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Abstract
This research article communicates an analytical investigation for the three-dimensional steady incompressible flow of 
Oldroyd-B fluid subject to stretchable surface. The flow of material induced through stretchable surface with Darcy-Forch-
heimer medium. Homogeneous–heterogeneous reactions is considered. Convective boundary conditions and heat source/
sink effects are considered for the heat transport. Boundary layer concept is used in the development of flow problem. Series 
solutions are obtained of the nonlinear system through homotopy technique. Physical significance of pertinent parameters 
are discussed and plotted graphically. Heat transfer rate is discussed numerically.

Keywords  Oldroyd-B fluid · Darcy-Forchheimer porous medium · Heat source/sink · Homogeneous–heterogeneous 
reactions · Convective boundary conditions

Introduction

Non Newtonian materials play an imperative role in fre-
quent mechanical and industrial engineering and branches 
of applied science. The non-Newtonian materials are divided 
into three different categories, namely integral, differential 
and rate types. There are numerous non-Newtonian material 
models like Jeffrey model, Eyring model, Prandtl Eyring 
model, Casson model, second grade, Sisko model, Oldroyd-
B model, Carreaue model and so on. Here we have consid-
ered Oldroyd-B model which is a rate material that exhibits 
properties of retardation and relaxation times. Zhang et al. 
(2016) discussed heat transport characteristics in flow of 
Oldroyd-B nanoliquid subject to time-dependent thin-film 
stretchable sheet. Shivakumara et al. (2015) scrutinized 
thermal convective instability in nanoliquid flow of Old-
royd-B fluid over a porous medium. Forced convective nano-
material flow of Oldroyd-B fluid between two isothermal 

stretchable disks with magnetic field is examined by Hashmi 
et al. (2017). Zhang et al. (2018) explored thin-flim flow of 
Oldroyd-B nanoliquid with Cattaneo-Christov double dif-
fusion. They also considered chemical reaction and dissi-
pation effects. Shehzad et al. (2014) scrutinized 3D-forced 
convective Oldroyd-B fluid flow with thermophoresis and 
Brownian diffusions. Kumar et al. (2018) worked on the 
nanomaterial flow of Oldroyd-B fluid subject to radiative 
flux and dissipation. Electrical conducting nanomaterial 
flow of non-Newtonian liquid subject to porous stretchable 
sheet is investigated by Das et al. (2018). Gireesha et al. 
(2018) discussed heat and mass transport in nanoliquid flow 
of Oldroyd-B material with heat source/sink by a stretchable 
surface. Khan and Mahmood (2016) discussed combined 
effects of heat source/sink and thermophoretic diffusion in 
nanoliquid flow of non-Newtonian fluid inside stretchable 
disks. Flow of Oldroyd-B nanomaterial with heat source/
sink and radiative flux is explored by Waqas et al. (2017a). 
Refs. Shehzad (2018), Hayat et al. (2016a, b, 2017a, b, c, d, 
e, 2018a, b), Khan et al. (2016, 2017a, b, c, d, e, f, 2018a, 
b), Muhammad et al. (2017), Ellahi et al. (2014a, b, 2016), 
Meraj et al. (2017), Alamri et al. (2019), Akbarzadeh et al. 
(2018), Hassan et al. 2018), Rashidi et al. (2018), Tamoor 
et al. (2017), Waqas et al. (2017b) represent various fluid 
models subject to different flow assumptions.

Keeping such effectiveness in mind, we have considered 
3D cubic chemical reactive flow of Oldroyd-B material 

 *	 M. Ijaz Khan 
	 ijazqau_khan@yahoo.com

1	 Department of Mathematics, Quaid-I-Azam University, 
45320, Islamabad 44000, Pakistan

2	 Nonlinear Analysis and Applied Mathematics (NAAM) 
Research Group, Department of Mathematics, Faculty 
of Science, King Abdul-Aziz University, P. O. Box 80203, 
Jeddah 21589, Saudi Arabia

http://crossmark.crossref.org/dialog/?doi=10.1007/s13204-019-01037-x&domain=pdf


3036	 Applied Nanoscience (2020) 10:3035–3043

1 3

subject to Darcy-Forchheimer porous medium. Series solu-
tions are developed through homotopy technique (Shirkhani 
et al. 2018; Hayat et al. 2017f; Fagbade et al. 2018; Khan 
et al. 2017g, h, 2018c; Skoneczny and Skoneczny 2018; 
Khan et al. 2019; Naghshband and Araghi 2018; Hayat et al. 
2018c, d, e; Raftari and Vajravelu 2012; Xinhui et al. 2012; 
Han et al. 2014; Turkyilmazoglu 2010a, b, 2014; Ahmad 
et al. 2018; Abbasi et al. 2019). Heat transfer rate is deliber-
ated in tabular form.

Modeling

The cubic autocatalysis at the surface is defined as follows:

and

where a∗∗ and b , respectively, indicate the concentrations of 
species A∗ and B∗ and kc and ks are the rate constants.

In component form, the flow equations are as defined by 
Shehzad et al. (2014):
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where x, y, z denote the Cartesian coordinates, u, v,w velocity 
components, � the density, � the kinematic viscosity, �1 and 
�2 represent the relaxation and retardation time, F
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viscosity, K the permeability of porous medium, Cb the drag 
coefficient, T  is constant surface temperature, k the thermal 
conductivity, cp the specific heat, T∞ the ambient tempera-
ture, Q0 the heat source/sink coefficient, DA and DB the dif-
fusion coefficients, a0 the positive constant and Tf, hf the 
fluid temperature and heat transfer coefficient.
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For comparable mass diffusions we put DA and DB as equal; 

we have
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The heat transfer rate is mathematically defined as

where hall flux is defined as
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Solution procedure

We have
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where A∗i(i = 1 − 9) designates are arbitrary constants

Convergence analysis

In series solutions auxiliary variables hf, hg, h� , h� play 
an important role to adjust the convergence portion. 
Therefore, we have plotted h - curves for such analy-
sis in Figs. 1 and 2. From these plots the valuable ranges 
a r e  − 1.8 ≤ hf ≤ − 0.1, − 1.6 ≤ hg ≤ − 0.1,

− 2.1 ≤ h� ≤ 0.1 and − 2.1 ≤ h� ≤ 0.1. Table 1 is sketched 
for the numerical iterations of convergence analysis.

Discussion

This section is established to explore the impacts of inter-
esting variables on velocity, temperature and concentration 
fields. For this purpose we have plotted Figs. 3, 4, 5, 6, 7, 
8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18. Porosity variable 
behavior on velocity f �(�) is presented in Fig. 3. Velocity 
diminishes versus larger porosity variable. Physically, due to 
porous media, more resistance occurred to the flow particles 
which make the velocity of fluid weaker. In Fig. 4, we have 
plotted the impact of fluid relaxation variable on velocity 
field. Here we observed that the velocity of material parti-
cles enhances versus larger relaxation variable. Furthermore, 
boundary layer shows an increasing impact against larger 
relaxation variable. Figure 5 is outlined to show the velocity 
field against retardation variable. Here we noticed that veloc-
ity field declines via higher retardation parameter. Inertia 
variable impact on velocity field is highlighted in Fig. 6. 
Here velocity curves slowly increase when the inertia varia-
ble takes the maximum range. Also layer thickness upsurges 
versus larger inertia variable. Inspiration of porosity vari-
able on g(�) is depicted in Fig. 7. Here initially velocity of 
liquid particles increases and then shows decreasing impact 
when the porosity variable take the maximum values. Salient 
aspects of relaxation and retardation variable on g(�) is out-
lined in Figs. 8 and 9. From these sketches we can see that 
velocity field monotonically decays initially near the stretch-
able surface and then monotonically upsurges against larger 
relaxation and retardation variables. Figure 10 is revealed 
for the impact of Forchheimer number or inertia coefficient 
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variable on g(�) . Here we noticed that velocity component 
in y-direction upsurges versus larger Forchheimer number. 
It is also noticed that layer thickness enhances against larger 
Forchheimer number.

Behavior of Prandtl number on thermal field is recorded 
in Fig. 11. Lesser thermal field is noticed against higher 
Prandtl number. Characteristics of Biot number on thermal 
field is shown in Fig. 12. Here temperature is an increasing 

function of larger Biot number. Physically, larger Biot 
number increases the convection process at the stretch-
able surface which leads to upsurges the temperature field. 
Figure 13 predicts the salient attributes of heat genera-
tion/absorption or heat source/sink variable on the thermal 
field. In this study, S > 0 highlights the heat generation 

Fig. 1   h - curves for f ��(0)andg�(0)

Fig. 2   h - curves for��(0)and��(0)

Table 1   Different iterations for series solutions when � = 0.1, 
�1 = 0.1, �2 = 0.1, Fr = 0.3, Pr = 1, � = 0.1, k1 = 0.2, k2 = 0.1 and 
Sc = 1

Order of 
approximations

−f ��(0) −g�(0) −��(0) ��(0)

1 1.0215 0.12667 0.088154 0.049515
5 1.0318 0.14819 0.085496 0.052571
10 1.0318 0.14886 0.085094 0.060685
15 1.0318 0.14877 0.085059 0.066513
20 1.0318 0.14888 0.085050 0.073378
25 1.0318 0.14888 0.085048 0.079135
30 1.0318 0.14888 0.085048 0.082693
35 1.0318 0.14888 0.085048 0.082693

Fig. 3   f ′versus �

Fig. 4   f ′ versus �1
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or heat source and S < 0 signifies the absorption or sink 
and S = 0 signposts there is no heat generation/absorption 
or heat source/sink. But here we have only presented the 
effect of heat generation on the thermal field. Thermal field 
is an increasing behavior against heat generation variable.

Figure 14 highlights the salient attributes of Schmidt 
number on mass concentration field. Physically, Schmidt 
number is the combination of momentum and mass dif-
fusivity. Here mass concentration increases against higher 
Schmidt number. Also concentration layer thickness 

Fig. 5   f ′ versus �2

Fig. 6   f ′ versus Fr

Fig. 7   g versus �

Fig. 8   g versus �1

Fig. 9   g versus �2
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upsurges versus rising estimations of Schmidt number. 
Attributes of homogeneous reactive variable on mass con-
centration is sketched in 15. Here we have examined reduc-
tion in solutal layer and as well as in mass concentration via 
higher homogeneous reactive variable. Behavior of hetero-
geneous reactive variable on mass concentration is revealed 

in Fig. 16. From this sketch, we have examined that concen-
tration of reaction species at the surface upsurges against 
higher estimation of heterogeneous reactive variable.

Graphical sketch of heat transfer rate against various 
flow variables like porosity parameter, Biot number and 

Fig. 10   g versus Fr

Fig. 11   � versus Pr

Fig. 12   � versus �

Fig. 13   � versus S

Fig. 14   � versus Sc

Fig. 15   � versus k1
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Prandtl number is highlighted in Figs. 17 and 18. From these 
sketches, we have noticed that magnitude of heat transfer 
decays versus higher estimations of porosity parameter and 
Biot number.

Concluding remarks

The valuable results of the presented problem are recorded 
below:

•	 Velocity of material particles in x direction decays 
against higher porosity variable.

•	 Velocity shows contrast impact against relaxation and 
retardation variables.

•	 Thermal declines versus Prandtl number.
•	 Higher heat generation variable upsurge the temperature 

of material particles.
•	 Concentration presents contrast impact against homoge-

neous and heterogeneous reactive parameters.
•	 Magnitude of heat transfer rate decays against larger 

porosity parameter and Biot number.
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