜕x
+ v̂

𝜕Ĉ

𝜕y
= Dhnf

𝜕2Ĉ

𝜕y2
− k2

r

(

T̂

T̂∞

)n

exp

(

−Ea

kT̂

)

(Ĉ − Ĉ∞).

Fig. 1   Physical representation of flowchart
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Table 1 quantifies the thermophysical properties of the 
base fluid, i.e., water and for nanoparticles like MWC-
NTs and SWCNTs. The variable viscosity which is vary-
ing inversely to temperature is defined as (Nadeem et al. 
2016):

where a =
�

�f∞

and Tr = T∞ −
1

�
, � , and a are constant.

The values of �nf , �nf , and �nf for nanofluid (SWCNT/
water) are defined as:

The values of �hnf , �hnf , and �hnf for hybrid nanofluid 
(SWCNT–MWCNT/water) are defined as:

(5)

û = ûw(x) + N1(x)𝜐f
𝜕û

𝜕y
,

v̂ = 0, T̂ = T̂w + D1(x)
𝜕T̂

𝜕y
, Ĉ = Ĉw, when y → 0,

û → û∞(x), T̂ → T̂∞, Ĉ → Ĉ∞, when y → ∞.

(6)�f =
1

a(T − Tr)
,

(7)

�nf =
�f

(1 − �)2.5
, �nf = (1 − �)�f + ��SWCNT,

�nf =
knf

(�Cp)nf
,
knf

kf
=

(1 − �) + 2�(
kSWCNT

kSWCNT−kf
) ln(

kSWCNT+kf

kf
)

(1 − �) + 2�(
kf

kSWCNT−kf
) ln(

kSWCNT+kf

kf
)
,

(�Cp)nf = (�Cp)f(1 − �) + (�Cp)SWCNT�.

(8)

�hnf =
�f(1 − �1)

−2.5(1 − �2)
−2.5

(

1 − �∕�r
) , �hnf = (1 − �2)

{

(1 − �1)�f + �1�MWCNT

}

+ �2�SWCNT,

�hnf =
khnf

(�Cp)hnf
, (�Cp)hnf = (1 − �2)

{

(1 − �1)(�Cp)f + �1(�Cp)MWCNT

}

+ �2(�Cp)SWCNT,

khnf

kbf
=

(1 − �2) + 2�2(
kSWCNT

kSWCNT−kbf
) ln(

kSWCNT+kbf

kbf
)

(1 − �2) + 2�2(
kbf

kSWCNT−kbf
) ln(

kSWCNT+kbf

kbf
)
,

kbf

kf
=

(1 − �1) + 2�1(
kMWCNT

kMWCNT−kf
) ln(

kMWCNT+kf

kf
)

(1 − �1) + 2�1(
kf

kMWCNT−kf
) ln(

kMWCNT+kf

kf
)
.

where �1, �2 are the solid volume friction of MWCNT and 
SWCNT, respectively, is volume fraction of nanoliquid, kf 
are the thermal conductivity of regular liquid, and Cp is spe-
cific heat.

To achieve true similarity solution, we defined variable 
velocity and thermal slip as:

where b , c are the constants and m = �∕(2 − �) with � is 
Hartree parameter of pressure gradient.

Similarity transformation

The similarity variables are accepted by:

Now, � is the similarity variable, and f (�) , g(�) , and 
�(�) are the linear velocity, concentration, and temperature 
dimensional coordinates, respectively.

Using similarity transformation, Eqs. (1–4) give:

(9)
u∞(x) = cxm, Tw = T∞ + bx

5m−1

2 ,

D1(x) = D∗
1
x
1−m

2 ,N1(x) = N∗
1
x
1−m

2 ,

(10)

û = cxmf �(𝜂), v̂ = −
1

2

√

c𝜈fx
m−1

2

�

(m − 1)𝜂f �(𝜂) + (m + 1)f (𝜂)
�

,

𝜂 =
�

(
c

𝜈f
)yx

m−1

2 , 𝜃(𝜂) =
T̂ − T̂∞

T̂w − T̂∞

, g(𝜂) =
Ĉ − Ĉ∞

Ĉw − Ĉ∞

.

(11)

1

1 − �∕�r
f ��� +

(

(1 − �2)
{

(1 − �1) + �1

�MWCNT

�f

}

+ �2

�SWCNT

�f

)

(1 − �1)
−25∕10(1 − �2)

−25∕10

(

m+1

2
ff �� + m(1 − f �2) + Fr(1 − f �2)

)

+
��f ��

�r
(

1 − �∕�r
)2

+
Pm

1 − �∕�r
(1 − f �),

Table 1   Thermophysical properties of the base fluid and the nanopar-
ticles

Physical properties Base fluid Nanoparticles

Water MWCNTs SWCNTs

Cp (J/kg K) 4179.0 796.00 425.00
� (kg/m3) 997.1 1600.0 2600.0
K (W/mK) 0.613 3000.0 6600.0
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The appropriate conditions are:

Here, primes stands for differentiation with respect to � 
and m = �∕(2 − �) where � is Hartree parameter, and some 
other parameter used in above equations is defined as:

Physical quantities

From an engineering point of perspective, physical quan-
tities are very useful. The flow conduct characterized by 
skin friction, Nusselt number, and Sherwood number was 
recorded in these quantities as:

(12)

(

khnf

kf
+ Rd

)

��� + Pr

(

�� +
Ec

(1 − �∕�r)(1 − �1)
25∕10(1 − �2)

25∕10
f ��2

)

+
m + 1

2
Pr

(

(1 − �2)

{

(1 − �1) + �1

(�Cp)MWCNT

(�Cp)f

}

+ �2

(�Cp)SWCNT

(�Cp)f

)

f �� = 0,

(13)
(

(1 − �1)
25∕10(1 − �2)

25∕10

Sc

)

g�� +
(

m + 1

2

)

fg� − Rc(1 + �1�)
ng exp

(

−E

1 + �1�

)

= 0.

(14)f �(�) = � + Af ��(�), f (�) = 0, �(�) = 1 + B��(�), g(�) = 1, when � → 0,

f �(�) = 1, g(�) = 0, �(�) = 0, when � → ∞.

Pr = (cp�f)∕kf, B = D∗
1

�

(m+1)c

2�f
, A = N∗

1
�f

�

(m+1)c

2�f
, Fr =

Cb
√

K∗∗�f

, Pm =
�f

cK∗∗
,

Ec =
u2
∞

ΔTCpf

, � =
Q0

c(�Cp)f
, �r =

1

�(Tw − T∞)
, Rd =

16�∗T3
∞

3kfk
∗

, Rc =
k2
r

c
, E =

Ea

kT∞
.

(15)

Cf =
𝜏w

𝜌hnfû
2
∞

, Nux =
−xkhnf

kf(T̂w − T̂∞)

𝜕T̂

𝜕y

|

|

|y=0
, Shx =

qm

Dhnf(Ĉw − Ĉ∞)

𝜏w =
[

𝜇hnf(T̂)
𝜕û

𝜕y

]

y=0
, qm = −Dhnf

𝜕Ĉ

𝜕y

|

|

|y=0
.

Here, Reynolds number is denoted by Rex =
xu∞

�f
.

Entropy generation analysis

Entropy generation (or production) abrogates the available 
energy in the framework of few industrial and engineering 
processes. It is, therefore, worthwhile to discover in a frame-
work the rate of entropy production.

The volumetric rate of local entropy generation of vis-
cous fluid is defined as (Bejan 1979; Bejan and Kestin 1983; 
Bhatti et al. 2019):

Using Eq. (10) in Eq. (15), we get:

(17)
SG =

kf

T̂2
∞

[

khnf

kf
+

16𝜎∗T̂3
∞

3k∗kf

]

(

𝜕T̂

𝜕y

)2

+

(

𝜇hnf(T̂)

T̂∞

)

(

𝜕û

𝜕y

)2

+
û2

T̂∞

(

𝜇hnf(T̂)

K∗∗
+ F∗∗

|û|

)

+
RD

Ĉ∞

(

𝜕Ĉ

𝜕y

)2

+
RD

T̂∞

(

𝜕T̂

𝜕y

𝜕Ĉ

𝜕y

)

.

The associated relationship can structure the dimensionless 
entropy generation:

(16)
Re1∕2

x
Cfx =

1

(1 − �1)
2.5(1 − �2)

2.5

(

(1 − �2)
{

(1 − �1) + �1
�MWCNT

�f

}

+ �2
�SWCNT

�f

)

(

1 −
�(0)

�r

)

f ��(0),

Re−1∕2
x

Nux =
−khnf

kf
��(0),Re−1∕2

x
Shx = −g�(0).
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After using the similarity transformation (10), the dimen-
sionless form of entropy generation become:

Parameters used in the above equation are defined as:

Bejan number is described as the proportional of the 
entropy minimization due to thermal irreversibility to the total 
entropy optimization, that is:

(18)Ns =
T∞(y∕�)

2

kf(Tw − T∞)
SG.

(19)
Ns(�) =

(

khnf

kf
+ Rd

)

�1�
�2 +

Br
(

1 − �∕�r
)−1

(1 − �1)
2.5(1 − �2)

2.5
f ��2 +

BrPm
(

1 − �∕�r
)−1

(1 − �1)
2.5(1 − �2)

2.5
f �2

+ FrBrf
�3 + L

�2

�1
g�2 + Lg���.

(20)

�1 =
ΔT

T∞
, �2 =

ΔC

C∞

, Br =
�fu

2
∞

kfΔT
, L =

RD(Cw − C∞)

kf
.

Results and discussion

Numerical solutions

The numerical solution is achieved with the help of finite-

difference method bvp4c from MATLAB. For manipulat-
ing this technique first, we transform the given nonlinear 
third-order differential equation to the first-order ODEs 
by presented substitution. The convergence criteria were 
allotted as 10−5:

(22)f = y1, f
� = y2, f

�� = y3,

(23)yy1 = f ��� = −
�

1 − �∕�r
�

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�

(1 − �2)
�

(1 − �1) + �1
�MWCNT

�f

�

+ �2
�SWCNT

�f

�

(1 − �1)
−25∕10(1 − �2)

−25∕10

�

m+1

2
fy3 + m(1 − y2

2
) + Fr(1 − y2

2
)
�

+
y3y5

�r
�

1 − y4∕�r
�2

+
Pm

1 − y4∕�r
(1 − y2)

⎫

⎪

⎪

⎬

⎪

⎪

⎭

,

(24)� = y4, �� = y5,

Table 2   Comparison of f ��(0) with previous published results when 
Pm = Fr = � = 0 = A = �r = �i

m Yih (1999) Zaib and Haq 
(2019)

Present result
f ��(0)

− 0.05 0.213484 0.2138 0.21380
0.0 0.332057 0.3326 0.33260
1/3 0.757448 0.7574 0.75745
1.0 1.232588 1.2326 1.23259

(21)

Be =
entropy production due to thermal irreversibility

total entropy generation
.

In mathematical form, it expresses as:

Bejan number requirement lies among 0 < Be < 1 . 
Be = 0 means that there is no entropy generation because 
of heat transfer. Similarly, the entropy minimization is 
less due to heat transfer than fluid friction when Be < 0.5.

Be =

(

khnf

kf
+ Rd

)

�1�
�2

(

khnf

kf
+ Rd

)

�1�
�2 +

Br
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)−1
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2.5
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(1−�1)
2.5(1−�2)

2.5
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(26)g = y6, g� = y7,

(27)yy3 = g�� =

(

Sc

(1 − �1)
25∕10(1 − �2)

25∕10

){

−
(

m + 1

2

)

y1y7 + Rc(1 + �1y4)
ny6 exp

(

−E

1 + �1y4

)}

.

Fig. 2   Influence of �2 on velocity field

Fig. 3   Influence of �2 on temperature field

Fig. 4   Impact of �2 on temperature field

Fig. 5   Result of �2 on entropy generation

Fig. 6   Upshot of Fr on f �(�)

Fig. 7   Upshot of Pm on f �(�)
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The relevant boundary conditions are:

To warranty of every numerical solution approach 
asymptotic value accurately, we take �∞ = 5 (Table 2).

Velocity, micropolar, and temperature profile

By deploying the shooting method/bvp4c, the solution to 
the present problem is gained numerically. Due to fluid 
friction, heat transfer and concentration gradient entropy 
production are formulated. The influences of solid volume 
fraction 0.01 < 𝜙2 < 0.05 , inertia coefficient 0.1 ≤ Fr ≤ 1.0 , 
porous parameter 0.1 ≤ �2 ≤ 0.5 , variable viscosity param-
eter 0.4 ≤ �2 ≤ 1.0 , wedge parameter 0.1 ≤ � ≤ 0.3 , heat 
generation parameter 0.01 ≤ � ≤ 0.15 , radiation parameter 
0.5 ≤ Rd ≤ 1.5 , and Schmidt number 1.5 ≤ Sc ≤ 3.0 on 

(28)

y0(2) = � + Ay0(3), y0(1) = 0, y0(4) = 1 + By0(5), y0(6) = 1,

yinf(2) → 1, yinf(4) → 0, yinf(6) → 0.

yinf(2) → 1, yinf(4) → 0, yinf(6) → 0.

velocity profile, temperature distribution, concentration field, 
entropy generation number, and Bejan number are studied 
graphically. The accuracy of our problem, the present result 
in the absence of slip condition, hybrid nanofluid, and poros-
ity parameter have been related with the earlier available 

Fig. 8   Conclusion of �r on f �(�)

Fig. 9   Conclusion of �r on �(�)

Fig. 10   Conclusion of A on f �(�)

Fig. 11   Outcome of B on �(�)

Fig. 12   Outcome of � on f �(�)
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result of Zaib and Haq. (2019) and Yih (1999). This result 
show good agreement with the above published articles. Fig-
ures 2, 3, 4, and 5 manipulate the influence of SWCNT solid 
volume friction ( �2 ) on axial velocity, temperature profile, 

concentration field, and entropy generation. These profiles 
are sketched for both hybrid nanofluid (SWCNT–MWCNT/
water) and nanofluid (SWCNT–water). It is observed from 
Fig. 2 that the velocity field diminishes for both hybrid nano-
fluid and SWCNT–water nanofluid. This is because of more 

Fig. 13   Influence of Ec on �(�)

Fig. 14   Influence of � on �(�)

Fig. 15   Influence of Rd on �(�)

Fig. 16   Impact of Rc on g(�)

Fig. 17   Influence of Sc on g(�)

Fig. 18   Influence of E on g(�)
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collision with suspended nanoparticles. Nanoparticles scat-
ter energy in the form of heat. Therefore, the temperature 
profile enhances which is clarifying in Fig. 3. Figures 4, 5 
reveal the impact of �2 on concentration profile and entropy 
generation. Both the profiles decelerate with larger �2 . The 
upshot of inertia coefficient Fr and porous parameter Pm on 
axial velocity are discussed in Figs. 6 and 7. The velocity 
distribution enhances with boosting the Fr and Pm . Further-
more, the momentum boundary-layer thickness decreases 
with larger Fr and Pm . Figures 8, 9 highlight the upshot of 
variable viscosity parameter on axial velocity and tempera-
ture field. Velocity filed upgrades, while temperature dimin-
ishes with larger variable viscosity. Physically by increas-
ing the parameter of variable viscosity, momentum transfer 
dominates due to low fluid viscosity, which improves the 
distribution of velocity (see in Fig. 8).

The conclusion of velocity and thermal slip is carried 
out for axial velocity and temperature field separately in 
Figs. 10 and 11. The velocity profile improves for improv-
ing the velocity slip parameter, while their consistent 

momentum boundary-layer thickness reduces, which 
is proven in Fig. 10. In the incidence of thermal slip, a 
smaller amount of heat transfer from the surface to fluid, 
as a result temperature distribution, diminishes which is 
illuminated in Fig. 11. Figure 12 discloses the influence of 
velocity through moving wedge parameter � . Here, veloc-
ity is an enhancing function of � for both nanofluid and 
hybrid nanofluid. In Figs. 13 and 14, temperature profile 
is display to measure the effect of Eckert number Ec and 
heat generation parameter � separately. Mechanical energy 
is converted to thermal energy due to higher Eckert num-
ber which produced friction inside the fluid; as a result, 
temperature field enhances (see Fig. 13). For larger � , the 
internal source of energy of fluid enhances which enhance 
the temperature field (see Fig. 14). From Fig. 15, it is got-
ten that �(�) is an increasing function of radiation param-
eter Rd for both nanofluid and hybrid nanofluid. Physically 
increase values of Rd give the additional heat to the fluid in 
the radiation cycle as the impact temperature distribution 

Fig. 19   Effect of Br on entropy generation

Fig. 20   Action of Rd on entropy generation

Fig. 21   Action of �1 on Bejan number

Fig. 22   Action of �2 on Bejan number
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improves. Figures 16, 17, 18 are delineated to evaluate the 
concentration profile for higher value of involved param-
eter like reaction rate constant Rc , Schmidt number Sc , 
and activation energy parameter E . Concentration pro-
file reduces for larger value of reaction rate constant (see 
Fig. 16). It is due to fact that the destructive rate of chemi-
cal reaction enhances with enhancing Rc . It is used to ter-
minate or dissolve the liquid specie more effectively. From 
Fig. 17, g(�) is a decreasing function of Schmidt number. 

Because higher the Schmidt number, reduce the mass dif-
fusivity. The concentration profile enhances with enhanc-
ing activation energy parameter, which is demonstrated 
in Fig. 18. Figures 19, 20, 21, 22 manifest the upshot of 
Brinkman number, radiation parameter, temperature dif-
ference and concentration difference on entropy genera-
tion, and Bejan number. Entropy generation enhances with 
upgrade the Brinkman number, while it reduces with radi-
ation parameter for both nanofluid and hybrid nanofluid, 

Table 3   Numerical value of 
skin friction (White 2015) when 
Pr = 6.2, m = 0.5, �1= 0.03, andA = 0.1

�2 �r Pm Fr � Re
1∕2
x Cfx

SWCNT/water SWCNT–
MWCNT/
water

0.01 0.5 0.1 0.1 0.1 − 0.34308 − 0.35512
0.03 − 0.35750 − 0.36454
0.05 − 0.37228 − 0.37397
0.01 0.5 − 0.34308 − 0.35512

0.6 − 0.25194 − 0.26628
0.7 − 0.17329 − 0.18572
0.5 0.2 − 0.40618 − 0.43043

0.4 − 0.50762 − 0.54990
0.6 − 0.58846 − 0.64420
0.1 0.3 − 0.31722 − 0.32050

0.5 − 0.28825 − 0.28215
1.0 − 0.20312 − 0.17002
0.1 0.2 − 0.31982 − 0.33083

0.4 − 0.26008 − 0.26909
0.6 − 0.18478 − 0.19149

Table 4   Numerical 
value of Nusselt number 
(White 2015) when 
Pr = 6.2, m = 0.5, and�1 = 0.03

�2 Rd Ec � B Re
−1∕2
x Nux

SWCNT/water SWCNT–
MWCNT/
water

0.01 1.0 1.0 0.1 0.1 0.69751 0.91291
0.03 0.83837 1.09210
0.05 0.97165 1.25890
0.01 0.5 0.77509 0.99614

1.0 0.69751 0.91291
1.5 0.63918 0.84711
1.0 0.1 0.61119 0.79307

0.3 0.63050 0.82031
0.5 0.64981 0.84723
1.0 0.1 0.69751 0.91291

0.2 0.47528 0.61992
0.3 0.10081 0.11261
0.1 0.2 0.64550 0.85288

0.3 0.60030 0.79958
0.4 0.56025 0.75151
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which is validating in Figs. 19 and 20. Furthermore, the 
Bejan number increases for increasing the temperature dif-
ference and concentration difference (see in Figs. 21 and 
22). Tables 3, 4, 5 scrutinize the numerical value of skin 
friction, Nusselt number, and Sherwood number.

Concluding remarks

In the current study, two-dimensional, steady, incompress-
ible hybrid nanofluid embedded in porous medium is scru-
tinized. Entropy generation is found using the second law 
of thermodynamics. By means of transformation, the gov-
erning nonlinear partial differential equations (PDEs) are 
transformed into ordinary differential equations (ODEs) 
and tackled these equations numerically by applying the 
finite-difference technique bvp4c. The main perceiving 
point of existing analysis is itemized beneath:

•	 Higher inertia coefficient Fr , porous Pm , and variable 
viscosity parameter �r reduce the momentum boundary-
layer thickness.

•	 Thermal field shows boosting impact via larger Ec , � , 
and Rd for both nanofluid and hybrid nanofluid.

•	 (g(�) ) reduces for larger value of ( Rc ) and ( Sc ) while 
boosting for higher ( E).

•	 Nusselt number reduces for enlarging the value of ther-
mal slip B and radiation parameter Rd.

•	 The solid volume fraction enhances the temperature dis-
tribution.

•	 Rise the �1 , Rc, Sc , and �2 Sherwood number upgrades.

•	 Entropy generation is an enhancing function of Brinkman 
number, while it is a lessening function of �2 and Rd.

•	 The temperature and concentration difference parameter 
upgrade the Bejan number.
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