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Abstract
An astonishing feature of modern research in the field of fluid flow and heat transfer is the suspension of small solid particles 
(nanoparticle) in the working fluid to increase the low thermal conductivity of these fluids. Because of unique chemical and 
physical properties, nanomaterials are being progressively utilized in almost every field of science and technology. Therefore, 
the intent of current manuscript is to theoretically examine the magneto-hydrodynamic flow of Carreau nanofluids along with 
heat transport in the presence of heat generation driven by a wedge-shaped shrinking geometry. We incorporated the revised 
Buongiorno’s model in which nanofluids particle fraction on the boundary is passively controlled. Mathematical modeling 
of assumed physical problem results in a system of non-linear partial differential equations outlining the basic conservation 
laws. The governing problem is made dimensionless with the assistance of non-dimensional variables and numerical solutions 
are computed via a built-in MATLAB solver bvp4c. The computed results showed that multiple solutions (first and second) 
exist for the non-dimensional velocity, temperature and concentration distributions by applying the said numerical scheme. 
We concluded that by enhancing the magnetic parameter the nanofluid velocity increases in case of second solution while 
an opposite is true for temperature. Further, the outcomes indicate that higher heat generation parameter leads to enhance 
the temperature distributions in both solutions.
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Introduction

At present, the low thermal conductivity of the ordinary liq-
uids is a big challenge which has diverted the attention of 
researchers. The new heat transfer fluids called nanofluids 
have been developed to address this challenge. In fact, nano-
fluids are dilute suspension which is obtained by adding the 
solid particles of size less than 100 nm in ordinary liquids. 
Recently, several experimental studies have been devoted 
on this new type of heat transferring flowing fluids which 
witnessed improved thermo physical traits, like thermal con-
ductivity, viscosity and density. The various solid particles 
employed in engineering and industrial process are metallic 
and non-metallic, for instance, copper, silver, gold, titanium 
oxide, silica, alumina, etc.

These fluids having high heat transferring properties are 
widely used in different practical problems, for example, 
in temperature reduction, cancer therapy, solar collectors, 
electronic cooling, peristaltic pumps for diabetic treatment, 
etc. The notion of nanofluids was originally introduced by 
Choi (1995) through the blend of base liquid with the ultra-
fine solid nanoparticles.

In another experimental analysis, Lee et al. (1999) proved 
that the suspension of nanoparticles enhances the heat trans-
fer characteristics of water very substantially. Afterward, 
Buongiorno (2006) presented another hypothesis for the 
mechanism of thermal conductivity of nanomaterials by 
considering the thermophoresis and Brownian movement. 
Reddy et al. (2009) examined the combined effects of double 
diffusion and chemical reaction on mixed convection MHD 
flow and heat transfer to nanofluids caused by an infinite 
plate. In the same way, Khan and Pop (2010) presented a 
numerical study to talk about the laminar flow of nanofluids 
generated by a stretching flat plate by considering the effects 
of Brownian motion and thermophoresis. Sheikholislami 
et al. (2013) analyzed the influence of magnetic field on 
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Al2O3–water nanofluid flow and heat transfer in an annulus. 
MHD flow of nanofluids past a permeable stretching sheet 
in the presence of Newtonian heating has been discussed by 
Mutuku-Njane and Makinde (2014). Mabood et al. (2015) 
investigated the flow of water-based nanofluids generated by 
a stretching surface in the presence of magnetic field and vis-
cous dissipation. They acquired the numerical solutions for 
their governing problem and presented the results for veloc-
ity, temperature and concentration distributions. Recently, 
multiple solutions have been computed by Khan and Hafeez 
(2017) for nanofluid flow and heat transfer in the presence 
of slip phenomenon. Khan et al. (2018) presented the MHD 
flow of Cu–water nanofluid by considering different shapes 
of nanoparticle along with heat transport analysis. Ma et al. 
(2019) numerically investigated the flow and convective heat 
transfer to nanofluids in a channel. Very recently, Hamid 
et al. (2019) discussed the flow of Williamson nanofluids 
over a vertical stretching surface and computed the numeri-
cal solutions.

For more than several decades, there has been a growing 
interest in magneto-hydrodynamic (MHD) flow and heat 
transport investigation of nanofluids past a stretching/shrink-
ing wedge. In fact, such types of flows challenge our best 
engineering abilities and remain one of the most demand-
ing problems due to their wide applications, like, geother-
mal systems, storage of nuclear waste, crude oil extraction, 
spinning of filaments, thermal insulation and the design of 
heat exchangers etc., The study of Falkner and Skan (1931) 
produces the two-dimensional laminar flow past a fixed 
wedge to elaborate the Prandtl boundary layer theory. They 
offered the well-known Falkner–Skan equations to investi-
gate the flow past a wedge. Thereafter, this exciting problem 
of boundary layer flow past a stretching/shrinking wedge by 
the use of different physical effects has been investigated 
by numerous researchers; see (Hartree 1937; Yih 1999; 
Ishak et al. 2007; Ishaq et al. 2008; Boyd and Martin 2010). 
Further, Xu and Chen (2017) analyzed the MHD flow of 
Cu–water nanofluid flow along with heat transfer over a per-
meable wedge in the attendance of variable viscosity. Sayyed 
et al. (2018) computed the analytic solutions MHD flow over 
a constant wedge in the presence of porous medium and slip 
velocity. Awaludin et al. (2018) numerically produced the 
dual solutions for MHD flow and heat transfer analysis of 
a viscous fluid generated by a stretching/shrinking wedge. 
Ibrahim and Tulu (2019) investigated the flow of nanofluid 
past a wedge with heat transport by considering viscous dis-
sipation and porous medium.

Over the past few years, numerous studies have been 
presented to investigate the boundary layer flow and heat 
transfer analysis of non-Newtonian Carreau fluid in the pres-
ence of nanoparticles. In most of the cases, authors consider 
the flow over different stretching surfaces and computed the 
single solutions for the flow fields. Therefore, the aim of 

present analysis is to compute the multiple solutions for two-
dimensional flow of Carreau nanofluids over a stretching/
shrinking wedge with heat generation/absorption and mass 
suction. The problem has been mathematically modeled with 
the assistance of conservation laws of mass, momentum, 
energy and nanoparticle concentration. The governing sys-
tem of strong non-linear equations is numerically tackled 
through built-in MATLAB routine bvp4c. At last, the graph-
ical review is given for velocity, temperature, concentration, 
skin friction and Nusselt number distributions for varying 
physical parameters.

Problem description

In this paper, steady, incompressible and two-dimensional 
flow of Carreau nanofluids over a stretching/shrinking wedge 
with heat and mass transfer has been explored. The physical 
flow model and coordinate axes are shown in Fig. 1. Herein, 
we choose the coordinate axes in such a way that x-axis is 
aligned with the surface of the wedge and y-axis is normal 
to wedge surface. Further, the fluid is subject to a transverse 
magnetic field of variable strength B(x) = B0x

m−1

2 , where B0 
represents a steady strength magnetic field. The velocity dis-
tribution for stretching/shrinking wedge is denoted by 
Uw(x) = axm, where a > 0 represents stretching wedge while 
a < 0 means shrinking wedge. However, the outer edge of 
the boundary layer has non-uniform velocity U∞(x) = bxm, 
where b is a constant. In addition, m is the power-law param-
eter or Falkner–Skan parameter 0 ≤ m ≤ 1 where m =

�

2−�
 

and � =
�

�
 represent the wedge angle. The fluid temperature 

and nanoparticles concentration at the surface of the wedge 
are assumed to be Tw,Cw and T∞,C∞ denotes the ambient 
temperature and concentration, respectively.

In accordance with scale analysis and usual boundary 
layer approximations, the governing non-linear PDEs of 
mass, momentum, energy and concentration conservation 
using Buongiorno’s model of nanofluid are expressed in the 
following manner (Wang 2007)
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The associated physical boundary conditions for the 
above problem are as follows:

In above system, (u, v) represents the velocity components 
along (x, y) axes, �, �, �, � , n,� =

k

�cp
, k, cp, � =

(�c)p

(�c)f
, DB and 

DT denotes the fluid density, electrical conductivity, kine-
matic viscosity, relaxation time, power-law index, thermal 
diffusivity, heat capacity, ratio of effective heat capacity of 
nanoparticle and base fluid, Brownian diffusion coefficient 
and thermophoretic diffusion coefficient. Further, the fluid 
temperature and nanoparticle concentration are denoted by 
T  and C . Moreover, the mass flux velocity is taken to be of 

the form vw(x) = v0x
m−1

2  and we also assume that the heat 
generation/absorption is of the following form Q∗ =

Q0

x1−m
, 

where Q0 is a constant coefficient.
We introduced the following non-dimensional variables:
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The continuity Eq. (1) is satisfied by the stream function 
� which is expressed in terms of Cauchy–Reimann equa-
tions u =

��

�y
, v = −

��

�x
.

Now invoking Eq. (7) into the Eqs. (2), (3), (4), respec-
tively, we get the subsequent system of coupled non-linear 
ODEs:

The corresponding boundary conditions (5) and (6) in 
dimensionless form are written as:

The dimensionless physical parameters employed in 
Eqs. (8)–(12) are given by:
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Fig. 1   Flow configuration for wedge-shaped geometry
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parameter fw = −v0

√

2

b(m+1) �
, the magnetic parameter 

M =
√

2�

b(m+1) �
B0, the heat generation/absorption param-

eter Q =
2Q0

(m+1)b�cp
, the Lewis number Le = �

DB

, the thermo-

phoresis parameter Nt = �
DT(Tw−T∞)

T∞�
, the Brownian motion 

parameter Nb = �
DBC∞

�
 and the Prandtl number Pr = �

�
 . To 

get the similarity solution, we fixed m =
1

3
 so that the 

Weissenberg number takes the form We =
(

b3� 2

2�

)1∕2

.
In view of practical importance, the physical quantities used 

in several engineering and industrial applications are the skin 
friction coefficient and local Nusselt number, respectively. 
These are defined as:

where, the shear stress along the stretching surface �w and 
the surface heat flux qw are given by the following relations

In dimensionless form, skin friction coefficient and local 
Nusselt number becomes:

where the local Reynolds number is defined as Re = bxm+1

�
.

Numerical technique

The main focus of this analysis is to compute the multiple 
numerical solutions for the modeled governing problem. 
Hence, the transformed system of coupled and non-linear 
ordinary differential Eqs. (8)–(10) under the boundary condi-
tions (11) and (12) is numerically integrated for momentum, 
energy and concentration equations by employing MATLAB 
solver bvp4c. To apply this technique, we first change the lead-
ing system (8)–(10) into a first-order system of ODEs. Let us 
consider:
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The subsequent initial conditions are

Actually, this method employs three-stage Labatto IIIa 
formula which is a collocation method of order-four. For the 
present problem, we set the tolerance of relative error to be 
10−6. This built-in function requires a guess for the conver-
gent solution. Since, this problem exhibits dual solutions; 
therefore, a reasonable guess is required to get the desired 
solutions. The most significant step in this numerical strat-
egy is to choose an approximate finite value of �∞ . Since, 
there exist dual solutions in our problem. Hence, in case of 
first solution, we select �∞ = 8 and for second solutions we 
choose �∞ = 10.

Graphical results and discussion

In this segment, we investigate the effect of involved fluid 
and flow parameters, namely the Weissenberg number We, 
the power-law index n, the magnetic parameter M, stretching/
shrinking parameter �, the mass suction parameter fw, the 
Brownian motion parameter Nb, the thermophoresis parame-
ter Nt, the heat generation/absorption parameter Q, the Lewis 
number Le and the Prandtl number Pr on nanofluid velocity 
distributions, nanofluid temperature distributions and nano-
particles concentration distributions. For numerical compu-
tations, the fixed values chosen for physical parameters are: 
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Table 1   Numerical comparison of the values f ��(0) with varying val-
ues of stretching/shrinking parameter �

λ Wang (2007) Akbar et al. (2014) Present results

− 0.25 1.4022 1.4022 1.40224
0.5 1.49567 1.4956 1.49566
0.75 1.48930 1.4893 1.48929
1.0 1.32882 1.3288 1.32881
1.15 1.08223 1.0822 1.08223
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n = 0.4, We = 1.0, � = −1.6, fw = 1.0, Pr = 1.0, Q = 0.2, 
Nt = Nb = 0.1 and Le = 1.0.

Table  1 shows the comparison of computed results 
obtained by bvp4c routine in this analysis with already 
published works of Wang (2007) and (Akbar et al. 2014). 
This table displays the simulated results of skin friction 
coefficient f ��(0) in limiting case of Newtonian fluid, i.e., 
n = 1 and We = 0 for varying values of stretching/shrink-
ing parameter � . It is clearly seen through this table that the 
numerical results obtained by the present formulation are in 
excellent agreement with that of Akbar et al. (2014).

The most important physical quantities, as far as the cur-
rent research work goes, are skin friction coefficient Re1∕2Cfx 
and Nusselt number Re−1∕2Nux , whose variation for different 
values of mass suction parameter fw is plotted in Figs. 2 and 
3. In both the figures, skin friction coefficient and Nusselt 
number are sketched as a function of stretching/shrinking 
parameter �. It is noteworthy here that the simulated results 
of present problem confirm the existence of dual solutions 
for both the profiles of skin friction and Nusselt number. 
As depicted in Fig. 2 an increase in mass suction strength 
fw , both the magnitude of skin friction coefficient and the 
solution domain for stretching/shrinking parameter � also 
increases. Moreover, it is interesting to note that the dual 
solutions for skin friction coefficient are possible in the 
range of 𝜀

(

𝜀c < 𝜀 < 0
)

 and no solution for 𝜀
(

𝜀 < 𝜀c
)

 , where 
�c is known as the critical value of �. We can see that both 
the first and second solution coincide at the critical value �c . 
This figure further emphasizes that unique solution exists for 
� ≥ −1. Physically, the increasing behavior of skin friction 
for higher suction parameter means that suction delays the 
separation. Moreover, the Nusselt number profiles obtained 

in Fig. 3 exhibit an increasing behavior for increasing val-
ues of mass suction parameter. Again, dual solutions are 
observed in certain range of shrinking parameter for some 
fixed values of mass suction.

The dimensionless velocity f �(�) and temperature profiles 
�(�) are displayed in Figs. 4 and 5 for the same values of 
magnetic parameter M in case of shrinking wedge � = −1.6 . 
It is noticeable that both figures witnessed the occurrence 
of dual solutions for nanofluid velocity as well as the tem-
perature profiles. For dual velocity curves, it is perceived 
that they increase with increase in magnetic parameter in 
case of first solution while an n opposite is seen for second 
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solution. At the same time, these profiles depict that the cor-
responding boundary layer thickness is much lesser for first 
solution. The physical explanation behind this phenomenon 
is the Lorentz force which is produced by the application 
of transverse magnetic field. In fact, this is a resistive force 
and causes a deceleration in flow over the wedge which 
reduces the fluid velocity as well as momentum boundary 
layer thickness. On the other hand, temperature profiles dis-
played in Fig. 5 show a decreasing behavior for higher values 
of magnetic parameter in case of first solution. However, 

an enhancement in temperature profile is seen with higher 
magnetic parameter.

Figures 6 and 7 depict the velocity f �(�) and temperature 
distributions �(�) within the boundary layer for distinct val-
ues of shrinking parameter � at fixed values of other param-
eter. In either case, the solutions profiles satisfy the far field 
boundary conditions asymptotically. The results shown in 
these figures provide that the boundary layer thickness is 
much smaller for the first solution than that of the second 
solution. It is further perceived that the fluid velocity is a 
decreasing function of shrinking parameter in case of first 
solutions while the fluid temperature shows an opposite 
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behavior. Figures 8 and 9 present the mass suction param-
eter fw impact on the dimensionless velocity profiles and 
dimensionless temperature profiles for the case of shrinking 
wedge. It is evident from these figures that, with increasing 
values of mass suction parameter, the velocity profiles f �(�) 
increase along with their boundary layer thickness for sec-
ond solution. However, in case of second solution we found 
a significant reduction in the velocity distribution when 
mass suction parameter rises. On the contrary to velocity 
profiles, the increase in mass suction parameter leads to a 
significant reduction in the temperature profiles �(�) in case 
of first solution along with corresponding boundary layer 
thickness. Further, as expected, the temperature profiles 
display an increasing behavior so as the thermal boundary 
thickness for higher values of mass suction parameter in case 
of second solution.

We now discuss the various outcomes of the nanopar-
ticle concentration profiles for varying values of magnetic 
parameter, shrinking parameter and mass suction parameter 
within the boundary layer region. Figure 10 describes the 
influence of magnetic parameter on concentration distribu-
tions. At the increasing values of the magnetic parameter 
M , an increment in the velocity profile is seen near the 
solid boundary in the first solutions, while after a certain 
distance from the solid surface, they exhibit a decreasing 
characteristic. However, quite opposite is true for the sec-
ond solution. An important effect of shrinking parameter � 
is that it increases the concentration profiles �(�) near the 
solid boundary for second solution and decreases them in 
first solution, as seen through Fig. 11. Moreover, it has been 
noticed that concentration profiles decrease significantly in 
case of second solution but increase for first solution near 

the slit and asymptotically satisfy the boundary condition, 
as depicted in Fig. 12.

The influence of Prandtl number Pr on non-dimen-
sional temperature �(�) and concentration distributions 
�(�) within the boundary layer is illustrated in Figs. 13 
and 14. It is witnessed that both the temperature and ther-
mal boundary layer thickness reduces with higher Prandtl 
number in case of first solution. This is attributable to the 
fact that increasing the Prandtl number leads to reduce 
the thermal diffusivity and responsible for less penetra-
tion of heat within the fluid. It is important to note that 
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the nanoparticles’ concentration is a decreasing function 
of Prandtl number. Figures 15 and 16 are drawn to high-
light the dependence of dimensionless temperature and 
concentration distributions on thermophoresis parameter 
Nt. It is observed from these figures that the nanofluid 
temperature enhances with growing values of thermopho-
resis parameter so as the thermal boundary layer thick-
ens in first solution. While, increasing thermophoresis 
parameter reduces the temperature profiles for the case 
of second solution. It is worth seeing that nanoparticle 
concentration decreases in response of increasing values 

of thermophoresis parameter in second solution while it 
increases in first solution. To visualize the effect of heat 
generation/absorption parameter Q on dimensionless tem-
perature profiles Fig. 17 has been drawn. Form this fig-
ure, we noticed that the temperature profiles increase with 
growing values of heat generation/absorption parameter in 
both the solutions. Further, the associated boundary layer 
thickness also enhances.
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Concluding remarks

Numerical simulation of MHD flow of Carreau nanofluid 
past a stretching/shrinking wedge has been performed 
employing boundary layer form of Navier–Stokes equa-
tions with MATLAB package bvp4c. The main focus of 
current analysis was to obtain the dual solutions in case 

of shrinking wedge. Based on the detailed analysis of 
obtained results, the key points are listed as below:

1.	 Solution domain was significantly raised by increasing 
the mass suction parameter.

2.	 Heat transport rate enhances with higher values of suc-
tion parameter.

3.	 Larger magnetic parameter leads to the decreasing 
behavior of fluid velocity.

4.	 An increment in fluid temperature is observed with 
higher heat generation/absorption parameter in both 
solutions.
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