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Abstract
This paper investigates the aspects of magnetic field and chemical reaction in Oldroyd-B nanofluid influenced by a stretch-
ing cylinder. The properties of mixed convection, nonlinear radiation and heat sink/source are incorporated. By means of 
noteworthy conversions, the nonlinear PDEs are altered into nonlinear ODEs and elucidated via homotopic approach. The 
influence of countless variables for velocity, temperature and concentration fields in addition to local Nusselt and Sherwood 
numbers are portrayed and conferred. These upshots portray that the liquid velocity enhances for intensifying value of mixed 
convection parameter whereas, it diminish for magnetic parameter. Moreover, the Brownian motion parameter and radiation 
parameter enhances the liquid temperature of Oldroyd-B nanofluid. For the endorsement of current upshots an assessment 
values in restrictive circumstances is also presented.
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Introduction

At present, the thoughtfulness of nanomaterial’s has 
increased noteworthy reputation from the researchers and 
scientists. Limited thermal aspects of established liquids 
confine their suitability for up-to-date utilizations demand-
ing a high level enactment, while retaining compact size of 
the thermal structures. For instance, micro-electromechani-
cal systems and make cold of chips in computer mainframes 
and to acquire fast transient systems in warming structures. 
Nanoliquids are diluted deferral of nano-scale elements in 
disreputable liquids which exaggerates the heat transfer of the 
elucidation and intensify the storage propensity. Nanofluids 
have engrossing thermo-physical aspects and heat transfer 
enactment with energetic probable uses owing to which these 
are deliberated as next generation heat transport liquids. The 

hybrid-powered procedures, solar accumulators, engine and 
energy cells, pharmacological development and atomic uses 
are specimens of developing nanotechnologies. The notion to 
intensifying the thermal conductivity of disreputable liquids 
was presented by Choi (1995). Later on, numerous theoreti-
cal and experimental exertions are established to scrutinize 
the diverse aspects of nanofluids see (Mustafa et al. 2015; 
Mahanthesh et al. 2016, 2017a, b; Hayat et al. 2017a, b; 
Anwar and Rasheed 2017; Haq et al. 2017; Khan et al. 2017). 
Numerically a reviewed model for MHD flow of Carreau 
nanomaterial was considered by Waqas et al. (2017a). Their 
study established that radiation parameter and Biot number 
enhanced the liquid temperature of Carreau nanofluid. By 
exploiting the approach of CVFEM, Sheikholeslami and 
Oztop (2017) reported the aspect of MHD in Fe3O4-water 
nanoliquid in a cavity with sinusoidal outside cylinder. 
Aspects of chemical reaction and MHD in 3D radiative flow 
of nanofluid were considered by Hayat et al. (2018). They 
noted that the nanoparticles volume fraction and magnetic 
parameter rises the skin friction coefficient. The proper-
ties of the heat sink/source and convective heat transport in 
Maxwell nanomaterial was explored by Irfan et al. (2018). 
They acquired that the liquid velocity decays for magnetic 
parameter and intensified the temperature and concentration 
fields. Recently, Ellahi (2018) disclosed the modern advances 
of nanoliquids. He reported that nanofluid technology can 
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benefit to improve superior emollients and oils for real-world 
solicitations. Haq et al. (2019) reported the behavior of ther-
mal management of carbon nanotubes in partially heated tri-
angular cavity. Sheikholeslami et al. (2019) studied the aspect 
of heat transport by heat storage unit utilizing nanoparticles.

No doubt the behavior of chemical reaction spectacles enthu-
siastic parts with the intention to scrutinize the aspects of heat 
and mass transport in built-up regions. Utilizations of a chemi-
cal reaction can initiate in diverse industrial and built-up uses 
for that instance, solar antenna, the strategy of chemical dispen-
sation apparatus, rubbery isolation, dispersion of prescription 
in lifeblood, effluence, humidity over gardening pitches and fis-
sionable discarded depositories etc. Furthermore, the first order 
chemical reaction is directly correlated to the concentration and 
numerous studies on chemical reaction with diverse geometries 
can be comprehended in Anjalidevi and Kandasamy (1999), 
Zhang et al. (2015), Hayat et al. (2017c), Kumar et al. (2017). 
Sreedevi et al. (2017) presented chemically radiated nanofluid 
in porous media by functioning numerical Galerkin (FEM) 
approach. Hayat et al. (2017c) studied the performance of 
chemical reaction and nonlinear thermal radiation in magneto 
Jeffrey liquid considering Newtonian heating. Their analysis 
established conflicted behavior for destructive and generative 
chemical reaction parameter on concentration field. Alshomrani 
et al. (2018) scrutinized the combined aspects of stratifications 
and convective phenomena in chemically reactive Oldroyd-B 
fluid. The thermal radiation and MHD impacts were also pre-
sented. Their assessment reported that the reaction parameter 
and mass Biot number decline the concentration field. Aspects 
of chemical reaction and non-Fourier heat flux theory in Car-
reau nanoliquid with wedge and cone geometries have been 
reported by Kumar et al. (2018). They established that the fea-
tures of flow and transfer were controlled when nanoparticle 
volume fraction varies. The characteristics of chemical reaction 
in radiated flow of Maxwell nanofluid caused by rotating disk 
were examined by Ahmed et al. (2019).

Here our strategic concern is to scrutinize the aspects of 
MHD mixed convection in nonlinear radiative Oldroyd-B 
fluid. The impact of heat sink/source and chemical reaction 
are also considered. Elucidations are established through 
homotopic scheme (Rehman et al. 2017; Irfan et al. 2019a, 
b; Rashid et al. 2019). To confer the somatic performance 
of emerging variables graphs are portrayed. Endorsement 
of the current analytical process is made by associating the 
outcomes of −f ��(0) with presented studies and such assess-
ment seems to be worthy in agreement.

Development of mathematical model

Here we analyze steady (2D) MHD flow of Oldroyd-B 
fluid caused by stretching cylinder of radius R with veloc-
ity U0z

l
 along z-directions, where (U0, l) represents reference 

velocity and specific length, respectively. Furthermore, the 
aspects of mixed convection, nonlinear radiation, heat sink/
source and chemical reaction are reported. Consider the 
cylindrical polar coordinates (z, r) in such scheme that z-axis 
goes close to the axis of the cylinder and r-axis is restrained 
near the radial direction. We consider electrically conducting 
fluid where applied magnetic field acts transversely to the 
flow. The influence of induced magnetic field on Oldroyd-B 
fluid is neglected because of small Reynolds number. Addi-
tionally, the flow field is effected by magnetic strength B0 
(see Fig. 1).

The equations of Oldroyd-B nanofluid under these norms 
can be written as (Irfan et al. 2019a, b):
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Fig. 1  Flow configuration and coordinates system
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with boundary conditions

Here (u, w) signify the velocity components in r- and 
z-directions, respectively, �i (i = 1, 2) the relaxation–retarda-
tion times, respectively, ν the kinematic viscosity, σ the nano-
fluid electrically conductivity, g the gravitational acceleration, 
(βT, βC) are the thermal and concentration expansion coeffi-
cients, respectively, α1 the thermal diffusivity of nanoliquid, 
(ρf, cf) the liquid density and specific heat, respectively, (T, C) 
the temperature and concentration of nanoliquid, respectively, 
τ the ratio of effective heat capacity of nanomaterial to the 
heat capacity of the base liquid, (DB, DT) the Brownian and 
thermophoresis diffusion coefficients, respectively, (T∞, C∞) 
the temperature and concentration of nanoliquid far-off from 
the stretched surface, Q0 the heat sink/source coefficient and 
kc the reaction rate. Furthermore, via Rossland’s approxima-
tion the nonlinear radiative heat flux qr is given as

where (σ*, k*) are the Stefan Boltzmann constant and the 
mean absorption coefficient, respectively.

Appropriate transformations

Let us consider

Using Eqs. (7) and (8), then Eqs. (1)–(6) reduced to
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Physical quantities of notable interest

The industrial point of vision the quantities of physical interest 
are the local Nusselt and local Sherwood numbers, respectively.

The local Nusselt and Sherwood numbers

The local Nusselt and Sherwood numbers are defined by

where qm the heat flux and jm the mass flux, respectively, 
and defined as
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where Rez =
W(z)z

�
 signifies the local Reynolds number.

Solution methodology

Homotopy analysis solutions (HAM)

The nonlinear ODEs (9)–(11) with boundary conditions (12) 
and (13) are elucidated via homotopic algorithm (HAM). 
The initial guesses (f0, θ0, φ0) and auxiliary linear operators 
(Lf, Lθ, Lφ) are defined as:

The overhead operators satisfied the following properties

here Ci
*(i = 1–7) are the arbitrary constants.

Analysis

The aspects of influential parameters on velocity f′(η), 
temperature θ(η), concentration φ(η) and Nusselt num-

ber NuzRe
−
1

2
z  are highlighted in this section. The homo-

topic methodology has been utilized. The executed values 
of influential parameters throughout the computations are 
β1 = β2 = N = λ = Nt = Cr = 0.2, α = Nb = δ = 0.3, M = 0.4, 
Rd = 0.5, Pr = θw = 1.2 and Le = 1 except particular pointed 
out in the graphs. Additionally, the assessment of −f″(0) 
for different values of β1 with former attainable studies 
are reported in Table 1. An admirable settlement is being 
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established from this table which satisfies us that our out-
comes are accurate.

Velocity f′(η)

On velocity field f′(η) the aspects of magnetic parameter (M) 
and mixed convection parameter (λ) are plotted which are 
exposed in Fig. 2a, b. The velocity field decline for M; how-
ever, rise for λ when the values of these parameter enhanced. 
The Lorentz force intensifies, when we heighten M, which 
formed more struggle to the fluid motion. Therefore, velocity 
of Oldroyd-B fluid falloffs. Moreover, physically buoyancy 
force goes as boosting pressure gradient, so stronger buoy-
ancy force helps the flow in the growing direction which 
enhance f′(η) when λ enlarged.

Temperature θ(η)

The aspects of curvature parameter (α) and Deborah num-
ber (β2) on temperature field θ(η) are established in Fig. 3a, 
b. The higher value of α enhances the temperature of Old-
royd-B fluid; however, conflicting behavior is being noted 
for β2. The increasing values of α decline the heat transfer 
quantity, which enhances the temperature field. Moreo-
ver, physically, β2 involves retardation time, which causes 
a reduced in temperature for larger retardation time and 
hence, the temperature field decreases. The Brownian (Nb) 
and thermophoretic (Nt) nanoparticles impact on temper-
ature field θ(η) is reported in Fig. 4a, b. The temperature 
field decline for higher Nb and similar enactment is being 
remarked for Nt. As, Brownian motion is an unsystematic 
exertion of liquid particles, which molded much heat to the 
liquid and enhances the temperature field. Similar portrayal 
for larger Nt is true on temperature field which intensifies 
the temperature of Oldroyd-B fluid. Figure 5a, b discussed 
the physical aspects of thermal radiation (Rd) and magnetic 
parameter (M) on temperature field. Both the parameters are 
intensifying function of temperature field, when Rd and M 
enlarged. As we increase Rd the mean absorption coefficient 
declines and thermal thickness of the layer uninterruptedly 

Table 1  A comparison of β1 for 
−f″(0) in limiting sense when 
�2 = M = � = N = 0

−f″(0)

β1 Abel et al. (2012) Meghed (2013) Waqas et al. (2017b) Irfan et al. (2018) Present

.0 1.000000 0.999978 1.000000 1.0000000 1.0000000
0.2 1.051948 1.051945 1.051889 1.0518899 1.0518899
0.4 1.101850 1.101848 1.101903 1.1019033 1.1019032
0.6 1.150163 1.150160 1.150137 1.1501373 1.1501373
0.8 1.196692 1.196690 1.196711 1.1967113 1.1967113
1.2 1.285257 1.285253 1.285363 1.2853632 1.2853632
1.6 1.368641 1.368641 1.368758 1.3687584 1.3687584
2.0 1.447617 1.447616 1.447651 1.4476527 1.4476527
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intensifies. Hence, temperature field for Rd escalates. Fur-
thermore, the higher M spectacles identical performance on 
temperature field. The Lorentz force is a resistive force and 
M is related to Lorentz force. The enhancing in M trans-
port extra effort which exaggerates temperature field. The 
temperature field of Oldroyd-B nanofluid for heat sink/
source parameter (δ) is plotted in Fig. 6a, b. These strategies 

recognize conflicting enactment on temperature field. The 
huge quantity of heat is fascinated for (δ < 0) and enormous 
amount of heat is provided (δ > 0), respectively, to the fluid 
when we intensified these parameters. This reason causes the 
decay of temperature field for (δ < 0); however, conflicting 
enactment is acknowledge for (δ > 0).   
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Concentration field φ(η)

To establish the properties of reaction parameter (Cr) and 
Lewis number (Le) on the concentration field Fig. 7a, b is 
depicted. These diagrams exhibit analogous enactment and 
decline the concentration field. For larger value of Cr exag-
gerates the quantity of chemical reaction and liquid species 
more proficiently, which decays concentration field. Moreo-
ver, same trend is noted for Le on concentration field for 
augmented values of Le. In conclusion, we reported that 

both Cr and Le have identical impact on Oldroyd-B concen-
tration field.
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Figures  8a, b and 9a, b are acknowledged to plot the 
aspects of influential parameters on Nusselt number for the 
fluctuating values of Nb, Nt, Rd and Pr. These depictions 
reported that the heat transport amount decays for the higher 
values of these parameters. 
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Closing remarks

The nonlinear aspects of thermal radiation subject to chemi-
cal reaction in flow of an Oldroyd-B nanofluid with magnetic 
and mixed convection properties were studied. The heat 
sink/source features were also incorporated. The essential 
conclusions of this study itemized below:

• The higher values of M declined the velocity field; how-
ever, for λ the velocity of Oldroyd-B fluid enhanced.

• Opposed behavior were noted for larger α and β2 on θ(η).
• The intensifying values of Nb and Nt boosted the tempera-

ture of Oldroyd-B fluid, while conflicted performance 
were reported for δ < 0 and δ > 0 on θ(η).
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• The concentration of Oldroyd-B nanoliquid diminished 
for enhancing values of Cr and Le.

• The local Nusselt number (NuzRe
−
1

2
z ) decayed for higher 

estimations of Nb and Nt.
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