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Abstract
Size-tunable nanoparticles (NPs) for pristine cadmium sulfide (CdS) and iron (Fe)-doped (5, 10 and 15%) CdS were synthe-
sized using facile chemical co-precipitation. Size-controlled NPs were prepared with thioglycolic acid (TGA) as the capping 
agent and their structural, optical, morphological and physiochemical evaluations were performed using X-ray diffraction 
(XRD), UV–visible spectroscopy, Raman spectroscopy, field emission scanning electron microscopy (FESEM) and Fourier 
transform infrared (FTIR). XRD revealed single cubic phase of CdS and later broader peaks upon mixing of Fe, and inten-
sive absorption was recorded in the visible regime upon doping with redshift. FESEM confirmed spherical nanoparticles of 
Fe–CdS, and Cd–S linkage along with other functional groups was recognized by FTIR.  Cd1−xFexS (x = 0, 0.05, 0.10 and 
0.15) powder was used as the photocatalyst for methylene blue (MB) degradation in visible light and catalyst in  NaBH4’s 
presence. The control CdS bleached MB faster than doped but doped CdS showed higher catalytic degradation. The Fe-doped 
CdS NPs showed superior catalytic potential compared to undoped CdS which suggests their use in dye industries, especially 
leather and tanneries. Additionally, NPs not only show superior catalytic characteristics but also help in cost reduction and 
complete removal of dyes for wastewater management.
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Introduction

Around 1/10th million types of dyes are produced annu-
ally and utilized in several industries such as paper, rubber, 
leather, textile, printing, paint, pigments and plastic (Chowd-
hury and Saha 2011; Shaban et al. 2018). Among these dyes, 
only about 10–15% of MB is discharged directly into water 
bodies and surrounding environment causing cancer, skin 
irritations, allergy, malfunctioning of liver, kidneys and 
reproductive system in humans (Al-Degs et al. 2008). More-
over, MB-contaminated wastewater caused severe harmful 
environmental issues to aquatic life with higher chemical 
oxygen demand (COD) (Al-Kdasi et al. 2004).

For dye removal, several techniques such as electrolysis, 
dialysis, ion exchange, adsorption, and photocatalytic degra-
dation have been employed (Wang et al. 2016). However, pho-
tocatalytic degradation being environment friendly, cost effec-
tive and efficient has been utilized widely (Sivakumar et al. 
2010). Semiconductor photocatalyst is preferred in dye degra-
dation due to sustained and fundamentally applied research in 
environmental remediation (Chauhan et al. 2013). Fujishima 
and Honda (1972) reported hydrogen splitting using  TiO2 at 
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water expense (Su et al. 2016; Deng et al. 2017b). Transi-
tion metal sulfides (Kriegel et al. 2012; Kundu and Pradhan 
2014; Ma et al. 2014; Jiang et al. 2015), metal oxides (Park 
et al. 2009; Xu et al. 2012; Basnet and Zhao 2016; Deng et al. 
2017a), doping materials (Zhao et al. 2015; Wan et al. 2015; 
Deng et al. 2015), and composite heterojunctions (Dong et al. 
2013; Xu et al. 2016; He et al. 2017) have been prepared to 
achieve efficient photocatalyst. However, metal chalcogenides 
have shown improved photocatalysis (Hong et al. 2014; He 
et al. 2016). Interestingly, cadmium sulphide (CdS) served as 
promising photocatalyst due to optimal band gap, ideal elec-
tronic band position, chemical and thermal stability on behalf 
of quantum confinement (Thambidurai et al. 2010; Wang et al. 
2015). Moreover, CdS having absorbance in visible regime 
and its conduction band is more negative than reduction 
potential of  H+/H2 (Li et al. 2008; Ertis and Boz 2017).

The CdS efficacy for photodegradation depends on the inte-
gration with suitable impurities. Transition metals (TM: Ni, 
Sb, Mn, Co, Fe, etc.)-doped CdS showed electrical, optical 
and magnetic properties as single material (Rathore et al. 2010; 
Kumar and Sharma 2017). Various TM-doped CdS have been 
synthesized but Fe doped remained less focused. Therefore, we 
aimed to synthesize Fe-doped CdS having all functional attrib-
utes required for efficient MB degradation. CdS size-tunable 
nanocrystals have been synthesized using chemical bath depo-
sition, spray pyrolysis, laser deposition, sol–gel and successive 
ion layer adsorption (Mercy et al. 2014) that had some limita-
tions. Co-precipitation being cost effective, with high doping 
of impurities at room temperature, adapted chemistry of dop-
ing and size control using capping agents has been utilized 
widely (Mercy et al. 2014). Therefore, in the current research, 
we aimed to prepare Fe-doped CdS using co-precipitation.

Experimental details

Materials

Cadmium chloride 2,5 hydrate  (CdCl2. 2,5H2O) and sodium 
sulfide pentahydrate  (Na2S.5H2O) were acquired from “Panreac 
PRS” and “Daejung Chemicals and Metals Co. Ltd”, respec-
tively. For capping agent, thioglycolic acid (TGA, 80%) was 
purchased from “Merck”. Finally, iron (III) nitrate 9-hydrate 
(Fe(NO3)3.9H2O) was purchased from “UNI CHEM” and all 
chemicals were utilized without further processing.

Preparation of CdS and Fe doping

Chemical precipitation was adopted to synthesize CdS; 
0.5 M solutions of each of  CdCl2,  Na2S and TGA were 
prepared in deionized water (DIW) under vigorous stir-
ring for 30 min. Afterwards, TGA was added dropwise in 
 CdCl2 solution at 65 °C to control the size of nanoparti-
cles for 15 min. Subsequently,  Na2S solution was added 
dropwise in  CdCl2 and TGA solution. The yellowish pre-
cipitates of CdS which started to form slowly were centri-
fuged, washed and filtered to remove all sorts of impuri-
ties. Finally, precipitates were dried at 100 °C to obtain 
fine powder of CdS. Later, Fe (5, 10 and 15%) was mixed 
in  CdCl2 solution for doping using the above-mentioned 
procedure (Fig. 1).

Photocatalytic activity process

The photodegradation activity of iron (Fe)-doped CdS 
NPs was evaluated in terms of photocatalytic reduction of 
MB (10 mg/L). A mercury (Hg) lamp (400 W) as the vis-
ible light source was used with the principal wavelength of 
400–700 nm. MB (60 mL) was mixed with 10 mg suspen-
sion of the prepared photocatalyst under stirring for 5 min to 
achieve equilibrium between MB and nanocomposites before 
illumination. After exposure of visible light for specific time 
intervals, 5 mL suspension was collected for UV–Vis absorp-
tion to measure MB concentration. The changes in dye con-
centration during photodegradation were a measure of inten-
sity of peak (665 nm) absorption with irradiation time.

Catalysis

Freshly prepared (400  µL) 0.1M sodium borohydride 
 (NaBH4) solution was mixed with 3  mL aqueous MB 
(10 ppm). Then 400 µL of CdS and Fe-doped CdS of cer-
tain concentration was added under agitation. The decolor-
ization indicates reduction of dyes. However, decoloriza-
tion of MB in the presence of  NaBH4 represents reduction 
of MB to leucomethylene blue (LMB) as shown in Eq. 1. 
The reaction without nanocatalyst was referred as blank 
(Fig. 2) and the absorption spectrum was determined using 
UV–Vis spectrophotometer (200–800 nm).

(1)
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Characterization

Fe:CdS was analyzed using Fourier transform infrared 
(FTIR) spectroscopy, Raman spectrometer, X-ray photo-
electron spectroscopy (XPS), field emission scanning elec-
tron microscopy (FESEM) and UV–Vis spectroscopy. The 
crystal structure of Fe-doped CdS and phase information 

were collected using PANalytical Xpert PRO X-ray dif-
fraction (XRD) with Cu Kα radiation (λ ~ 0.154 nm) by 
varying 2θ from 20° to 70°. The presence of functional 
groups was confirmed using FTIR Perkin Elmer spec-
trometer. Raman spectra were acquired with DXR Raman 
microscope (Thermo Scientific) with 532-nm (6 mW) 
laser. The morphological characteristics and microstruc-
tures of products were investigated using JSM-6460LV 
FE-SEM coupled with EDX spectrometer. The optical 

Fig. 1  Schematic representation 
of Fe-doped CdS preparation

Fig. 2  Graphical representation 
of catalysis process
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properties of products were obtained from UV–visible 
Genesys 10S spectrophotometer.

Results and discussion

Figure 3 represents the XRD pattern of  Cd1−xFexS (where 
x = 0, 0.05, 0.10 and 0.15) nanopowders that showed single 
cubic phase having peaks at 26.5°,43.9° and 51.9° indexed 
to be scattering from (111), (220) and (311) planes, respec-
tively, and well matched with JCPDS card no. 00-001-0647. 
Interestingly, no extra peak appeared due to dopant material 
which suggests proper incorporation of Fe into CdS. The 
observed peaks have identical position and increased peak 
broadening with doping indicates surface defects and con-
firmed miniaturization in nanometric range for Fe–CdS NPs 
(Thambidurai et al. 2010). The measured average crystallite 
sizes were 11.6–4.1 nm using Debye–Scherrer formula 
(

D =
k�

� cos �

)

 from full width half maxima (FWHM) of XRD 

peaks, where k is Scherrer constant, λ is incident wavelength 
of X-rays, β is full width half maxima, θ is Bragg’s angle of 
diffraction and D is crystallite size. The calculated crystallite 
size values 11.6, 11.4, 7.0 and 4.1 correspond to x = 0, 0.05, 
0.10 and 0.15, respectively, which shows that crystallite size 
decreased upon Fe doping.

According to Heisenberg uncertainty principle, 
∆X∆P ≥ h2/4, which provides the relationship between par-
ticle size (∆X) and phonon distribution momentum (∆P), 
where ћ is the reduced Planck’ constant. Decrease in parti-
cle size leads to increase in phonon momentum distribution 
that resulted in Raman band shift as well as broader peak 
(Chauhan et al. 2013). Raman spectra of pristine and doped 
CdS nanoparticles are shown in Fig. 4. Peaks at 287 and 

589 cm−1 correspond to 1 LO (longitudinal optical) and 2 
LO phonon modes which were consistent with previously 
reported values (Thambidurai et al. 2010). The peak inten-
sity reduction upon doping attributed to the smaller differ-
ence in ionic radii of  Fe2+ than  Cd2+ which results in slight 
redshift of peaks (Chauhan et al. 2013) (Fig. 5).

The presence of functional groups was confirmed using 
FTIR for CdS and Fe:CdS which exhibited stretching and 

Fig. 3  XRD pattern of pristine and Fe-doped CdS

Fig. 4  Raman spectra of pure and Fe-doped CdS

Fig. 5  FTIR spectra of CdS and Fe-doped CdS
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bending vibrations of O–H, C–H, C=C and C–O functional 
groups. However, broad peak at 3432 cm−1 attributed to 
O–H exhibits affinity of water towards CdS (Seoudi et al. 
2015; Qutub et al. 2016), whereas peaks at 1627 cm− 1 and 
1544 cm−1 correspond to C=C and C–O stretching modes of 
carboxyl and carbonyl groups (Kumar et al. 2012; Abdola-
hzadeh Ziabari and Ghodsi 2012; Elevathoor Vikraman et al. 
2015). Interestingly, adsorption of water and  CO2 is com-
mon owing to exposure in atmosphere, particularly for NPs 
(Qutub et al. 2016). SH stretching vibrations were associated 
with an absorption band at 2351 cm−1 which confirmed the 
presence of the capping agent (TGA). However, shoulder at 
665 cm−1 confirmed the presence of CdS stretching modes 
(Kumar et al. 2012; Abdolahzadeh Ziabari and Ghodsi 2012; 
Elevathoor Vikraman et al. 2015; Seoudi et al. 2015).

Surface morphology and elemental analysis of synthe-
sized nanoparticles, FESEM and EDX were employed. 
FESEM images of synthesized CdS and Fe-doped CdS 
(5, 10 and 15%) NPs are shown in Fig. 6a–d, respectively. 
CdS had agglomerated nanoparticles (6a) that resulted in 
nanoclusters (Thambidurai et al. 2010). Upon doping, NPs 
become spherical with irregular growth due to Ostwald 
ripening (Devi et al. 2015; Desai et al. 2017; Waly et al. 
2017). However, EDAX confirmed Cd, S and Fe (Fig. 7a–c), 
and the relative ratio between elements was stoichiometric 
(Thambidurai et al. 2010).

Optical properties after Fe incorporation into CdS (5, 
10 and 15%) were investigated using UV–Vis spectros-
copy (Fig. 8a). Absorption peak for CdS was found around 

Fig. 6  FESEM images of 
pristine CdS (a) and Fe (5, 10, 
15%)-doped CdS (b, c and d)

Fig. 7  EDX spectra of pristine CdS (a) and Fe-doped CdS (b and c)
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Fig. 8  Absorption and cor-
responding band gap spectra 
using Tauc plot method for 
pristine and Fe (5, 10 and 15%)-
doped CdS

Fig. 9  DSC/TGA graph of 
pristine CdS (a) and Fe (5, 10, 
15%)-doped CdS (b, c and d)
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475 nm (Thambidurai et  al. 2010; Seoudi et  al. 2015). 
However, with mixing of Fe in CdS, absorption intensity 
increased 280–480 nm accompanied blueshift with doping 
amount. This shift was attributed to quantum confinement 
as evident from XRD (Thambidurai et al. 2010; Elevathoor 
Vikraman et al. 2015; Seoudi et al. 2015). On the other hand, 
band gap energy was measured between (αhυ) vs (hυ) graphs 
plotted in Fig. 8b and longer wavelength of absorption band 
decreased band gap energy. 

TGA analysis confirmed initial mass loss (2–10%) up to 
400 °C ascribed to adsorbed water removal on nanocrystals 
surface for undoped and doped NPs suggesting endothermic 
transition as shown in Fig. 9a–d (Dhage et al. 2013; Patel 
et al. 2017). However, mass loss (10–30%) in doped NPs 
corresponds to exothermic peak that starts from 400 °C pro-
viding evidence of cubic crystal collapse and evolution of 
impurity phases as well (Dhage et al. 2013). Furthermore, 
another endothermic peak after 800 °C represented mass 
loss corresponding to sublimation of CdS. It is noteworthy 
to infer from the increase in weight loss upon Fe doping 
that control sample is more stable than Fe-incorporated CdS 
(Dhage et al. 2013) (Table 1). 

The photocatalytic activity (PCA) of control and Fe-
doped (5, 10 and 15%) NPs for MB degradation has been 
presented in Fig. 10. The successive decrease in MB with 
Fe-doped NPs attributed to crystal defects that acted as 

recombination centers to reduced photocatalytic perfor-
mance. However, control sample CdS exhibited inverse deg-
radation in contrast to doped samples (Chauhan et al. 2013).

The catalytic reduction of MB was investigated using 
 NaBH4 as the reducing agent with doped and undoped CdS 
as nano-catalysts. Reducing capacity of  NaBH4 and undoped 
CdS was not significant (Fig. 11a) while successive decrease 
in MB was observed with doping concentration of Fe in CdS 
and maximum catalytic efficiency was recorded for 15% Fe-
doped CdS NPs (Fig. 11d).

Pure CdS gives incomplete reduction of MB within 
40 min while 5% Fe-doped CdS degrades 70% MB within 
25 min (Fig. 12). However, 10 and 15% Fe-doped CdS 
reduced MB within 15 and 10 min, respectively, and showed 
complete reduction of MB to leucomethylene blue (LMB) 
at room temperature.

The variations in absorption intensity of MB pointed to a 
rapid reaction rate over a certain period of time. In addition, 
reduction of MB was proximately completed at termination 
of reaction. Conversely, undoped CdS represented slower 
degradation of MB, suggesting superior catalytic function 
of Fe-doped CdS. These NPs were potential nanocatalysts 
with excellent catalytic potential to be employed in indus-
tries (Table 2).

Table 1  DSC/TGA result 
extracted from Fig. 9

Temperature range (samples) Transition Mass variation Thermal behaviour

Up to 400 °C Removal of adsorbed water Mass loss Endothermic
From 400 to 700 °C Collapse of cubic structure Mass loss Exothermic
From 800 to 1000 °C Sublimation of CdS Mass loss Endothermic

Fig. 10  Photocatalytic activity 
phenomena. (a) Degradation of 
MB in the presence of control 
and Fe-doped (5, 10 and 15%) 
(b)
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Conclusion

CdS and Fe (5, 10 and 15%)-doped CdS NPs were pre-
pared using chemical co-precipitation and their XRD pat-
tern indicates gradual decrease in crystallite size from 11.6 
to 4.1 nm in Fe-doped CdS NPs. Absorption increased 
(400–500 nm) with the amount of Fe doping and bandgap 
decreased from 2.34 to 2.2 eV (2.42 eV of bulk CdS). 
FESEM images displayed nanoclusters and surface defects 

with doping as evident with XRD pattern. However, FTIR 
confirmed the presence of Cd–S linkage at 619  (cm−1) and 
other functional groups involved during synthesis. The Fe-
doped CdS NPs showed superior catalytic potential com-
pared to undoped CdS that suggests their way to dye usage 
industries especially leather and tanneries. Additionally, 
NPs could not only provide superior catalytic activity but 
also help in cost reduction and complete removal of dyes 
for wastewater management.

Fig. 11  a–d Time-dependent 
UV–Vis spectra for the 
reduction of dyes. Dye with 
 NaBH4 + CdS (a), dye with 
 NaBH4 + 5% Fe-doped CdS 
(b), dye with  NaBH4 + 10% 
Fe-doped CdS (c) and dye with 
 NaBH4 + 15% Fe-doped CdS 
(d)

Fig. 12  Catalytic degradation of 
MB with CdS (a), 5% Fe-doped 
CdS (b), 10% Fe-doped CdS (c) 
and 15% Fe-doped CdS (d)
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