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Abstract
This research work is made to demonstrate diverse characteristics of entropy generation minimization for cross nanomaterial 
towards a stretched surface in the presence of Lorentz’s forces. Transportation of heat is analyzed through Joule heating and 
radiation. Nanoliquid model consists of activation energy and Brownian movement aspects. Concentration of cross material 
is scrutinized by implementing zero mass flux condition. Bejan number and entropy generation (EG) rate are formulated. The 
employment of transformation variables reduces the PDEs into nonlinear ODEs. Bvp4c scheme is implemented to compute 
the computational results of nonlinear system. Velocity, temperature, and concentration are conducted for cross nanomaterial. 
Consequences of current physical model are presented through graphical data and in tabular form. The outcomes for Bejan 
number and EG rates are presented through graphical data. It is noted that EG rates and Bejan number significantly affect rate 
of heat-mass transport mechanisms. In addition, graphical analysis reveals that E.G. rate has diminishing trend for diffusive 
variable. Moreover, achieved data reveal that profiles of Bejan number boost for augmented values of radiation parameter.
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Introduction

The advancement in nanotechnology and nanoscience 
extended the application areas for researchers and scien-
tists. Applications of nanofluids are encouraging in dif-
ferent phenomena such as the heat transfer phenomena. 
Advancements in technology need the proficient methods 
for heat transfer, and nanofluids provide the more efficient 
medium for heat transfer from one source to another source. 
In addition, numerous procedures are available in the lit-
erature which can intensifies heat transport properties in 
flow to improve the effectiveness of concentrating collec-
tor. Nanoliquids have higher thermo-physical properties 

compared with those of base liquids. Moreover, nanoliquids 
were employed inside absorber to serve as heat transfer liq-
uid and, therefore, boost the performance of solar system. 
Sheikholeslami et al. (2014) deliberated the flow for CuO 
water nanofluid by considering the aspects of Lorentz forces. 
Khan et al. (2014) described heat sink–source characteris-
tics for 3D non-Newtonian nanofluid. Ellahi et al. (2015) 
inspected the colloidal analysis for CO–H2O over inverted 
vertical cone. Khan and Khan (2015), (2016a) and Khan 
et al. (2016a) described various properties of nanoliquid by 
considering different non-Newtonian fluid models. Waqas 
et al. (2016) examined the flow of micropoler liquid due 
to nonlinear stretched sheet with convective condition. 
Khan and Khan (2016b) reported features of Burgers fluid 
by considering nanoparticles. Sulochana et al. (2017) stud-
ied the consequences of thin din needle with Joule heating. 
Hayat et al. (2017) analyzed radiative heat transfer in the 
presence of Lorentz’s force for nanofluid. Sheikholeslami 
and Shehzad (2017) reported the properties of nanofluid 
by considering characteristics of Lorentz force. Moreover, 
some recent development on nanofluid has been discussed 
in Sheikholeslami and Shamlooei (2017), Sheikholeslami 
and Rokni (2017), Irfan et al. (2018a, b, 2019a), Hayat et al. 
(2018), Sheikholeslami et al. (2018), Gireesha et al. (2018), 
Mahanthesh et al. (2018), Sheikholeslami (2018a, b), Akbar 
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and Khan (2016), Sheikholeslami and Shehzad (2018a, b), 
Sheikholeslami and Sadoughi (2018), Sheikholeslami and 
Seyednezhad (2018), Khan et al. (2018a), Sheikholeslami 
and Rokni (2018), Sheikholeslami et al. (2019a, b), Sheik-
holeslami (2019a, b), Khan et al. (2019), Sheikholeslami 
and Mahian (2019), Nematpour-Keshteli and Sheikholeslami 
(2019).

The mass transfer phenomena is considered as an impor-
tant unit of chemical process. In these phenomena, chemi-
cally reacting species (molecules) are moving from low 
concentrated area to high concentration. Chemical pro-
cesses plays the vital role in culture and life itself. Chemi-
cal reactions are categorized in different systems due to 
their chemical and physical behavior, and homogeneous 
and heterogeneous systems are two major systems among 
them. Homogeneous reactions lie in the same phase space, 
i.e., gas, liquid, or solid spaces, while the heterogeneous 
reactions required more than one phase space. Khan et al. 
(2016b, 2017) scrutinized features chemical mechanisms for 
non-Newtonian fluids. Mahanthesh et al. (2017) discovered 
properties of vertical cone for colloidal material. Shahzad 
et al. (2019) reported the properties of C-matrix by employ-
ing new mathematical concept. Features of revised relation 
for flux and chemical processes were considered by Sohail 
et al. (2017). Ramesh et al. (2018) deliberated the revised 
conditions at boundary utilizing Maxwell nanoliquid. Irfan 
et al. (2018c) considered characteristics of variable conduc-
tivity and chemical processes for Carreau fluid. Tangent 
hyperbolic nanofluid with aspects of chemical processes and 
activation energy were inspected by Khan et al. (2018b). 
Irfan et al. (2019b) discussed the heterogeneous–homogene-
ous reactions for Oldroyd-B fluid.

To our knowledge, mathematical modeling for cross 
nanoliquid with entropy generation minimization is not 
yet examined. With this point of view, our concern here is 
to model cross nanofluid with entropy generation. Effects 
of viscous dissipation and thermal radiation are reported. 
Nanofluid modeling comprises the thermophoretic and 
Brownian movement aspects. Zero mass flux-type bound-
ary condition is imposed. Idea of activation energy (AE) 
along with chemical reaction is also introduced. Total EG 
(entropy generation) rate and Bejan number are discussed 
for various flow variables. Numeric solutions for nonlinear 
systems are constructed. Nature of emerging physical is ana-
lyzed through graphs and tables.

Technical depiction and flow field equations

Our intention here is to formulate mixed convective 
cross nanomaterial flow towards moving surface. Moreo-
ver, we have considered magnetic field aspects for cross 

nanomaterial which acts normal to surface. Transpor-
tation of heat is analyzed by considering radiation and 
Joule heating aspects. The innovative relation of activa-
tion energy is introduced. Moreover, zero flux condition 
regarding nanofluid is imposed at boundary. Keeping in 
view the afforested assumptions, boundary layer approxi-
mation governs the following system of equations:

with

Here, ( v, u) symbolizes velocity components in (y, x) 
direction, �f  is the density of cross liquid, � =
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surface temperature, k2
r
 is the reaction rate, Ea is the activa-

tion energy, m is the fitted rate constant, c is the dimen-
sional constant, and Uw is the stretching velocity.

Considering

One has

where prime 
(
′
)
 denotes differentiation with respect to �, 

M =
�B2

0
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Quantities of physical interest

Expressions for drag force and heat transportation rate (
Cfx, Nux

)
 in dimensional form are

(7)
� =y

�
c

�
, u = cxf �(�), � = −

√
c�f (�),

�(�) =
T − T∞

Tw − T∞
, �(�) =

C − C∞

C∞

.

(8)
[
1 + (1 − n)

(
Wef ��

)n]
f ��� −

[
1 +

(
Wef ��

)n]2
[
f �2 + ff �� + �

(
� + Nr�

)]
= 0,

(9)

(
1 +

4

3
R
)
�

��

+ Pr

[
f �

�

+ Nb�
�

�
�

+ Nt�
�2 +

Ecf
��2

1 +
(
Wef

��
)n
]
= 0,

(10)

�
��

+ Sc
[
f�

�

+
Nt

Nb
�

��

− �(1 + ��)m� exp
(
−

E

1 + ��

)]
= 0,

(11)f (0) = 0, f �(0) = 1, f �(∞) → 0,

(12)��(0) = −
Nt

Nb

�(0), �(∞) → 0,

(13)�(0) = 1, �(∞) → 0,

(14)Cfx =
�w

U2
w
�f
,

in overhead expression 
(
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flux, wall shear stress) which are given by

Expressions of surface drag force and local Nusselt number 
in dimensionless form are given by

where Rex =
xUw

�
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Analysis for entropy generation

Mathematical relation of entropy generation for cross liquid in 
dimensional form is defined as
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Mathematically, Bejan number is defined as

Authentication of our outcomes

Table 1 shows prepared to authenticate the accuracy our 
outcomes. These tables demonstrate comparison of heat 
transport rate for numerous estimations of Pr with , Wang 
(1989), Gorla and Sidawi (1994) and Hamad (2011). It is 
perceived that our outcomes are in outstanding agreement.

Results

Nonlinear system subjected to conditions (11–13) is 
numerically tackled by employing Bvp4c scheme. Sig-
nificant features of emerging physical parameters such as 
radiation parameter (R) , magnetic parameter (M) , thermo-
phoresis parameter Nt , local Weissenberg number (We) , 
Buoyancy ratio parameter Nr , Brownian motion param-
eter 

(
Nb

)
 , chemical reaction parameter (�) , mixed convec-

tion parameter (�) , Prandtl parameter (Pr) , Eckert number 
(Ec) , activation energy parameter (E) , Schmidt number 
(Sc) , entropy generation rate 

(
NG

)
 , Brinkman number (Br) , 

dimensionless concentration ratio variable 
(
�2
)
 , dimen-

sionless temperature ratio variable 
(
�1
)
 , and diffusive 

variable (L) on velocity f � (�) , temperature �(�) , concen-
tration of nanomaterials �(�), Bejan number (Br) , and 
entropy generation 

(
NG

)
 are examined in this section. Fig-

ures 1–21 show sketched to visualize the behavior of 
physical parameter. Figure 1 portrays the characteristics 
of We on f ′ . Here, f ′ deteriorates via larger We for shear 
thinning liquid. Features of f ′ for varying Nr are described 
in Fig. 2. Larger Nr yields an augmentation in cross-
nanoliquid velocity. Characteristics f ′ for varying � are 
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reported in Fig. 3. Increment in � intensifies f ′ . Physi-
cally, raise in � yields more buoyancy forces due to which 
velocity of cross-liquid boosts. Impact of M against f ′ is 
considered in Fig. 4. Here, f ′ declines for higher estima-
tion of M . Velocity of cross nanoliquid is much higher in 
case of hydrodynamic when compared to hydromagnetic 
situation. This behavior of cross nanoliquid for hydro-
magnetic situation occur, because augmentation in M cre-
ates strong Lorentz force. Figure  5 demonstrates the 
aspects of Ec for � . Here, � intensifies for larger Ec . 

Table 1   Comparison of our results with outcomes reported by Wang 
(1989), Gorla and Sidawi (1994) and Hamad (2011) for (We = 0)

Pr −�(0)

Wang (1989) Gorla and 
Sidawi 
(1994)

Hamad (2011) Present 
results 
(We = 0)

0.07 0.0656 0.0656 0.0656 0.065526
0.7 0.1691 0.1691 0.1691 0.164037
0.7 0.4539 0.4539 0.4539 0.4182299
2 0.9114 0.9114 0.9114 0.826827
7 1.8954 1.8954 1.8954 1.80433
20 3.3539 3.3539 3.3539 3.25603
70 6.4622 6.4622 6.4622 6.36662
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Fig. 1   f ′ impact for different We
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Physically, greater values of Ec produce more heat due to 
temperature of cross-nanoliquid enhances. Attribute of Pr 
on � is displayed in Fig. 6. Here, � declines for greater Pr . 
Mathematical point of view Pr has inverse relation with 
thermal diffusivity. Therefore, greater Pr deteriorates sig-
nificantly the temperature of cross nanoliquid. The curve 
of Nt for � is presented in Fig. 7. Clearly, larger Nt yields 
higher �. Actually, temperature difference between wall 
and at infinity rises due to temperature of cross-nanoliq-
uid enhances. Nanofluid temperature upon R is illustrated 

through Fig. 8. An increment in R intensifies the nanoliq-
uid temperature. Higher estimations of R produce more 
heat to working liquid. Figure 9 shows sketched to scru-
tinize the impact of � on � . Increment in � deaccelerates 
the nanoparticles’ volume fraction � . Figure 10 portrays 
theaspect of E for nanoparticles volume fraction. It is 
perceived from achieved data that term exp

(
−

Ea

�T

)
 dete-

riorates for greater values of Ea . Significance of Nt and 
Nb is emphasized in Figs.  11 and 12. For higher 
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estimation, Nt corresponds to enhancement in � , while 
opposite behavior is captured for Nb . Actually, due to 
temperature difference between walls, nanoparticles are 
from higher temperature region to lower temperature reg
ion.

Entropy generation rate and Bejan number

Figures 13 and 14 explain significant features of Br on NG 
and Be. It is perceived that greater Br leads to an enrichment 
in the rate of entropy generation. Mathematically, Br has 

inverse relation to Be . Consequently, Be deteriorate, while 
opposite trend is detected for NG . Behavior of L for rate of 
entropy generation NG is disclosed through Fig. 15. This 
figure elaborates reduction NG subjected to L . Figures 16 
and 17 sketch to interpret the attribute of M for NG and Be. 
Here, NG intensifies and Be deteriorates subjected to higher 
M . Such a growth in NG is perceived because resistance to 
motion of cross nanoliquid rises when M is enlarged. Fig-
ure 18 exhibits variation of �1 versus NG . Clearly, NG intensi-
fies subjected to higher �1 . Figure 19 describes �2 influence 
on NG . It is perceived from achieved data that NG rises for 
larger �2 . Figures 20 and 21 sketch to demonstrate effect of 
R on NG and Be. NG and Be are augmented via larger R.
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Characteristics of surface drag force and heat 
transfer rate

This subsection demonstrates the features of M , � and We on 
surface drag force via Table 2. We perceived that surface drag 
force boosts via larger Nr for n < 1 . Moreover, it is scruti-
nized that surface drag force decline via larger M , � , and We 
for both n < 1 and n > 1 . Table 3 elaborates the influence of 

numerous rheological parameters on heat transfer rate. Clearly, 
heat transfer rate rises for increments in Pr and R , while decays 
for higher Ec and Nt.

Conclusions

Here, mixed convective cross-nanoliquid flow contain-
ing magnetohydrodynamic (MHD) was scrutinized. 
Energy distribution of cross nanoliquid was investigated 
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by considering Joule heating and radiation aspects. Sig-
nificant outcomes prominent from whole analysis were as 
below.

•	 Increment in local Weissenberg number deteriorates 
cross-liquid velocity.

•	 Higher mixed convection parameter enriches the 
nanoliquid velocity.

•	 Larger radiation parameter intensifies the liquid tem-
perature.

•	 Entropy generation boosts subjected to M , Br , R , �1 , 
and �2 ; however, it diminishes when L is increased.

•	 Impact of M and R is reverse against Bejan number.
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Table 2   Surface drag force CfxRe
1∕2
x  via different estimations of 

We, �, Nr and M when �1 = � = �2 = E = L = � = Nt = m = 0.1,

Pr = 0.9, R = Ec = Br = 0.2, Sc = 0.7, Nb = 0.4

−Re1∕2Cfx

We M � Nr n = 0.8 n = 1.2

0.2 – – – 0.7721269 0.8092971
0.4 – – – 0.7774658 0.8308007
0.6 – – – 0.7787053 0.8449733
– 0.5 – – 0.6913445 0.7285802
– 0.7 – – 0.6287607 0.6403177
– 0.9 – – 0.4808132 0.4731329
– – 0.2 – 0.4198645 0.4061171
– – 0.5 – 0.2453616 0.2156822
– – 0.8 – 0.06576118 0.03846451
– – – 0.3 0.07253961 0.0388256
– – – 0.4 0.07273982 0.0400191
– – – 0.5 0.07284708 0.04024486
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