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Abstract
Present paper investigates the flow of Oldroyd-B nanofluid due to stretching cylinder. Heat transfer aspects are expressed 
by nonlinear radiation and non-uniform heat source/sink. Analysis of Soret and Dufour effects are emphasized. Brownian 
movement and thermophoresis phenomena are retained. Characteristics of mass transfer subject to first-order chemical reac-
tion is examined. Consideration of suitable transformations yields ordinary differential systems. Relevant problem is solved 
by Optimal homotopic approach. The concept of minimization is employed by defining the average squared residual errors. 
Behavior of various physical variables on dimensionless velocity, temperature and concentration fields are determined. In 
addition, the rates of heat and mass transfer are studied through graphs. Here, we noticed a growth in velocity, temperature 
and concentration for larger values of curvature parameter.

Keywords  Oldroyd-B nanofluid · Non-uniform heat source/sink · Nonlinear thermal radiation · Soret and Dufour effects · 
Chemical reaction

Introduction

Nanofluids containing nanomaterials such as metallic 
oxides, copper, silver and carbides have greater thermal con-
ductivity to that of conventional base fluid. Water, engine 
oil and ethylene glycol are commonly used heat transfer 
fluids. Nanofluid can effectively be used for a wide range 
of mechanical industrial processes such as glass fiber inno-
vation, melt spinning, microprocessors, chillers and hybrid 
power engine. Choi (1995) introduced nanofluid containing 
nanoparticles in base fluid to enhance their thermal proper-
ties. Then, Buongiorno (2006) developed the mathematical 
model for convective transport of nanofluids. The present 
model contains two elements, namely Brownian motion 
and thermophoresis parameter which are very important in 
nanofluids. Brownian motion is random motion of particles 

in a fluid due to their collision with molecules of water. 
Nanofluid flow over a stretching sheet with thermophoresis 
and Brownian motion effects has been discussed by Babu 
and Sandeep (2016). Reddy et al. (2017) studied the flow of 
Williamson nanofluid due to stretching sheet with variable 
thickness. Recent developments about nanofluid are cited 
in Khan et al. (2017), Munyalo and Zhang (2018), Madavan 
et al. (2018), Minakov et al. (2018), Hayat et al. (2018a), 
Khan et al. (2018) and Irfan and Khan (2019).

Most of the researches are limited to fluids which obey 
Newtonian postulate and cannot predict the elastic charac-
teristics. Many industrial and geophysical processes such as 
petroleum drilling, pulps, polymers, slurries, pastes and com-
plex mixtures involve viscoelastic fluids which examine both 
viscosity and elasticity. Viscoelastic fluids are subclasses of 
non-Newtonain fluids. Oldroyd-B fluid model is a significant 
rate type viscoelastic fluid which can simultaneously specify 
the features of relaxation and retardation. The rate type vis-
coelastic fluids carry one or more time derivatives in extra 
stress tensors. Bhatnagar et al. (1995) presented the flow of 
an Oldroyd-B fluid model. Heat transfer in the flow of an 
Oldroyd-B fluid due to stretching surface of decreasing index 
has been studied by Hayat et al. (2017). Rasheed and Anwar 
(2018) worked on fractional nonlinear viscoelastic fluid flow. 
Relaxation–retardation characteristics of Oldroyd-B fluid with 
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viscous dissipation and chemical reaction are given by Zhang 
et al. (2018). Farooq et al. (2018) discussed three-dimensional 
Oldroyd-B fluid with Soret and Dufour effects. Chemical 
reacting species in a fractional viscoelastic fluid flow has been 
developed by Rasheed and Anwar (2019).

Nowadays, much attention has been focused on fluid flows 
caused by stretching cylinder with Soret and Dufour effects. 
When the phenomena of heat and mass transport occur 
simultaneously in liquid motion, then relations between driv-
ing potentials and enthalpy and mass fluxes are highly com-
plicated. It is worth mentioning that not only does the tem-
perature gradient produce heat flux, but also it is caused by 
the concentration gradient as well. Dufour effects describe 
the diffusion of heat transport via the concentration gradient, 
while Soret effects describe the temperature gradient that 
can cause mass flux. In many cases, these effects were often 
neglected due to their smaller magnitude in comparison with 
effects indicated by Fourier’s and Fick’s laws. Significant 
applications of Soret and Dufour effects in hydrology and 
petrology include solidification of binary alloys, isotope sep-
aration, groundwater pollutant migration, chemical reactors 
and geosciences multi-component melts. Nishimura et al. 
(1998) proposed a model of combined horizontal tempera-
ture and concentration gradients in a rectangular enclosure. 
The impact of non-uniform heated plate on double-diffusive 
natural convection of micropolar fluid in a square cavity with 
Soret and Dufour effects is given by Muthtamilselvan et al. 
(2018). Mudhaf et al. (2018) worked on the flow of natural 
convection in porous trapezoidal enclosures with Soret and 
Dufour effects. Oldroyd-B nanofluid flow due to stretching 
cylinder was investigated by Khan et al. (2019).

The main objective of the present article is to discuss 
the chemically reactive flow of Oldroyd-B nanofluid with 
heat and mass transfer mechanisms. The consequences of 
Brownian motion and thermophoresis diffusion in viscoe-
lastic nanofluid due to stretching cylinder were examined. 
The influence of nonlinear radiative heat flux, internal heat 
generation/absorption and Soret and Dufour effects were 
also incorporated in detail. Reduced coupled nonlinear ordi-
nary differential system was solved by OHAM (Awais et al. 
2016; Anwar and Rasheed 2017; Gupta et al. 2018; Anwar 
and Rasheed 2018; Awais et al. 2018; Hayat et al. 2018b, c; 
Abel et al. 2012; Megahed 2013). The best optimal values 
of convergence control parameters are awarded in terms of 
numerical and graphical illustrations to study the emerging 
physical variables.

Modeling

Here, two-dimensional axisymmetric flow of viscoelastic 
fluid obeying Oldroyd-B model due to stretching cylindrical 
sheet is examined. The contributions due to Brownian 

movement and thermophoresis phenomena are also 
explored. Soret and Dufour effects are accounted in a given 
flow configuration. The aspects of nonlinear radiation, first-
order chemical reaction and non-uniform heat source/sink 
are imposed. Cylindrical coordinates (r, z) are used to model 
the relevant equations. Flow is initiated due to a stretching 
cylinder with velocity ww = w0

(

z

L

)

 in the axial direction. 
Coordinate systems and geometry of the problem are shown 
in Fig. 1.

The relevant flow problem satisfies (Irfan et al. 2018; 
Alshomrani et al. 2018):
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Fig. 1   Geometry of the problem
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where (w, u) are the components of velocity in z and r direc-
tions, respectively, �1 is the relaxation time, �2 is the retarda-
tion time, � is the kinematic viscosity, �1 =

k

(�Cp)
 is the ther-

mal diffusivity, T  is the temperature, � =
(�Cp)
(�Cf)

 is the heat 
capacity ratio, DB is the Brownian diffusion coefficient, DT 
is the thermophoresis diffusion coefficient, C is the nanopar-
ticle volume fraction, � is the dynamic viscosity, � is the 
fluid density, Cp is the specific heat, Cs is the concentration 
susceptibility and Kc is the chemical reaction rate. The non-
linear radiative heat flux is given by

where �∗ and k∗ are the Stefan–Boltzmann and Rosseland 
mean absorption coefficient, respectively. Utilizing Eqs. (5) 
in (3) we have

The non-uniform heat source/sink is modeled as:
 

where A∗ and B∗ are parameters of the space-dependent and 
temperature-dependent internal heat generation/absorption, 
respectively. The case corresponds to internal heat genera-
tion when (A∗ > 0) and (B∗ > 0) , and correspond to internal 
heat absorption when (A∗ < 0) and (B∗ < 0).

The associated boundary conditions are
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 . It is worth pointing here 
that governing problem reduces to the Maxwell fluid case 
when �2 = 0. Moreover, the analysis for the Newtonian 
model can be retrieved by selecting �1 = 0.

Quantities of interest

Nusselt number

Mathematically,

where wall heat flux is

and dimensionless expression of Nu is
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Sherwood number

where the wall mass flux is

and the dimensionless expression of Sh is

in which the local Reynolds number is Rez = zww(z)∕�.

Solution methodology

With the aim of computing the solutions, the best optimal 
values are determined using optimal (OHAM). We define 
the initial guess for both 

(

f0, �0, �0

)

 and 
(

f , � , �

)

 as

with

and

where the arbitrary constants are 
◦

C ( i = 1 − 7).

Optimal convergence control variables

Non-zero auxiliary parameters ℏf , ℏ� and ℏ� define the con-
vergence region of the homotopy series solutions. Minimiza-
tion concept is applied for obtaining the best optimal data 
of ℏf , ℏ� and ℏ� by taking averaged squared residual errors 
as deliberated by

 

(18)Sh =
jw

DB

(

Cw − C∞

) ,

(19)jw = −DB

(

�C

�r

)

r=R1

,

(20)Re−1∕2
z

Sh = −��(0),

(21)
f0(�) = 1 − exp(−�), �0(�) = exp(−�), �0(�) = exp(−�),

(22)f = f ��� − f �, � = ��� − �, � = ��� − �,

(23)

f

[

◦

C
1
+

◦

C
2
exp(−�) +

◦

C
3
exp(�)

]

= 0,

�

[

◦

C
4
exp (�) +

◦

C
5
exp (−�)

]

= 0,

�

[

◦

C
6
exp (�) +

◦

C
7
exp (−�)

]

= 0,

(24)�f
m
=

1

k + 1

k
∑

l=0

[

f

(

m
∑

i=0

f (�),

m
∑

i=0

�(�)

)

�=l��

]2

,

where �t
m
= 0.0515078 represents the total squared resid-

ual error, �� = 0.5 and k = 20. The best optimal values 
of convergence control variables are ℏf = −1.21023, 
ℏ� = −1.19268 and ℏ� = −1.47231 . Table 1 highlights the 
averaged residual errors with optimal values. A decline is 
observed for higher order of approximations. Plot for resid-
ual error is sketched in Fig. 2. 
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Fig. 2   Total error for Oldroyd-B fluid

Table 1   Optimal convergence control parameters and total averaged 
squared residual errors using BVPh 2.0

m �
f
m

��
m

��
m

CPU time (s)

2 1.2865 × 10−4 7.9662 × 10−3 434129 × 10−2 2.39014
4 9.13899 × 10−5 1.07799 × 10−3 2.46443 × 10−2 12.5917
6 7.02702 × 10−5 3.18368 × 10−4 1.80693 × 10−2 26.7115
8 5.70706 × 10−5 1.63694 × 10−4 1.49369 × 10−2 57.6813
10 4.81196 × 10−5 7.63330 × 10−5 1.30237 × 10−2 123.245
12 4.16684 × 10−5 6.30400 × 10−5 116805 × 10−2 264.350
14 3.68024 × 10−5 4.37033 × 10−5 106598 × 10−2 542.276
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Discussion

This section provides the graphical outlook on the effects 
of significant flow variables on velocity, temperature, con-

centration, Nusselt number 

(

Re

−1

2
z Nu

)

 and Sherwood 

number 

(

Re

−1

2
z Sh

)

 . The optimal homotopy technique is 

implemented. Table 2 is prepared to give a comparison of 
(

−f ��(0)
)

 in limiting cases with those of Hayat et  al. 
(2018b) and Abel et al. (2012). 

Velocity

Figure 3 is sketched to examine the the influence of Deborah 
number 

(

�1 = 0.1, 0.4, 0.8, 1.2
)

 on velocity. Here, we have 
noticed that the velocity of the fluid reduces gradually for 
higher 

(

�1
)

. Physically, Deborah number 
(

�1
)

 is the ratio of 
the timescale of the material response to observation time-
scale. We can judge the polymeric behavior of a material 
from three different cases. When 

(

𝛽1 << 1
)

 the material is 
purely viscous, when 

(

𝛽1 >> 1
)

 the material is elastic like, 
and when 

(

�1 = 1
)

 the material is viscoelastic. For higher 

Table 2   Comparison of −f ��(0) in limiting sense for different values 
of �

1
 when � = �

2
= 0

�1 −f ��(0)

Ref. (Hayat et al. 
2018b)

Ref. (Abel et al. 
2012)

Present

0.0 1.000000 0.999978 1.000000
0.2 1.051948 1.051945 1.051949
0.4 1.101850 1.101848 1.101843
0.6 1.150163 1.150160 1.150155
0.8 1.196692 1.196690 1.196685
1.2 1.285257 1.285253 1.285247
1.6 1.368641 1.368641 1.368638
2.0 1.447617 1.447616 1.447619
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Fig. 3   Impact of β1 on f �(�)
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values of 
(

�1
)

 , stress relaxation is less in comparison to the 
characteristic timescale. Hence, the fluid behavior is closely 
similar to that of especially solid material. The role of retar-
dation time parameter 

(

�2 = 1.5, 1.6, 1.7, 1.8
)

 on fluid 
velocity is plotted in Fig. 4. As expected, that motion of fluid 
increases for larger 

(

�2
)

 . Basically, retardation time refers to 
time required for the buildup of shear stress in a fluid. Thus, 
it can show the timescale observation that is not explained 
by relaxation time. It is clear that flow parallel to the sheet 
accelerates with an enhancement in fluid retardation time. 

Figure 5 highlights the behavior of the curvature parameter 
(� = 0, 1, 2, 3) for velocity. f �(�) is directly proportional to 
(�) , due to the fact that the radius of the cylinder decreases 
when (�) amplifies. Therefore, fluid motion get experiences 
with minimum resistance and thus the velocity increases.  

Temperature

Figure 6 shows the behavior of Brownian motion param-
eter (Nb = 0.1, 0.4, 0.7, 1.1) on temperature �(�) . It is 
observed that the temperature is a decreasing function 
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of (Nb). For multiple values of (Nt = 0.1, 0.15, 0.2, 0.3), 
the temperature field is depicted in Fig. 7 Physically for 
higher values of (Nt) , an enhancement in thermophore-
sis force develops which tends to move the nanoparticles 
from the hot to cold regions. Hence, the temperature rises. 
Figure 8 shows the influence of temperature ratio param-
eter 

(

�w = 1.1, 1.3, 1.5, 1.7
)

 on temperature. It is obvious 
that an increase in 

(

�w
)

 enhances the temperature. Higher 
wall temperature in comparison with the ambient tem-
perature of the fluid is observed due to larger 

(

�w
)

 . Due 
to this, the temperature of the fluid increases gradually. 

Figure 9 provides the analysis for variation of the radiation 
parameter (R = 0.0, 0.4, 0.8, 1.2) on temperature. A rise 
in temperature curves is observed when (R) is increased. 
Physically for higher values of (R) , the mean absorption 
coefficient decreases. The existence of a temperature dif-
ference is due to diffusion flux. This is a cause of tempera-
ture �(�) enhancement. The temperature profile for dif-
ferent values of Dufour number 

(

Df = 0.2, 0.6, 1.0, 1.4
)

 
is analyzed in Fig. 10. It depicts that larger values of 
(

Df

)

 enhance the temperature field. Figure 11 shows the 
influence of Prandtl number (Pr = 0.5, 1.0, 1.5, 2.0) on 
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temperature. For larger values of (Pr) , the temperature of 
the fluid decays. Prandtl number has an inverse relation 
to thermal diffusivity. Higher Pr creates a weaker ther-
mal diffusivity which causes of reduction of temperature 
field. Figure 12 shows the influence of curvature parameter 
(� = 0, 1, 2, 3) on temperature �(�). It is noted that when 
(�) increases, the temperature field is enhanced. Physi-
cally, the radius of curvature decreases, which reduces the 
interaction region of the cylinder with the liquid. Hence, 
the temperature profile increases.      

Concentration

The physical aspects for increasing values of Brown-
ian motion (Nb = 0.1, 0.4, 0.7, 1.1) and thermophoresis 
(Nt = 0.1, 0.15, 0.2, 0.3) are displayed in Figs.  13 and 
14. We noted that Nb and Nt have conflicting impact on 
concentration �(�). To examine the aspect of Soret num-
ber 

(

Sr = 0.1, 0.4, 0.8, 1.2
)

 on concentration �(�), Fig. 15 
has been prepared. There is an enhancement in the concen-
tration profile for larger values of Sr. Figure 16 shows the 
impact of the curvature parameter (� = 0, 0.1, 0.2, 0.3) on 
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concentration �(�). It was reported that the concentration 
�(�) increased with higher � . Furthermore, in the case of a 
flat surface, the concentration boundary layer is dominant 
when associated with a stretching cylinder. The behavior of 
the chemical reaction parameter (Cr = 0, 0.3, 0.6, 0.9) on 
concentration �(�) is plotted in Fig. 17. The concentration 
�(�) declines for growing values of Cr . This happens because 
the species rate decays when Cr intensifies. Hence, the con-
centration field �(�) declines. Figure 18 illustrates that the 
concentration �(�) declines for higher Schmidt number 

(Sc = 0.5, 1.0, 1.5, 2.0) . Physically, smaller mass diffusiv-
ity causes a reduction in �(�) when Sc increases.

Heat transfer rate

The influences of Brownian motion (Nb) , thermophoresis 
parameter (Nt), Dufour number 

(

Df

)

 and radiation parameter 
(R) on Nusselt number (Nu) are depicted in Figs. (19, 20, 21 
and 22). The heat transfer quantity for higher values of Nb, 
Nt, Df and R declines as shown in these plots.
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Mass transfer rate

The behavior of Sherwood number (Sh) for higher values of 
thermophoresis parameter (Nt) and Soret number 

(

Sr
)

 indi-
cates a decline in the mass transfer quantity as shown in 
Figs. (23 and 24).

Major findings

Here, the impact of Soret and Dufour and nonlinear ther-
mal radiation in Oldroyd-B nanofluid is reported by uti-
lizing the optimal homotopic approach. The aspects of 

non-uniform heat sink/source and chemical reaction have 
been considered. This study indicated that the Deborah 
numbers (�1 and �2) display opposite behavior for the 
velocity field. The temperature field increased Brown-
ian motion (Nb) , thermophoresis (Nt) and curvature (�) 
parameters. The impacts of Soret number 

(

Sr
)

 and chemi-
cal reaction parameter 

(

Cr

)

 are totally opposite on the con-
centration profile. For higher values of Schmidt number, 
the concentration of the nanofluid decreases. The local 
Nusselt number decreased for higher radiation parameter 
(R) and Dufour number 

(

Df

)

 . An enhancement in thermo-
phoresis (Nt) and Soret number 

(

Sr
)

 caused the reduction 
of Sherwood number.
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